卡特兰花期调控及其关键栽培技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以卡特兰品种Brassolaeliocattleya Sung Ya Green‘Green World’为试材,观测和记录研究了卡特兰的生长发育规律以及北方温室温度和湿度的周年变化,研究了各年生器官中营养物质的周年变化,以及不同叶龄叶片相对于不同光强的叶绿素荧光特性。采用石蜡切片法观察了卡特兰花芽的形态发生和结构发育过程。在此基础上,在花芽分化期进行3种不同的温度处理,探讨了相应时期内的营养以及新叶中内源激素的动态变化;对处于不同花芽分化阶段的卡特兰进行不同的温度处理,研究了温度对开花性状和质量的影响;在花芽分化期喷洒和注射不同浓度的GA3、NAA、ABA等激素,探讨了激素对开花性状和质量的影响。最后对卡特兰花朵衰老过程中的某些生理生化变化进行了研究,并且构建了卡特兰ACO基因的反义表达载体pBI121ACC,为进一步应用反义技术培养花期长的卡特兰新品种奠定了基础。通过以上研究,得出以下主要研究结果:
     通过研究各年生器官中营养物质变化发现,卡特兰当年形成的假鳞茎储存较少的淀粉,营养物质主要以可溶性糖的成分存在,其它各年生假鳞茎和叶片中,营养物质以淀粉形态储存,花芽分化和开花消耗大量营养。在休眠期营养储存少,在新芽初生期各假鳞茎营养储存较多,所以卡特兰的换盆和分株繁殖宜在新芽初生期进行。
     对不同叶龄叶片的荧光特性研究表明,随着光照强度的增加和叶龄的增长,PSⅡ电子传递量子产率(Yield)、光化学淬灭(qP)、有效光化学量子产量(Fv'/Fm')表现为逐渐降低,非光化学猝灭(qN)逐渐升高。新叶虽然在低光强下有着较高的qP、Yield、Fv'/Fm',但当光强高于740μmol·m-2s-1时,光抑制现象严重,表观电子传递速率(ETR)降低,表明新叶对强光的适应能力较差,因此在栽培中,新叶生长期光照强度不宜超过740μmol·m-2s-1。一年生叶片ETR最高,光能利用效率最高,但光强超过1250μmol·m-2s-1时同样会导致光抑制,二、三年生叶片ETR相近,四年生ETR最低,光能利用率最低,最易受到光抑制。
     在北方温室温度条件下,卡特兰花芽分化从7月初花序原基分化开始,至9月下旬合蕊柱及花粉块形成历时约3个月。其过程可分为6个时期:未分化期、花序原基分化期、小花原基分化期、萼片原基分化期、花瓣原基分化期、合蕊柱及花粉块分化期。其中,小花原基分化期、合蕊柱及花粉块分化期历时长,分化较慢,其它时期历时短,分化较快。自萼片原基分化期开始,新生植株生长已基本停止。
     6月下旬,在卡特兰花芽未分化期开始不同的温度处理表明,25/20℃处理能显著的促进花芽分化,30/25℃处理花芽能正常分化,35/30℃处理抑制花芽分化;25/20℃和30/25℃处理条件下,叶面积增长速率差异不显著,在处理24 d时,25/20℃处理条件下花鞘增长速率快于30/25℃处理。35/30℃处理条件下,叶面积和花鞘增长速率明显落后于其它两个处理。在不同温度处理的开始时,随处理温度的升高,可溶性糖在新叶和新假鳞茎中下降幅度增大,在老叶和老假鳞茎中下降幅度变小,淀粉在各个器官中下降幅度也变小。处理18 d时,35/30℃处理条件下,新叶中可溶性糖含量明显高于其它两个处理,假鳞茎中可溶性糖含量则低于其它两个处理。在30/25℃处理条件下,可溶性糖和淀粉在各个器官中变化趋势基本一致。在25/20℃处理条件下,新叶的可溶性糖含量与其它各器官变化趋势相反。
     25/20℃、30/25℃处理条件下,新生叶片中GA3、ZR、ABA含量增加,IAA含量减少。35/30℃处理抑制新生叶片中GA3、ZR、ABA含量,促进IAA含量,而较低的GA3、ZR、ABA含量和较高水平的IAA含量不利于花芽分化;35/30℃处理使GA3/IAA、GA3/ZR的比值处于一个较为稳定的状态,而这种状态不利于花芽分化。保持较低的IAA/ZR与IAA/ABA水平,有利于花芽分化的继续进行。
     在6月下旬,卡特兰花芽未分化期开始25/20℃处理能够显著地促进开花,使盛花期提前56 d,但开花率低,开花以单花为主。在8月中旬萼片分化期开始25/20℃处理也能够显著地促进开花,使盛花期提前14 d,开花以双花为主,并且花朵显著增大。花芽未分化期开始35/30℃的高温处理能够抑制开花,萼片分化期开始35/30℃的高温处理能够延迟开花,花期延迟14 d。两次30/25℃处理与对照无差异。花蕾破鞘期进行10/6℃的低温处理能够延迟开花,使盛花期推迟36 d,在元旦开放。
     在花芽分化过程中喷施300 mg·kg-1和600 mg·kg-1的GA3能够使花柄和花葶的长度显著增加,使盛花期分别提前9.33 d和8.67 d,两个处理之间差异不显著。喷施不同浓度的NAA对卡特兰开花性状没有影响,当喷施NAA的浓度为200 mg·kg-1时使花期推迟6.67 d。注射GA3的浓度为60 mg·kg-1和120 mg·kg-1时,能够使盛花期显著提前13.34 d和22.34 d,使萼片、花瓣、花柄和花葶的长度显著增加;9月9日花鞘注射10 mg·kg-1的NAA能够使花期提前,能够使花朵显著增大。喷施和注射ABA对卡特兰的花期没有影响,注射ABA浓度为40 mg·kg-1时,开花率下降,花朵缩小。所以,在栽培中推荐使用注射的方法进行花期调控,不仅用量小,而且效果显著,注射60 mg·kg-1的GA3或10 mg·kg-1的NAA不仅能够使花期提前,而且使花朵增大,可以作为花期调控的重要手段。
     卡特兰花衰老过程中花瓣的可溶性蛋白质含量逐渐下降,细胞质膜透性、丙二醛(MDA)、超氧阴离子(O2·-)产生量随花瓣的衰老逐渐增加,超氧物歧化酶(SOD)和过氧化物酶(POD)活性逐渐降低。内源ZRs含量降低,内源IAA、ABA含量上升,乙烯释放量呈跃变型变化,GA3含量变化不明显。
     以花瓣为试材,首先提取总RNA,并根据其它兰花的ACC氧化酶基因保守序列设计一对特异性引物,然后通过RT-PCR法克隆得到1条967 bp的卡特兰ACO cDNA片断,共编码321个氨基酸残基。序列分析结果显示该克隆片断与已发表的其它兰花的ACO基因序列同源性均在85%以上,尤其与卡特兰原生种和其近亲属的同源性均在95%以上。将克隆的卡特兰ACO片段反向连接到植物表达载体pBI121中CaMV35S启动子的下游,构建了卡特兰ACO基因的反义表达载体pBI121ACC。
     本研究论文首次明确了卡特兰在北方温室环境条件下的生长发育规律、需肥规律、需光特性,首次明确了卡特兰花芽分化的规律和时期,为制定合理的栽培和管理措施提供了一定依据;通过研究不同温度处理对卡特兰花芽分化、营养物质、内源激素的影响,首次揭示了温度对营养物质、内源激素的调节作用,以及在此基础上对花芽分化的影响。首次成功的通过温度和激素处理对卡特兰花期进行了调控,能够使卡特兰在花卉的热销季节供应市场;通过克隆卡特兰ACO基因以及其反义表达载体的构建,为将来通过反义技术培养花期长的卡特兰新品种奠定了基础。
The growth rhythm of Brassolaeliocattleya Sung Ya Green‘Green World’was observed and recorded in greenhouse in North China, and also the temperature and relative humidity was recorded. The changes of nutrient content in organs of different physiological ages and the chlorophyⅡfluorescence characteristics in leaves of different age were studied. The flower bud differentiation process was observed by the method of paraffin cut. The changes in nutrient content and endogenous hormones in new leaves were measured during the flower-bud differentiation phase of plants growing under 3 different temperatures. The effects of different temperature treatments, spraying or injecting different concentration of hormones (GA3,NAA,ABA) on Cattleya florescence and flower quality were studied. Physiological and biochemical changes in flower senescence were also studied. An antisense expression vector of the cattleya-ACO gene, which named pBI121ACC, was constructed. This provides the foundations of future transgenic research for prolonging the flowering period of transgenic Cattleya via antisense technology. The results are described as follows:
     Soluble sugar was the dominant carbon reserves with lower content of starch in new pseudobulbs, but starch was dominnant in older (2-4 years) pseudobulbs and leaves. Most of carbon nutrient was consumped during flower bud differentiation and florescence. There was lower nutrient storing during dormant period, but more during new bud sprouting. Therefore, new bud sprouting period appears to be the best time for repotting and division propagation.
     With increasing of light intensity and leaves age, there was a slower decrease in actual PSII efficiency(Yield), photochemical quenching (qP), and efficiency of energy conversion of open PSII (Fv'/Fm'), but a slower increase in nor-photochemical quenching (qN). The new leaves under lower light intensity had higher qP, Yield, Fv'/Fm', but it is susceptible to high light intensity under which photoinhibition occurred and electron transport rate (ETR) decreased when the light intensity over 740μmol·m-2s-1. The one-year-old leaves had the highest ETR and the most efficiency of light energy, but they also exhibited photoinhibition when the light intensity over 1250μmol·m-2s-1. Two-and three-year-old leaves had similar ETR, and four-year-old leaves were most susceptible to photoinhibition with the lowest ETR.
     The flower bud differentiation process lasted for about three months from the start of inflorescence primordial differentiation in early July to column and pollinia formation at the end of September under the greenhouse climate condition in North China. The process could be divided into 6 phases: undifferentiation phase, inflorescence primordium differentiation phase, flower differentiation phase, sepal differentiation phase, petal differentiation phase, and column and pollinia differentiation phase. The phases of flower differentiation, column and pollinia differentiation were relatively longer. The new plant finished its growth when sepal differentiation phase began.
     The flower-bud differentiation was significantly accelerated under the treatment of 25/20℃, unaffected under treatment of 30/25℃, but inhibited under treatment of 35/30℃; The flower sheaths increased faster under 25/20℃than those under 30/25℃after 24 days of treatment. But no difference was observed in leaf area between them. The leaf area and flower sheaths increased slowest under the treatment of 35/30℃; When under a higher temperature in the primary stage of the experiment, the decrease of soluble sugar content in new leaves and new pseudobulbs was more prominent in comparison with old leaves and old pseudobulbs, while the starch content in all organs had a smaller decline. After 18 days of treatment, under the treatment of 35/30℃, the soluble sugar content was higher in the new leaves but lower in new pseudobulbs in comparison with other two treatments. The changes of soluble sugar and starch tended to consistently in all organs under the treatment of 30/25℃. The soluble sugar content in new leaves changed opposite to other organs under the treatment of 25/20℃.
     The contents of GA3, ZR, ABA were promoted while IAA was inhibited under treatment of 25/20℃and 30/25℃. The reverse trend was observed under the treatment of 35/30℃. The low content of GA3, ZR, ABA and high content of IAA were not good for flower-bud differentiation; The rate of GA3/IAA, GA3/ZR sustained at a stable level under the treatment of 35/30℃which was not good for flower-bud differentiation. It was required lower rate of IAA/ZR and IAA/ABA to keep the flower-bud differentiation continuing.
     When the different temperature experiment began at undifferentiation phase, it was significantly accelerated the blossom time of Cattleya under the treatment of 25/20℃, which 56 days earlier than that of control, but with lower flowering rate and single flower was dominate. It was not only accelerated the blossom time under the treatment of 25/20℃, but also significantly increased the size of flowers when the experiment began at sepal differentiation phase. The blossom day was 14 days earlier and double flower was dominated. The florescence was inhibited under the treatment of 35/30℃when began at undifferentiation phase, but postponed 14 days when began at sepal differentiation phase. There was no difference between the treatment of 30/25℃and the control. The blossom day would be postponed 36 days to the New Year's Day after the anaphase low temperature treatment of 10/6 ℃on the period of flower buds out of sheathes.
     It was remarkably advanced the date of florescence and prolonged the length of pedicel and scape after spraying GA3 with 300 mg·kg-1 and 600 mg·kg-1. The blossom date was postponed 6.67 days by spraying 200 mg·kg-1 NAA, but there was no effect on flower quality by spraying different concentration of NAA. The blossom time was 13.34 days and 22.34 days earlier than that of the control by ejecting GA3 with 60 mg·kg-1 and 120 mg·kg-1, at the same time the length of sepal and petal as the same as pedicel and scape were significantly prolonged. The flower size was increased by ejecting NAA with 10 mg·kg-1. There was no influence on florescence date by using ABA, no matter spraying or ejecting, but the flowering rate and size of flowers were decreased when ejecting ABA with 40 mg·kg-1. So ejecting was the efficient way which was recommended to use to regulate the date of floresence. When ejecting 60 mg·kg-1 GA3 or 10 mg·kg-1 NAA, it was not only to advance the floresence date, but also to enlarge the flowers size.
     Soluble protein content of petals decreased gradually. Membrane permeability, MDA content and O2·- production rates gradually enhanced while SOD and POD activity reduced with the fading of petals. The contents of endogenous ZRs decreased, but IAA,ABA content increased during senescence, ethylene production rate was typical climacteric type, and GA3 content didn’t change obviously.
     Total RNA was extracted from flowers of cattleya, According to the conserved acid sequence for ACC oxidase in other orchids, we designed a pair of oligo nucleotide primers. Using RT-PCR method, a cDNA fragment about 967 base pair which encoded 321 predicted amino acid residues were amplified. The result of BLAST showed the sequence presented a very high match with the ACO genes from the other orchids, the homologue was higher than 85%, especially the original species and relatives which the homologue was higher than 95%. An antisense expression vector of the cattleya-ACO gene which named pBI121ACC was constructed, in which the antisense sequence was controlled by the CaMV 35S promoter.
     This research provides novel knowledge of growth-development, fertilizer and light requirement of Cattleya under the greenhouse climate condition in North China. It also gives new insights into the flower bud differentiation process, offering theory basics of developing proper cultivation strategies for flowering regulation. It was the first time to reveal the roles of different temperatures in nutrient substances and hormones, and consequently in flower bud differentiation. It was successfully, for the first time, to regulate flowering date for fluffing the demands during the flower fast-selling season by using different temperatures and hormones treatment. An antisense expression vector of the cattleya-ACO gene was constructed which would provide the foundations of the future transgenic research for prolonging the flowering period of the transgenic Cattleya via antisense technology.
引文
[1]胡松华.热带兰花[M].北京:中国林业出版社,2002,33.
    [2]周肇基.洋兰之王卡特兰[J].花木盆景(花卉园艺版),2002(6):12-13.
    [3]吕复兵,王碧青.卡特兰生长发育规律初探[J].西南园艺,2003 (2):33-34.
    [4]吕复兵,王碧青.卡特兰生殖生长模式初探(简报)[J].亚热带植物科学,2003,32(3):57-58.
    [5]陈明莉,王碧青.卡特兰[M].广州:广东科技出版社,2004,48-50.
    [6]王荣钦.外殖体部位、激素浓度对卡特兰、蝴蝶兰原球茎形成和增殖的影响[J].福建热作科技,2000(1):31-32.
    [7]张丽梅,陈钟佃,陈菁瑛,等.卡特兰(Cattleya Labiata)的离体快繁初探[J].福建果树,2001(2):14-16.
    [8] Adelberg J W, Desamero N V, Hale A, Young R E. Long-term nutrient and water utilization during micropropagation of Cattleya on a liquid/membrane system[J].Plant Cell,Tissue and Organ Culture,1997(1):1-7.
    [9]王伯诚,赖小芳,陈银龙,陈明莉.卡特兰、文心兰和大花蕙兰组培快繁及移栽技术研究[J].上海农业科技,2006(l):29.
    [10]王亦菲,杨竹平.蝴蝶兰和嘉德利亚兰的离体快速繁殖[J].上海农业学报,1996,1(4):59-62.
    [11]何松林,朱道圩,任凝辉,等.卡特兰叶片愈伤组织形成与MS培养基及生长调节物质浓度的关系[J].河南农业科学,1996(10):34-35.
    [12]丁兰,刘国安,傅华龙.卡特丽亚兰试管苗工厂化生产过程中幼苗增殖与生长特性的研究[J].四川大学学报(自然科学版).2003(4):764-766.
    [13]吕复兵,罗志娟,王碧青,朱根发.生长素和糖对卡特兰原球茎生长发育的影响[J].广东农业科学,2005(5):35-36.
    [14]潭文澄.观赏植物组织培养技术[M].北京:中国林业出版社,1991,237-247.
    [15] Sai prasad V S, Raghuveer P, Khetarpal S, Chandra R. Effect of various growth regulators on the production of protocorm likebodies in three orchid genera[J].Indian Journal of Plant Physiology,2002,7(1):35-39.
    [16]鲁雪华,徐立晖,郭文杰,林新华.卡特丽亚兰的组织培养[J].江西农业大学学报,2004(2):242-245.
    [17]丁兰,梁桂霞,傅华龙.卡特丽亚兰的组织培养与快速繁殖的研究[J].四川大学学报(自然科学版). 2001(3):107-110.
    [18]衣采洁,周清洋.兰栽培与观赏[M].北京:科学技术文献出版社,2003,16.
    [19]许霖庆.洋兰之王—卡特利亚兰[J].花卉,2002,(7):13.
    [20]李长杰.卡特兰组培苗的栽培与管理[J].花卉生产技术,2000(2):16.
    [21]金陈斌,范凯峰,侯樱,罗震伟.卡特兰盆栽基质筛选初试[J].上海交通大学学报,2005(4):430-434.
    [22]黄宗义.新养兰学-洋兰[M].台湾:台北雷鼓出版社,1988,33.
    [23] Youhong Li,Ken Imai,Siaw Onwona-Agyeman,Hajime Ohno,Shuichiro Matsui. Effects of Light Intensity during Acclimatization on Antioxidative EnzymeActivities and Growth in Mericlone Plantlets of a Cattleya Hybrid[J]. Journal of the Japanese Society for Horticultural Science, 2006, 75(3):243-248.
    [24]李进才,赵习妲,张秦英,郭富常.遮光对兰花养分含量及生育的影响[J].华北农学报,2006,21(4):51-54.
    [25] Zhao X H, Li J C, Matsui S, Maekawa S. Effects of UV radiation on pigment contents and antioxidative enzyme activities in leaves of Cattleya and Cymbidium orchid plants[J].Journal of the Japanese Society for Horticultural Science, 2003, 72(5): 446-450.
    [26] Zhao X H, Li J C, Matsui S, Ohno H, Maekawa S. Changes in activities of antioxidative enzymes and pigment contents in leaves of shade orchids adapting to high sunlight intensity [J].Environment Control in Biology ,2003, 41(3): 235-240.
    [27] Islam M, Matsui S,Ichihashi S. Effects of light quality on seed germination and seedling growth of Cattleya orchids in vitro[J].Journal of the Japanese Society for Horticultural Science, 1999, 68(6): 1132-1138.
    [28]《绿生活》杂志编辑部编辑.最新兰花栽培指南[M].北京:中国农业出版社,2001,15.
    [29]陈心启,吉占和.中国兰花全书[M].北京:中国科林业出版社,1991,222.
    [30] Li Y H, Imai K, Ohno H, Matsui S. Effects of acclimatization temperatures on antioxidant enzyme activities in mericlones of a cattleya hybrid [J].Journal of the Japanese Society for Horticultural Science,2004,73(4):386-392.
    [31] Reid M S, et al. Ethylene and flower senescence[J]. Plant Growth Regulation,1992,11:37-43.
    [32] Yamane K, Yamada Y, Fujishige N. Effects of exogenous ethylene and 1-MCP on ACC oxidase activity, ethylene production and vase life in Cattleya alliances[J].Journal of the Japanese Society for Horticultural Science,2004,73(2):128-133.
    [33] Yamane K, Kuchiki E, Fujishige N,Minegishi N,Ogata R.Effects of BA pretreatment on vase life,ethylene production, and solublesugar contents in cut florets of four members of the Cattleya alliance[J].Journal of the Japanese Society for Horticultural Science,1997,65(4): 801-807.
    [34] Knapp J E,Chandlee J M,Kausch A P. Transformation of three genera of orchid using the bar gene as a selectable marker[J].Plant Cell Reports,2000,19(9):893-898.
    [35]卢思聪.中国兰与洋兰[M].北京:金盾出版社,1994,12.
    [36] Michael S B, Michael D R, Michael UW. Detection of DNA Polymorphisms Within the Genus Cattleya (Orchidaceae)[J].Plant Molecular Biology Reporter,1995,13(2):147-155.
    [37] G. jin, T. Naito, S. Matsui. Randomly Amplified Polymorphic DNA Analysis for Establishing Phylogenetic Relationship among Cattleya walkeriana Gardn. Cattleya nobilior Rchb. f. andCattleya loddigesii Lindl [J]. Journal of the Japanese Society for Horticultural Science,2004, 73(5): 496-502.
    [38] G. jin, T. Naito, S. Matsui. Randomly Amplified Polymorphic DNA Analysis for Establishing Phylogenetic Relationships among Cattleya and its Allied Genera[J]. Journal of the Japanese Society for Horticultural Science, 2004, 73(6): 583-591.
    [39]丁晖,韩素芬,王光萍,等.卡特兰与丝核茵共培养体系的建立及卡特兰菌根显微结构的研究[J].菌物系统,2002,21(3):425-429.
    [40] Isidro Ovando, Anne Damon, Ricardo Bello, Dolores Ambrosio. Isolation of Endophytic Fungi and Their Mycorrhizal Potential for the Tropical Epiphytic Orchids Cattleya skinned, C.aurantiaca and Brassavola nodosa[J]. Asian Journal of Plant Sciences,2005,4(3):309-315.
    [41]加藤幸雄,志佐成.植物生殖生理学[M].北京:科学出版社,1987:8.
    [42] Yoneda K H.Momose. Kubota S. Effect of daylength and temperature in juvenile and adult Phalaenopsis plants[J]. Jap. Soc. Hort Sci.1991,60(3):651-657.
    [43] Vaz,A. P. A. Photoperiod and Temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid[J]. Plant Physiology and Biochemistrp, 2004, 42(5):411-415.
    [44]小西国义,武井正宪,今西英雄.花卉花期控制[M].台湾:淑馨出版社,1992:229-239.
    [45] Komori T, Niitsu A, Murakami T.Effects of light intensity on the growth, flowering and carbohydrate contents of Cymbidium orchids Bull Yamanashi [J].Agri Res,1990(4):17-26.
    [46] Wang Y T. Phalaenopsis Orchid Light Requirement during the Induction of Spiking [J].Hortscience, 1995, 30(1):59-61.
    [47]林育如,李哖.蝴蝶兰凉温催花前后之光需求[J].中国园艺,1998,44(4):463-468.
    [48] Elise A, Know, Vitro, Yin-Tang Wang.Irradiance Levels Affect Greenhouse Growth,Flowering, and Photosynthetic Behavior of A Hybrid Phalaenopsis Orchid[J].Amer.Soc.Hort.Sci, 2001,126(5): 531-536.
    [49]徐云鹃,于力文,吴庆生,等.霍山石解的光合特性研究[J].应用生态学报,1993,49(1):18-21.
    [50]张明.现代应用药学[M].北京:科技出版社,1988,5(6):1-12.
    [51]卢思聪.春石科—冬春季盆栽洋兰佳品[J].中国花卉盆景,2002(3):4-5.
    [52]乔仕伟.春石科栽培要点[J].中国花卉园艺,2005(8):18-20.
    [53]乔家伟.兰花新秀—春石斛[J].中华园艺,2004(11):78-80.
    [54]彭镇华,王雁,李振坚.石斛兰—资源·生产·应用[M].北京:中国林业出版社,2007,112-114.
    [55]陈仕江,张明,等.金钗石斛生长的最适光温研究[J].中国中药杂志,2002,27(7):509-510.
    [56]丑敏霞,朱利泉,等.光照强度对石解生长与代谢的影响[J].园艺学报,2000,27(5):380-382.
    [57]雍伟东,种康,许智宏,等.高等植物开花时间决定的基因调控研究[J].科学通报,2000,45(5):455-466.
    [58] Su W R, Chen W S, Koshioka M, et al. Changes in gibberellin levels in the flowerig shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked[J]. Plant Physiolony and Biochemistry(Paris),2001,39(1):45-50.
    [59] Sakanishi Y, Imanishi H, Ishida G. Effect of temperature on growth and flowering of Phalaenopsis amabilis [J]. Bul.Univ. Osaka.Ser.1980,B32:1-9.
    [60]坂西义洋,今西英雄.园学要旨[M].台湾:淑馨出版社,1977,336-337.
    [61]黄胜琴,郭建军,等.温度对蝴蝶兰成花诱导的研究初探[J].中山大学学报(自然科学版),2003,42 (4):132-134.
    [62]鲁守臣,孙纪霞,等.蝴蝶兰夜温控制与开花相关性的研究[J].莱阳农学院学报,2003,20(4):282-284.
    [63] Lin G M,Lee N. Effect of temperature and growth flowering of Phalaenopsis White hybrid [J]. ChineseSoc.Hort.Sci,1984,30(4):223-231.
    [64] Tran Thanh Van M. Method of acceleration of growth and flowering in a few species of orchids[J]. Am.Orchid.Soc.Bul1,1974,43:699-707.
    [65] Chen W S, Liu H Y,Wen H C. Gibberellin and temperature influence carbohydrate Content and flowering in Phalaenopsis[J].Physiologia Plantarum,1994,90:391–395.
    [66] Kubota S, Hisamatsu T, Ichimura K, et al. Effect of light condition and GA3 Application on development of axillary buds during cooling treatment in Phalaenopsis[J]. Japan Soc.Hort.Sci,1997,66(3):581-585.
    [67] Chen W S, Liu H Y, Liu Z H, et al.Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis[J].Physiol Plant,1994,90:391-395.
    [68] Rotor G B.Daylength and temperature in relation to growth and flowering of orchids[J].Comell.Univ.Agr.Exp Bull,1952:885.
    [69] Yonekura S, Morita M. Effects of low temperature in winter on the growth and flowering of Cymbidium in highland[J].Res.Aichi.Agric.Res,1993,25:251-257.
    [70] Teruhiko Komori. Effect of night temperature control in winter on the growth and flowering of Cymbidium[J]. 7th Asia Pacific Orchid Conference and Show. Lectue Program, 2001: 90-92.
    [71]张永柏,刘添锋,廖福琴,等.影响蝴蝶兰高山催花效果的因素探析[J].福建农业科技,2003,(1):24-25.
    [72]赵福康,唐春芳,等.大花蕙兰夏季高山和平地栽培对一年生苗生长的影响[J].浙江农业科学,2006(3):283-284.
    [73]徐志豪.大花蕙兰催花栽培试验[J].浙江林业科技,2003(11):23-25.
    [74]陈明莉,王怀宇,朱根发.蝴蝶兰花期调控技术初探[J].广东农业科学,2001(4):26-28.
    [75]叶振华,张雪梅,李秋霞,等.蝴蝶兰催花技术研究[J].广东园林,1996(4):21-24.
    [76]曾爱平,林绍生,陈中林,等.蝴蝶兰花期调控技术研究[J].广西热带农业,2004(2):4-8.
    [77]李哖,李嘉慧.蝴蝶兰花芽诱引和花序发育时之碳水化合物变化[J].中国园艺,1996,42(3):262-275.
    [78]李哖,王明吉.白花蝴蝶兰由幼年到成熟相之矿物成分和碳水化合物之变化[J].中国园艺,1997,43(4):295-305.
    [79]苏胜举,程洪森,等.高磷肥对大花蕙兰成花的影响[J].辽宁农业职业技术学院学报,2005(12):17-18.
    [80]赵九州,陈洁敏,陈松笔,等.基质与氮磷钾比例对蝴蝶兰(Phalaenopsis hybridium)生长发育的影响[J].园艺学报,2000,27(5):383-394.
    [81]顾榆青,梅庆超.大花蕙兰花芽的调节与控制[J].广东园林,1994(4):26-28.
    [82]史益敏,陶懿伟,秦文英,费雪南.赤毒索结合低温处理种球对香雪兰提前开花的效应[J].上海农学院学报,1994,13(2): 94-97.
    [83]史益敏,陶懿伟,秦文英,费雪南.低温和植物生长调剂对香雪兰开花的影响[J].园艺学报,1999,24(2):185-188.
    [84] Ohno H. Microsporogenesis and flower bud blasting as affected by high temperature and gibberellic acid in Cymbidium(Orchidaceae)[J].Journal of the Japanese Society for Horticultural Science,1991,60(1):159-165.
    [85]何穗华,郑平,等.赤霉素处理提高大花蕙兰座蕾率试验初报[J].广东农业科学,2004(6):58-59.
    [86] Chen W S, Chang H W, Chen W H, Lin Y S. Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature[J]. HortScience, 1997, 32(6): 1069-1073.
    [87]王震宇.低温和GA3对蝴蝶兰开花的调节[D].广州:华南师范大学,2000.
    [88]李振坚,王雁,彭镇华,缪崑,等.生长调节物质对春石解假鳞茎萌芽与封顶的调控效应[J].北京林业大学学报,2009,31(1):79-83.
    [89]李振坚,王雁,彭镇华,缪崑,等.6-BA,GA3调控春石解花芽分化的效应[J].亚热带植物科学,2009,38(1):15-18.
    [90]刘晓青,周建涛.外源GA3对春石斛园艺性状的影响[J].江苏农业科学,2004(5):77.
    [91] Wang Y T. Flowering and Growth Phalaenopsis Orchids following growth Retardant Applications[J].Hortscience, 1994,29(4):285-288.
    [92]钟融融,洪生标,等.多效唑对蝴蝶兰开花品质的影响试验[J].广东农业科学,2004(5):43-44.
    [93]雷建军,陈日远,陈厚彬.园艺学进展[M].广洲:广州出版社,2002:691-697.
    [94] Goh C J,Seetoh H C. Apical control of flowering in an orchid hybrid Aranda Deborah[J].Ann. Bot,1973,37:113-119.
    [95] Goh C J, Yang A L.Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids [J] .Plant Science Letters, 1978,12:287-292.
    [96]王光远,刘培,许智宏.石解离体培养中ABA对诱导花芽形成的影响[J].植物学报,37(5):374-378.
    [97]王光远,许智宏,蔡德发,等.铁皮石解的离体开花[J].中国科学(C辑),27(3):229-234.
    [98]陈肖英.霍山石斛试管开花研究[D].广州:华南师范大学,2003,5.
    [99]王琳.金钗石斛试管开花研究[D].广州:华南师范大学,2004,4.
    [100] Kostenyuk I, Oh B J, So I S. Induction of early flowering in Cymbidium niveo-marginatum Mak in vitro[J]. Plant Cell Reports,19:1-5.
    [101] Duan J X, Yazawa S. In vitro floral development in Doriella Tiny (Doritis pulcherrima×Kingiella Pilippinensis)[J]. Scientia Horticulturae, 59:253-264.
    [102]朱诚.桂花花衰老过程中的某些生理生化变化[J].园艺学报,2000,27(5):356-360.
    [103]郑海金,陈鑫阳,杨振土,等.Ca2+,CaM与花朵衰老的关系[J].园艺学报,1994,21(3):273–276.
    [104] Woodson W R, Handa A K. Changes in protein pattern and in vivo protein synthesis during presenescence and senescence of hibislus petals[J]. Plant Physiol, 1987,128: 67-77.
    [105] Courtney S E, Kider C C,Stead A D.changes in protein ubiquitination and the expression of ubiquitin-encoding transcripts in daylily petals during floral development and senescene[J]. Physiol Plant,1994,91:196-204.
    [106]王然,王成荣,罗松,韩碧文.月季花瓣衰老过程中可溶性蛋白的SDS-PAGE分析[J].园艺学报,1998,25(3):306-307.
    [107]姜微波,Shimon M, Halevy A H.香石竹花瓣中乙烯诱导合成的60KD蛋白功能的初步研究[J].植物学报,1999,4(10):1139-1141.
    [108]姜微波,Shimon M, Halevy A H.香石竹花瓣对乙烯的敏感性与蛋白质合成[J].植物学报,1997,39(11):991-997.
    [109] Tanaka K.et al. Accumulation of hydrogen peroxide in chloroplasts of SO2-Fimigated spinach leaves[J]. Plant&cell physiol,1982,23(6):999-1003.
    [110]刘道宏.植物叶片的衰老[J].植物生理学通讯,1983(2):14-19.
    [111]杨秋生,籍越,何松林等.郁金香切花衰老过程中内源乙烯和SOD的变化[J].河南农业大学学报,1995,29(4):324-327.
    [112]洪法水等. CaCl2对月季切花衰老的影响[J].园艺学报,1999,26(1):62-64.
    [113]朱诚等.桂花开花和衰老过程中乙烯及脂质过气化水平初探[J].园艺学报,1998,25(3):275-279.
    [114] Gilbert D A, Sink K C. Regulation of endogenous indoleacetic acid and keeping quality of poinsettia[J]. J Am Soc Hortic Sci,1971,96:3-7.
    [115] Halevy A H, Mayak S.Senescence and postharvest physiology of cut flowers Part2[J].Hortic Rev,1981(3):59-143.
    [116] Nichols R. Ethylene and flower senescence[J]. Y.Fuchs and E.Chalutz (Editors), Ethylene, Biochemical Physiological and Applied Aspects Nijhoff/Dr W Junk,The Hague,1984:101-110.
    [117]魏文辉.牡月切花衰老过程中内源激素水平变化的研究[J].湖北民族学院学报,2000,18(4):1-6.
    [118] Mayak S , Halevy A H. Cytokinin activity in rose petals and its relation to senescence[J]. Plant physiol, 1970,46:477-479.
    [119]张微,张慧,谷祝平,等.九种花衰老原因的研究[J].植物学报,1991,33(6):429-436.
    [120] Nooden L D. Abscisic acid auxin and other regulators of senescence[J].In Noodcn L D,Lcopold AC eds.Senescence and Aging in Plants,Acodemic Press San Diegqo,1988,329-368.
    [121]盛爱武.腊梅切花内源激素动态及衰老有关因子研究[J].北京林业大学学报,1999, 21(2):48-53.
    [122] Cooper W C, Horanic G. Induction of abscission at hypobaric pressures[J].Plant Physiol,1973,51:1002-1004.
    [123] Sacher J A.Senescence and postharvest physiology[J].Ann Rev Plant Physiology,1973,24:197-224.
    [124]郭维明,盛爱武.梅花采后衰老的内源激素调节[J].北京林业大学学报,1999,21(2): 42- 47.
    [125]杨秋生.牡丹切花贮藏期内源激素水平变化规律的研究[J].河南科学,1997,15(3):303- 306.
    [126]杨秋生,黄晓书,籍越,等.不同温度贮藏对百合切花内源激素水平变化的影响[J].河南农业大学学报,1996,30(3):203-206.
    [127]姚泉洪,黄晓敏,刘宗镇.植物乙烯生物合成与抗衰老基因工程[J].上海农业学报,1994,10(2):89-96.
    [128]徐昌杰,陈昆松,张上隆.乙烯生物合成及其控制研究进展[J].植物学通报,1998,15(增):54-61.
    [129] Woltering E J, et al. Role of ethylene in senescence of petals Morhological and taxinomical relationships[J].Exp Bot,1988,39:1605-1616.
    [130] Reid M S, et al. Ethylene and flower senescence[J]. Plant Growth Regulation,1992(11):37-43.
    [131] Ohno H. Participation of ethylene in flower bud blasting induced by high temperature in Cymbidium(Orchidaceae)[J].Japan Soc Hort Sci,1991,60(1):149-157.
    [132] Slater A, et al. Isolation and characterization of cDNA clones for tomato polygalacturonase and otherripening related proteins [J]. Plant Molecular Biology, 1985, 5:137-147.
    [133] Davies K M, Grierson D.identification of cDNA clones for tomato mRNA that accumulate during ripening and leaf senescence in response to ethylene[J]. Planta, 1989,179:73-80.
    [134] Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plant[J]. Nature, 1990, 346:284-287.
    [135] Ross G S, Knighton M L, Lay-Yee M, et a1.An ethylene-related cDNA from ripening apples[J].Plant Mol Biol,1992,18:231.
    [136] MacDiarmid C W B,Gardner R C.A cDNA sequence from kiwifruit homologous to 1-aminocyclopropane-l-carhoxylic acid oxidase[J].Plant Physiol,1993,101:691-692.
    [137] Dong J G, Olson D,Silverstone A, et a1. Sequence of a cDNA coding for a 1-aminocyclopropane-l-carboxylate oxidase homolog from apple fruit[J].Plant Physiol,1992,98:1530-1531.
    [138] Scott C P, Olson D C, Kende H, et al.A cDNA sequence encoding ACC oxidase from pear[J].Plant Physiol,1993,101:689.
    [139] Wang H,Woodson W R. A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis[J].Plant Physiol,1991,96:1000-1001.
    [140] Callahan, et al. Comparison of Pch313(pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars[J].Plant Physiology,1992,100:482-488.
    [141]叶志彪.现代蔬菜育种学[M].北京:中国教育出版社,1996:68.
    [142] Serek M, et al. Inhibitors of ethylene action affect final quality and rooting of cutting before and after storage[J]. Hort Sci,1998,33(1):153-155.
    [143] Michael M Z, et al. Cloning of ethylene biosynthetic genes involved in petal senescence of carnation and petunia, and their antisense expression in transgenic plants[M].Kluwer:Academic Publishers, 1993:298.
    [144]张树珍,汤火龙,杨本鹏等.康乃馨ACC氧化酶反义基因遗传转化康乃馨的研究[J].园艺学报,2003,10(6):699-702.
    [145]张志良,瞿伟菁.植物生理试验指导第3版[M].北京:高等教育出版社,2003,127-133.
    [146]李合生.植物生理生化试验原理与技术[M].北京:高等教育出版社,2000.
    [147]罗允,彭抒昂,马湘淘.草莓成花过程中Ca2+、CaM及成花物质含量变化[J].山地农业生物学报,2000,19(4):266-271.
    [148]梁芳,郑成淑,张翠华,孙庆春.菊花花芽分化过程中芽和叶片碳水化合物含量的变化[J].山东农业科学,2008(1):40-42.
    [149] Long S P, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature. Annu[J].Rev. Plant Physiol.Plant Mol.Biol., 1994,45:633-662.
    [150] Demmig Adams B, AdamsIII W W. Photoprotection and other responses of plants to high light stress[J]. Annu.Rev. Plant Physiol. Plant Mol.Biol.,1992,43:599-626.
    [151]许大全,张玉忠,张荣铣.光合作用的光抑制.植物生理学通讯[J],1992,28(4):237-243.
    [152] Van Knnten O, Snel J F H.The use of chlorophyll fluorescence nomenclature in plants trees physiology[J]. Photosynthesis Research,1990,25:147-150.
    [153] Bilger W, Bjorkman O. Role of the xanthophylls cycle, fluorescence and photosynthesis in Hedera canariensis[J].Photosynthesis Research,1990,25:173-185.
    [154] Demmig Adams B, Adams W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiol Plant,1996,98:253-264.
    [155]王彩云,高莉萍,鲁涤非,黄燕文.‘厚瓣金桂’桂花花芽形态分化的研究[J].园艺学报,2002,29(1):52-56.
    [156]彭伟秀,杨建民,于伟,刘海霞,苏巧.安哥诺和黑宝石李花芽形态分化的初步研究[J].河北农业大学学报,2004,27(3):52-55.
    [157]陈旭辉,江莎,李一帆,许珂,韩轶.连翘花芽分化及发育的初步研究[J].园艺学报,2006,33(2):426-428.
    [158]史继孔,樊卫国,文晓鹏.银杏雌花芽形态分化的研究[J].园艺学报,1998,25(1):33-36.
    [159]张万萍,史继孔,樊卫国,文晓鹏.银杏雄花芽的形态分化[J].园艺学报,2001,28(3):255–258.
    [160]王莲英.牡丹品种花芽形态分化观察及花型成因分析[J].园艺学报, 1986,13(3):203-208.
    [161] Su W U, Chen W S, Koshioka M, et al.Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked[J]. Plant Physiology and Biochemistry(Paris), 2001,39(1):45-50.
    [162]李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996,280-298.
    [163]李梅兰,曾广文,朱祝军.菜心茎尖DNA甲基化水平及GA、蛋白质含量的变化与花芽分化[J].浙江大学学报, 2002,28(2):161-164.
    [164] Gaspar T, Kevers C, Penel C, Greppin H, Reid D M, Thorpe T A. Plant hormones and plant growth regulators in plant tissue culture[J].In Vitro Cellular & Developmental Biology-Plant, 1996,32:272-289.
    [165] Lewis D H, Burge G K, Schmitt D M, Jameson P E.Cytokines and fruit development in Kiwi fruit(Actinidia deliciose) changes during fruit development[J].Physiologia Plantarum,1996,98:179-186.
    [166]吕英民,张大鹏,严海燕.糖在苹果果实中卸载机制的研究[J].园艺学报, 1999,26(3):141-146.
    [167] Ulger S, Sonmez S, Kargacier M, Ertoy N, Akdesir O, Aksu M. Determination of endogenous hormones sugar and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in olive[J].Plant Growth Regulation.,2004,42(1):89–95.
    [168]刘晓荣,王碧青,朱根发,程智慧.高山低温诱导蝴蝶兰花芽分化过程中的生理变化[J].中国农学通报, 2006,22(4):310-313.
    [169]罗允,彭抒昂,马湘淘.草莓成花过程中Ca2+、CaM及成花物质含量变化[J].山地农业生物学报,2000,19(4):266-271.
    [170]钟晓红,罗先实,陈爱华.李花芽分化与体内主要代谢产物含量的关系[J].湖南农业大学学报,1999,25(1):31-35.
    [171] Zhang J H, Gao Q. On the characteristics of physiological metabolism during floral bud differentiation and development of cotton [J]. Journal of Shanghai Agricultural College,1991,9(1):1-6.
    [172] Grochowska M J, Hodun M. The dwarfing effect of a single application of growth inhibitors to the root stem connection the 'collar tissue' of five species of fruit trees[J].Journal of Horticultural Science, 1997,72(1):83-91.
    [173]史继孔,张万萍,樊卫国,文晓鹏.银杏雌花芽分化过程中内源激素含量的变化[J].园艺学报,1999,26(3):194-195.
    [174]张上隆,阮勇凌,储可铭,吴光林.温州蜜柑花芽分化期内源玉米素和赤霉酸的变化[J].园艺学报, 1990,17(4): 270- 274.
    [175] Duan J X, Yazawa S. In vitro floral development in Doriella Tiny (Doritis pulcherrima×Kinsella Philippinensis) [J]. Scientia Horticulturae, 1994.59:253-264.
    [176] Rakngan J, Gemma H, Iwahori S. Flower bud formation in Japanese pear trees under adverse conditions and effects of some growth regulators[J]. Journal of Japanese Tropical Agriculture, 1995.39(1):1-6.
    [177]曹尚银,张俊昌,魏立华.苹果花芽孕育过程中内源激素的变化[J].果树科学, 2000,17(4):244-248.
    [178] Grochowska MJ. Karaszewski A. Jankowska B. The pattern of hormones of intact apple shoots and its changes after spraying with growth regulators[J].Acta Hort.1984,149:25-38.
    [179]曹尚银,汤一卒,张俊昌. GA3和PP333调控苹果花芽孕育机理的研究[J].园艺学报,2001,28 (4):339-341.
    [180]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,29(6):55-57.
    [186] Borochov A, Woodson WR. Physiology and biochemistry of flower petal florescence and flower senescence [J].Hortic.Rev.1989,11:15-43.182.
    [182]高勇,吴绍锦.月季切花瓶插期生理变化与衰老关系的研究[J].园艺学报,1990(1):71-75.
    [183]王华,张继澎,王飞.郁金香切花瓶插期的衰老与膜脂过氧化的关系[J].西北植物学报,1994,14(3):220-224.
    [184]刘雅莉,王飞.百合花不同发育期生理变化与衰老关系的研究[J].西北农业大学学报,2000,28(1):109-112.
    [185]蔡永萍,严景华,张鹤英,等.冷藏对唐菖蒲切花瓶插的生理代谢和观赏品质的影响[J].安徽农业科学,2000,2(3):386-388,400.
    [186]朱诚,曾广文.桂花花衰老过程中的某些生理生化变化[J].园艺学报,2000,27(5):356-360.
    [187]郭维明,盛爱武,梅花采后衰老的内源激素调节[J].北京林业大学学报,1999,21(2):42-47.
    [188] Kelly M O, Davies P J. The control of whole plant senescence[J]. CRC crit Rev. Plant, 1988, (7): 139-173.
    [189]宋纯鹏.植物衰老生物学[M].北京:北京大学出版社,1998.71.
    [190] Adams D O, Yang S F. Ethylene Biosynthesis Identification of 1-aminocyclopropane–1–Carboxylic Acid as an Intermediate in the Conversion of Methionine to Ethylene[J]. Proc. Natl. Acad. Sci USA,1979, 76:170-174.
    [191]高子媛.嘉德丽亚兰花中ACC氧化酶基因之选殖与分析[D].台湾;国立中山大学,2004.
    [192] Hamilton A J, Lycett G W, Grierson D.Antisense Gene that Inhibits Synthesis of the Hormone Ethylene in Transgenic Plant [J]. Nature, 1990, 346:284-287.
    [193]刘会超,李永春,巨关生,孙振元,柴德勇.香石竹ACC氧化酶基因克隆及其反义表达载体构建[J].核农学报,2005,19(6):461-464.
    [194]余义勋,包满珠.反义ACO基因导入获得瓶插奉命长的香石竹植株[J].园艺学报,2004,31(5):633-636.
    [195]张国栋,仇道奎,何小弟.外源激素调控蝴蝶兰开花技术[J].中国花卉园艺.2008(20):29.
    [196]曹孜义,刘国民.实用植物组织培养技术教程[M].甘肃科学技术出版社,2002:185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700