Cpx参与迟缓爱德华氏菌对环境压力的响应和致病作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cpx(conjugative plasmid expression)是存在于革兰氏阴性菌细胞膜上的双组分调节系统,能够感应外界环境变化,参与细菌细胞膜压力调节,维持细胞膜蛋白稳定性。迟缓爱德华氏菌Cpx的功能未知,本研究开展了如下工作:
     (1)对表型的影响。利用同源克隆获得LSE40菌株全长2,713bp的cpx基因簇,该Cpx含有编码组氨酸蛋白激酶CpxA、反应调节蛋白CpxR和抑制因子CpxP的基因。利用框内基因缺失突变技术,构建了cpx基因簇缺失突变株Δcpx和cpxR基因缺失株ΔcpxR。在正常培养条件下,两个突变株的生长、运动力、对抗生素的敏感性、自凝集、三型分泌系统(T3SS)输送器蛋白(EseB,EseC,EseD)分泌与野生型相比没有显著变化(P>0.05),cpx的缺失使细菌的菌膜形成能力减弱(P <0.05),而ΔcpxR的菌膜形成没有显著变化(P>0.05);在缺铁和3.5%NaCl的培养条件下,两个突变株的生长无显著差异(P>0.05);在1%H_2O_2和0.05%SDS培养条件下,两个突变株的生长显著下降(P <0.05)。上述结果表明Cpx参与了迟缓爱德华氏菌对氧化剂和表面活性剂等压力的响应。
     (2)对毒力的影响。检测了突变株对蓝曼龙(Trichogaster trichopterus)的毒力,浸泡感染结果显示Δcpx和ΔcpxR对蓝曼龙的毒力分别下降1.5倍和3.0倍,肌肉注射感染结果显示两突变株的毒力分别下降7.33倍和4.58倍,两株突变株在鱼体内的生存能力显著下降(P <0.05)。上述结果表明Cpx系统参与了对迟缓爱德华氏菌毒力的调控。
     (3)对基因转录水平的影响。qRT-PCR结果显示,用1mM H_2O_2处理迟缓爱德华氏菌LSE40后,cpxR基因的转录水平显著升高(P <0.05),表明H_2O_2处理可激活迟缓爱德华氏菌LSE40cpxR的表达。cpx和cpxR缺失后,一些涉及抗氧化、蛋白正确折叠、细胞分离等过程的蛋白基因的转录水平与野生型细菌有显著性差异,在cpxR互补株中的表达量又回复到野生型水平,表明CpxR参与对这些基因的调控。
The Cpx(conjugative plasmid expression)two-component regulatory system existson the membrane of a variety of gram-negative bacteria. It senses the change ofnatural environment or the systemic infection niches of hosts, and is involved in theresponse to envelope stress and the maintenance of envelope proteins. Function of theCpx in E. tarda is not clarified. Here we studied its role:
     (1) The impact on bacterial phenotypes. We obtained the2,713bp cpx gene clusterof Edwardsiella tarda LSE40using a homologous cloning strategy. The Cpx iscomposed of a histidine kinase activity protein CpxA, a cognate cytoplasmic responseregulator CpxR and a periplasmic inhibitor CpxP. To investigate the function of Cpx,the cpxR gene and the cpx cluster in-frame deletion mutants were constructed fromLSE40. Neither ΔcpxR or Δcpx mutants showed significant differences with thewild-type strain in the celluar growth, mobility, sensitivities to antibiotics,auto-aggregation and secretion of T3SS component protein EseB, EseC, EseD(P>0.05) in TSA or TSB medium. The Δcpx mutant showed aberrant biofilmformation (P <0.05), while the ΔcpxR mutant exihibited significant difference(P>0.05). Mutants didn’t showed significant differences in3.5%NaCl density TSBand Fe2+limited medium (P>0.05). While and both mutants exhibited increasedsensitivities under1%(w/v) H_2O_2and0.05%(w/v) SDS stresses (P <0.05). Thesedata indicated that E. tarda Cpx participated in sensing environmental oxidant andsurfactant signal.
     (2) The impact on bacterial virulence. Bacteria were administrated to blue guoramifish Trichogaster trichopterus by immersing infection and intramuscular injection. Inthe injection route, the Δcpx and ΔcpxR mutants decreased4.58-fold and7.33-fold in virulence compared with the wild-type strain. In the immersion route, the Δcpx andΔcpxR mutants showed1.5-fold and3.0-fold decrease. Both mutants exhibiteddecreased bacterial proliferation ability in host’s liver tissue as well, which indicatedthat Cpx pathway was involved in the virulence of E. tarda.
     (3) The impact on genes transcription. Expression of LSE40cpxR was dected byreal-time quantitative RT-PCR (qRT-PCR). The transcriptional level was significantlyaraised in strain under1mM H_2O_2treatment compared with untreated strain, whichindicated H_2O_2could probably activate the expression of cpxR. We further studied theimpact on the expression of the putative CpxR-regulated genes, the functions ofwhich range from antioxidation, protein folding to cell division processes.Transcriptional levels were observed significantly different in deletion mutants andreturned to wild type levels in complementary strain, which indicated the regulationof CpxR to these genes.
引文
Raivio T L. Envelope stress responses and Gram-negative bacterial Pathogenesis[J]. MolecularMicrobiology.2005,56(5):1119–1128.
    Price N L&Raivio T L. Characterization of the Cpx Regulon in Escherichia coli Strain MC4100[J].Journal of Bacteriology.2009:1798–1815.
    De Wulf P, McGuire A M, Liu X, et al Genome-wide Profiling of Promoter Recognition by theTwo-component Response Regulator CpxR-P in Escherichia coli[J]. The Journal of BiologicalChemistry.2002,277(29):26652–26661.
    Bury-Mone′S, Nomane Y, Reymond N, et al Global Analysis of Extracytoplasmic Stress Signaling inEscherichia coli[J]. PLoS Genetics.2009,5(9).
    Shimohata N, Chiba S, Saikawa N, et al The Cpx stress response system of Escherichia coli sensesplasma membrane proteins and controls HtpX, a membrane protease with a cytosolic activesite[J]. Genes Cells.2002,7(7):653-62.
    Carlsson K E, Liu J, Edqvist P J, et al. Extracytoplasmic-Stress-Responsive Pathways Modulate TypeIII Secretion in Yersinia pseudotuberculosis[J]. Infection and Immunity.2007,3913–3924
    Liu J, Obi1I R, Thanikkal E J, et al. Phosphorylated CpxR Restricts Production of the RovA GlobalRegulator in Yersinia pseudotuberculosis[J].2011,6(8)
    Vogt S L&TrRaivio. Just scratching the surface: an expanding view of the Cpx envelope stressresponse[J]. FEMS Microbiol Lett.2012,326:2-11.
    Lv Y, Xiao J, Liu Q, et al. Systematic mutation analysis of two-component signal transductionsystems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiellatarda[J]. Veterinary Microbiology2012,157:190-199.
    Raffa R G&Raivio T L. A third envelope stress signal transduction pathway in Escherichia coli[J].Mol Microbiol.2002,45(6):1599-1611.
    Muyembe, T., Vandepitte, J.&Desmyte.r, J. Natural colistin resistance in Edwardsiella tarda[J].Antimicrob Agents Chemother.1973,4:521-524.
    MacRitchie D M, Ward J D, Nevesinjac A Z&Raivio T L. Activation of the Cpx envelope stressresponse down-regulates expression of several locus of enterocyte effacement-encoded genes inenteropathogenic Escherichia coli[J]. Infect Immun.2008,76(4):1465–1475.
    Acharya M, Maiti N K, Mohanty B R, et al Genotyping of Edwardsiella tarda isolated fromfreshwater fish culture system[J]. Comp Immunol Microbiol Infect Dis.2007,30,33-40.
    Mohanty B R&Sahoo P K. Edwardsiellosis in fish: a brief review[J]. J. Biosci.2007,32(7):1331-1344.
    Leung K Y, Siame B A, Tenkink B J, et al Edwardsiella tarda-Virulence mechanisms of anemerging gastroenteritis pathogen[J]. Microbes and Infection.2011,14(2012):26-34.
    Janda J M&L A S Pathogenic properties of Edwardsiella tarda[J]. J Clin Microbiol.1991,29,1998-2001.
    Wong J D, Miller M A&Janda J M. Surface properties and ultrastructure of Edwardsiella species[J].J Clin Microbiol.1989,27,1797-1801.
    Ottemann K M&Miller J F. Roles for motility in bacterial-host interactions[J]. Mol Microbiol.1997,24,1109-1117.
    Strauss E J, Ghori N&Falkow S. An Edwardsiella tarda strain containing a mutation in a gene withhomology to shlB and hpmB is defective for entry into epithelial cells in culture[J]. Infect Immun.1997,65,3924-3932.
    Srinivasa Rao P S, Yamada Y&Leung K Y A major catalase (KatB) that is required for resistance toH2O2and phagocyte-mediated killing in Edwardsiella tarda[J]. Microbiology.2003,149:2635-2644.
    Chen J D&Huang S L. Hemolysin from Edwardsiella tarda strain ET16isolated from eel Anguillajaponica identified as a hole-forming toxin[J]. Fish Science.1996,62:638-542.
    Tan Y P, Zheng J, Tung S L, et al Role of type III secretion in Edwardsiella tarda virulence[J].Microbiology.2005,151:2301–2313.
    Wang B, Mo Z L, Xiao P, et al EseD, a Putative T3SS Translocon Component of Edwardsiella tarda,Contributes to Virulence in Fish and is a Candidate for Vaccine Development[J]. Mar Biotechnol.2010,12:678-685.
    Wang X&Chapman MR. Curli provide the template for understanding controlled amyloidpropagation[J]. Prion.2008,2(2):57-60.
    Wang K, Liu E, Song S, et al Characterization of Edwardsiella tarda rpoN: roles in r70familyregulation, growth, stress adaption and virulence toward fish[J]. Arch Microbiol.2012.
    Xiao J, Wang Q, Liu Q, et al Characterization of Edwardsiella tarda rpoS: effect on serum resistance,chondroitinase activity, biofilm formation, and autoinducer synthetases expression[J]. ApplMicrobiol Biotechnol.2009,83:151-160.
    Alm E, Huang K, and Arkin A. The evolution of two-component systems in bacteria reveals differentstrategies for niche adaptation[J]. Plos Comput Biol.2006,2(11):1329-1342.
    Altman E,Segal G. The response regulator CpxR directly regulates expression of several Legionellapneumophila icm/dot components as well as new translocated substrates[J]. J Bacteriol.2008,190(6):1985-1996.
    Austin B,Allen-Austin D. Bacterial pathogens of fish[J]. J Appl Bacteriol.1985,58(5):483-506.
    Carlsson K E, Liu J, Edqvist P J, et al Influence of the Cpx extracytoplasmic-stress-responsivepathway on Yersinia sp.-eukaryotic cell contact[J]. Infect Immun.2007,75(9):4386-4399.
    Conrad M. Cross-scale information processing in evolution, development and intelligence[J].Biosystems.1996,38(2-3):97-109.
    Danese P N,Silhavy T J. The sigma(E) and the Cpx signal transduction systems control the synthesisof periplasmic protein-folding enzymes in Escherichia coli[J]. Genes Dev.1997,11(9):1183-1193.
    Danese P N,Silhavy T J. CpxP, a stress-combative member of the Cpx regulon[J]. J Bacteriol.1998,180(4):831-839.
    Danese P N, Snyder W B, Cosma C L, et al The Cpx two-component signal transduction pathway ofEscherichia coli regulates transcription of the gene specifying the stress-inducible periplasmicprotease, DegP[J]. Genes Dev.1995,9(4):387-398.
    Dartigalongue C,Raina S. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase requiredfor folding of outer membrane proteins in Escherichia coli[J]. EMBO J.1998,17(14):3968-3980.
    Dong J M, Iuchi S, Kwan H S, et al The deduced amino-acid-sequence of the cloned cpxR genesuggests the protein is the cognate regulator for the membrane sensor, CpxA, in a2-componentsignal-transduction system of Escherichia coli[J]. Gene.1993,136(1-2):227-230.
    Dorel C, Vidal O, Prigent-Combaret C, et al Involvement of the Cpx signal transduction pathway of E.coli in biofilm formation[J]. FEMS Microbiol Lett.1999,178(1):169-175.
    Edwards R A, Keller L H, and Schifferli D M. Improved allelic exchange vectors and their use toanalyze987P fimbria gene expression[J]. Gene.1998,207(2):149-157.
    Igarashi A, Iida T&Crosa J H. Iron-acquisition ability of Edwardsiella tarda withinvolvement in its virulence. Fish Pathol.2002(3):53-57.
    Filloux A, Hachani A, and Bleves S. The bacterial type VI secretion machine: yet another player forprotein transport across membranes[J]. Microbiology-Sgm.2008,154:1570-1583.
    Gal-Mor O,Segal G. Identification of CpxR as a positive regulator of icm and dot virulence genes ofLegionella pneumophila[J]. J Bacteriol.2003,185(16):4908-4919.
    Galperin M Y. A census of membrane-bound and intracellular signal transduction proteins in bacteria:bacterial IQ, extroverts and introverts[J]. Bmc Microbiol.2005,5:35.
    Goodman A L, Merighi M, Hyodo M, et al Direct interaction between sensor kinase proteins mediatesacute and chronic disease phenotypes in a bacterial pathogen[J]. Genes Dev.2009,23(2):249-259.
    Grigoroudis A I, Panagiotidis C A, Lioliou E E, et al Molecular modeling and functional analysis ofthe AtoS-AtoC two-component signal transduction system of Escherichia coli[J]. BiochimBiophys Acta.2007,1770(8):1248-1258.
    Hagiwara D, Yamashino T, and Mizuno T. A genome-wide view of the Escherichia coli BasS-BasRtwo-component system implicated in iron-responses[J]. Biosci Biotech Bioch.2004,68(8):1758-1767.
    Herbert E E, Cowles K N, and Goodrich-Blair H. CpxRA regulates mutualism and pathogenesis inXenorhabdus nematophila[J]. Appl Environ Microbiol.2007,73(24):7826-7836.
    Yamamoto K&Ishihama A. Characterization of Copper-Inducible Promoters Regulated byCpxA/CpxR in Escherichia coli[J]. Biosci. Biotechnol. Biochem.,2006,70(7):1688-1695.
    Hu Y H, Dang W, Liu C S, et al. Analysis of the effect of copper on the virulence of a pathogenicEdwardsiella tarda strain[J]. Letters in Applied Microbiology.2010,50:97–103
    Yamamoto K&Ishihama A.. Transcriptional response of Escherichia coli to external copper[J].Molecular Microbiology.2005,56(1):215–227.
    Hirakawa H, Nishino K, Hirata T, et al Comprehensive studies of drug resistance mediated byoverexpression of response regulators of two-component signal transduction systems inEscherichia coli[J]. J Bacteriol.2003,185(6):1851-1856.
    Ho S N, Hunt H D, Horton R M, et al Site-directed mutagenesis by overlap extension using thepolymerase chain-reaction[J]. Gene.1989,77(1):51-59.
    Hu Y H, Liu C S, Hou J H, et al Identification, characterization, and molecular application of avirulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain[J]. ApplEnviron Microbiol.2009,75(13):4333-4340.
    Humphreys S, Rowley G, Stevenson A, et al Role of the two-component regulator CpxAR in thevirulence of Salmonella entetica serotype typhimurium[J]. Infection and Immunity.2004,72(8):4654-4661.
    Hung D L, Raivio T L, Jones C H, et al Cpx signaling pathway monitors biogenesis and affectsassembly and expression of P pili[J]. EMBO J.2001,20(7):1508-1518.
    Jubelin G, Vianney A, Beloin C, et al CpxR/OmpR interplay regulates curli gene expression inresponse to osmolarity in Escherichia coli[J]. J Bacteriol.2005,187(6):2038-2049.
    Kim S W, Moon K H, Baik H S, et al Changes of physiological and biochemical properties ofSalmonella enterica serovar Typhimurium by deletion of cpxR and lon genes using allelicexchange method[J]. J Microbiol Methods.2009,79(3):314-320.
    Kirby J R. Chemotaxis-like regulatory systems: unique roles in diverse bacteria[J]. Annu RevMicrobiol.2009,63:45-59.
    Lan M Z, Peng X, Xiang M Y, et al Construction and characterization of a live, attenuated esrBmutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicaemiain turbot, Scophthamus maximus (L.)[J]. Fish Shellfish Immunol.2007,23(3):521-530.
    Marijuán P C, Navarro J, and del Moral R. On prokaryotic intelligence: Strategies for sensing theenvironment[J]. Biosystems.2010,99(2):94-103.
    Matsuda K, Chaudhari A A, Kim S W, et al Physiology, pathogenicity and immunogenicity of lonand/or cpxR deleted mutants of Salmonella Gallinarum as vaccine candidates for fowl typhoid[J].Vet Res.2010,41(5):59.
    Nevesinjac A Z, Raivio T L. The Cpx envelope stress response affects expression of the type IVbundle-forming pili of enteropathogenic Escherichia coli[J]. J Bacteriol.2005,187(2):672-686.
    Hess J F, Oosawa K, Matsumura P, et al. Protein phosphorylation is involved in bacterialchemotaxis[J]. Proc Natl Acad Sci U S A.1987,84(21):7609-7613
    Ninfa A J,Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII,regulates the transcription of the glnALG operon in Escherichia coli[J]. Proc Natl Acad Sci U S A.1986,83(16):5909-5913.
    Nixon B T, Ronson C W, and Ausubel F M. Two-component regulatory systems responsive toenvironmental stimuli share strongly conserved domains with the nitrogen assimilation regulatorygenes ntrB and ntrC[J]. Proc Natl Acad Sci U S A.1986,83(20):7850-7854.
    Pogliano J, Lynch A S, Belin D, et al Regulation of Escherichia coli cell envelope proteins involvedin protein folding and degradation by the Cpx two-component system[J]. Genes Dev.1997,11(9):1169-1182.
    Prigent-Combaret C, Brombacher E, Vidal O, et al Complex regulatory network controls initialadhesion and biofilm formation in Escherichia coli via regulation of the csgD gene[J]. J Bacteriol.2001,183(24):7213-7223.
    Raffa R G, Raivio T L. A third envelope stress signal transduction pathway in Escherichia coli[J].Mol Microbiol.2002,45(6):1599-1611.
    Raivio T L,Silhavy T J. Transduction of envelope stress in Escherichia coli by the Cpxtwo-component system[J]. J Bacteriol.1997,179(24):7724-7733.
    Scharf B E, Aldridge P D, Kirby J R, et al Upward mobility and alternative lifestyles: a report fromthe10th biennial meeting on Bacterial Locomotion and Signal Transduction[J]. Mol Microbiol.2009,73(1):5-19.
    Spinola S M, Fortney K R, Baker B, et al Activation of the CpxRA System by Deletion of cpxAImpairs the Ability of Haemophilus ducreyi to Infect Humans[J]. Infect Immun.2010,78(9):3898-3904.
    De Wulf P, Kwon O, Lin E C, The CpxRA signal transduction system of Escherichia coli:Growth-related autoactivation and control of unanticipated target operons[J]. J. Bacteriol.1999,181:6772–6778.
    Rubires X, Saigi F, Pique N, et al. A gene (wbbL) from Serratia marcescens N28b (O4) complementsthe rfb-50mutation of Escherichia coli K-12derivatives[J]. J Bacteriol.1997,179(23):7581-7586
    Edwards R A, Keller L H, and Schifferli D M. Improved allelic exchange vectors and their use toanalyze987P fimbria gene expression[J]. Gene.1998,207(2):149-157
    杨茂成.兽医统计学[M].北京:中国展望出版社,1990:232-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700