用户名: 密码: 验证码:
含KASH和SUN结构功能域蛋白的功能研究(从果蝇到小鼠)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KASH与SUN这两类核膜蛋白通过链接不同的细胞骨架与细胞核膜在调控多种生物学过程的细胞核迁移和锚定中发挥了重要作用。近10年来,对于KASH和SUN蛋白的研究工作已经涉及从低等生物到高等生物,从体外培养的细胞学到小鼠模型的病理学等一系列研究领域,对这两类蛋白的生物学功能以及相关机理也日益深入。本文中,我利用突变型果蝇msp-300~(sz75)研究了果蝇KASH蛋白MSP-300在卵细胞发育中的作用,并且利用KASH蛋白Syne-1和Syne-2、SUN蛋白SUN1和SUN2的基因敲除小鼠以及建立的Syne-1和SUN1的条件性基因敲除小鼠,探讨了这些KASH蛋白和SUN蛋白在多个生物学过程中介导细胞核迁移和锚定的功能。
     对果蝇KASH蛋白的研究集中在对MSP-300蛋白在果蝇卵细胞发育过程中的功能研究。在果蝇卵细胞发育晚期,卵泡室内的滋养细胞的细胞质被快速转运到卵细胞中;同时,滋养细胞的细胞核会被肌动蛋白锚定。本研究发现在果蝇卵细胞发育过程中尤其是滋养细胞到卵细胞的胞质转运过程中,源自母亲的MSP-300蛋白对细胞核锚定起了重要作用。我首先用抗MSP-300的抗体对果蝇卵巢进行染色,发现MSP-300蛋白分布在滋养细胞和卵细胞的细胞质内,且大量聚集在其核膜上。并且我发现转基因表达的绿色荧光蛋白和MSP-300的碳端融合蛋白也定位于卵细胞的细胞核膜上。最后,为了消除母系效应对卵细胞发育过程的影响,我通过生殖细胞有丝分裂重组和显性雌性不育技术得到了纯合的msp-300突变克隆,发现在这些msp-300纯合突变的卵泡室内滋养细胞和卵细胞的细胞核定位紊乱,并且原本分布有序而精密的肌动蛋白结构也被严重破坏。
     对于小鼠KASH/SUN蛋白功能的研究主要集中在对Syne-2,SUN1和SUN2蛋白的基因敲除小鼠视网膜发育的研究。脊椎动物视网膜内所有的神经细胞均由它们的前体细胞分化而来,且其发育过程遵循非常严格的时空顺序。果蝇KASH/SUN蛋白Klarsicht/Klaroid和斑马鱼KASH蛋白syne2a均与视网膜感光细胞的细胞核定位和迁移相关。本论文研究推断在小鼠视网膜发育过程中,Syne-2、SUN1和SUN2蛋白介导了视杆细胞细胞核的定位与视锥细胞细胞核的迁移,且SUN1和SUN2蛋白可能在视锥细胞细胞核的迁移过程中功能冗余。我通过抗Syne-2、抗SUN1和抗SUN2的抗体对小鼠视网膜冰冻切片进行染色发现,Syne-2、SUN1和SUN2蛋白定位于小鼠视网膜内大部分神经细胞的细胞核膜上。在成年Syne-2~(-/-)和Sun1~(-/-)小鼠的视网膜切片中,我观察到外核层细胞数量减少、内外核层之间细胞核定位异常的表型,且Syne-2~(-/-)和Sun1~(-/-)小鼠视网膜电生理结果也表明感光细胞和部分其他细胞可能异常。然后,我对Syne-2~(-/-)和Sun1~(-/-)小鼠视网膜切片进行了免疫荧光染色,发现其视杆细胞外节明显减少,部分视杆细胞细胞核定位异常。并且,在Syne-2~(-/-)小鼠视网膜中,我发现视锥细胞外节也明显减少,但是在Sun1~(-/-)小鼠视网膜中并没有出现这个表型。视锥细胞特异性抗体染色的结果表明,Syne-2~(-/-)小鼠视网膜发育过程中的视锥细胞细胞核迁移失败,而相同的异常表型也在Sun1~(-/-);Sun2~(-/-);NSE-SUN1小鼠视网膜观察到。
     本论文中还报导了我们成功建立的Syne-1和Sun1条件性基因敲除小鼠,利用这些小鼠在不同组织器官水平上对KASH蛋白和SUN蛋白的功能研究中将会有非常重要的意义。由于Syne-1/2基因双敲除小鼠和SUN1/2基因双敲除小鼠都存在出生后立即死亡的现象,我们通过建立Syne-1和Sun1条件性基因敲除小鼠以对其功能及相互作用深入研究。初步实验结果表明:通过条件性基因敲除得到的Syne-1~(Del/Del)小鼠出现了与Syne-1~(-/-)小鼠相同的骨骼肌突触下细胞核定位异常的预期表型,Syne-1~(Del/Del);Syne-1~(-/-)小鼠出生后立即死亡,而Syne-1~(Flox/Flox);Syne-2~(-/-)小鼠没有出现明显异常。通过条件性基因敲除得到的Sun1~(Del/Del)小鼠也出现了与Sun1~(-/-)小鼠相同的不育表型。Sun1~(Del/Del);Sun2~(-/-)小鼠出生后也立即死亡,而Sun1~(Flox/Flox);Sun2~(-/-)小鼠并没有出现明显异常。对Sun1和Sun2条件性基因双敲除小鼠的研究发现,神经组织特异性敲除了SUN1和SUN2蛋白的Sun1~(Flox/-);Sun2~(-/-);Nestin-Cre小鼠出生后并没有立即死亡,而是至少可以存活24小时,最终死亡是由于丧失吃奶的能力而营养不良致死。组织学分析结果表明,Sun1~(Flox/-);Sun2~(-/-);Nestin-Cre小鼠与Sun1~(-/-);Sun2~(-/-)小鼠表型非常相似,其大脑皮层发育严重受损,由于神经细胞辐射方向迁移失败导致大脑皮层发育无法正常分层。
     我分别在果蝇和小鼠体内对MSP-300、Syne-1/2和SUN1/2蛋白的生物学功能研究揭示了这些蛋白在多类细胞核定位和迁移过程中的重要作用,包括果蝇卵泡室内滋养细胞和卵细胞细胞核的锚定,小鼠感光细胞细胞核的迁移,以及大脑皮层神经元的辐射方向迁移。本研究结果不仅丰富了对细胞核锚定和迁移过程的分子机制的研究,而且增进了相关人类疾病发病机理的认识。
     齿状核红核苍白球丘脑底核萎缩(dentatorubral-pallidoluysian atrophy,DRPLA)是一种显性遗传的神经退行性疾病,是由Atrophin-1基因中编码谷氨酰胺的CAG重复序列的扩增所造成。用转基因的方法在小鼠神经细胞内表达包含多聚谷氨酰胺扩增的人类Atrophin-1突变蛋白足以使小鼠产生神经退行性表型。但是,对于多聚谷氨酰胺扩增的Atrophin-1突变蛋白是否会和存在于病人和转基因小鼠疾病模型中的正常蛋白相互作用的问题,我们还不是很了解。因此,我们建立了Atrophin-1基因敲除小鼠。研究表明纯合基因敲除小鼠出现了生长延迟和雄性小鼠逐渐丧失繁殖能力的表型,但是并没有明显的神经退行性疾病的表型。而且小鼠Atrophin-1基因的敲除既不能增强也不能减弱在小鼠中由于过表达包含多聚谷氨酰胺扩增的人类Atrophin-1突变蛋白所产生的DRPLA表型。因此我们认为,DRPLA是由多聚谷氨酰胺在Atrophin-1蛋白中扩增所造成,而且这个过程与多聚谷氨酰胺扩增的蛋白和正常Atriphin-1蛋白之间的相互作用无关。
KASH and SUN proteins are two kinds of nuclear envelope(NE) proteins bridging the cytoskeletons and nuclear envelope(NE),which play critical roles in nuclear migration and anchorage during multiple biological processes.In the past decade,the extensive investigation on KASH and SUN proteins has been carried out from lower to higher organisms using various systems from in vitro tissue culture cell systems to pathological analysis with mouse models.The knowledge of the biological functions and the molecular mechanisms of these two protein families are increasing very fast.Using msp-300~(sz75) mutant fly and gene knockout mice for KASH proteins Syne-1 and Syne-2,SUN proteins SUN1 and SUN2,we have studied their essential functions in nuclear anchorage and migration during multiple biological processes from Drosophila to mouse.
     The investigation of Drosophila KASH proteins focused on the functional analysis of MSP-300 protein in oogenesis.During late stages of Drosophila oogenesis,the cytoplasm of nurse cells in the egg chamber is rapidly transferred(“dumped”) to oocytes,while the nurse cell nuclei are anchored by a mechanism that involves the actin cytoskeleton.This thesis reports that maternal MSP-300 plays an important role in the actin-dependent nuclear anchorage during the cytoplasmic transport.MSP-300 is distributed throughout the cytoplasm and accumulates at the nuclear envelope of nurse cells and the oocyte with an antibody against the C-terminus of MSP-300.A GFP fusion protein containing the C-terminal region of MSP-300 is sufficient to localize the protein on the nuclear envelope in oocytes.To eliminate the maternal effect during oogenesis,we generated homozygous germ-line clones of a msp-300 loss-of-function mutation in otherwise heterozygous mothers.In the mutant egg chambers that develop from such clones,cytoplasmic dumping of nurse cells is severely disturbed.The nuclei of nurse cells and the oocyte are mislocalized and the normally well-organized actin structures are severely disrupted.
     The investigation of mammalian KASH and SUN proteins is mainly focused on the functional analysis of Syne-2,Sun1 and Sun2 knockout mice in retinal development.Retinal progenitor cells can form all kinds of retinal neurons,and all of the proliferation and differentiation take place in a well-organized temporal sequence.Studies on Drosophila KASH/SUN proteins Klarsicht/Klaroid and zebrafish KASH protein syne2a have shown that these proteins play important roles in nuclear positioning and migration during retinal development.Studies performed in this thesis indicate that Syne-2,SUN1 and SUN2 proteins mediate the rod cell nuclear positioning and cone cell nuclear migration.In addition,SUN1 and SUN2 proteins might play a redundant function in cone cell nuclear migration during retinal development.Staining of the retinal sections with Syne-2,SUN1 and SUN2 antibodies,we found that Syne-2,SUN1 and SUN2 proteins are localized to the NE of most cell types in the mouse retina.Both HE and immunofluorescent staining revealed a severe loss of photoreceptors in the outer nuclear layer(ONL) and a group of mislocalized nuclei lying between the inner plexiform layer(IPL) and inner nuclear layer(INL).The mislocalized nuclei were identified to belong to rods both in Syne-2~(-/-) and Sun1~(-/-) mice with immunofluorescent staining. Physiological ERG test also implied potential problems in photoreceptors and some other cell types in adult Syne-2~(-/-) and Sun1~(-/-) mice.Immunofluorescent staining of specific cell markers in the retina displayed a severe loss of outer segment(OS) in both rods and cones in the retina of Syne-2~(-/-) mice while only a loss of rod OS only in the retina of Sun1~(-/-) mice.Furthermore,the normal cone cell nuclear migration is found to be blocked in the retinas from Syne-2~(-/-) and Sun1~(-/-);Sun2~(-/-);NSE-SUN1 mice.
     This thesis also describes the success generation of both Syne-1 and Sun1 conditional knockout mice.Both Syne-1/2 and Sun1/2 double knockout mice died soon after birth.These conditional knockout mice would be helpful for the further investigation of the KASH and SUN protein functions in various tissues and different organs.The Syne-1~(Del/Del) mice from Syne-1 targeted alleles exhibited myonuclear mislocalization defects in skeletal muscle.The Syne-1~(Del/Del);Syne-2~(-/-) mice died immediately after birth as expected,but no obvious defects were observed on the Syne-1~(Flox/Flox);Syne-2~(-/-) mice.Meanwhile, Sun1~(Del/Del)mice from Sun1 targeted alleles exhibited sterility phenotype similar to that of Sun1~(-/-) mice.Sun1~(Del/Del);Sun2~(-/-) mice died shortly after birth,while no gross abnormalities were observed on Sun1~(Flox/Flox);Sun2~(-/-) mice.Sun1 and Sun2 conditional double knockout mice were generated for study of the interatction between the two genes.Strikingly,the Sun1~(Flox/-);Sun2~(-/-);Nestin-Cre mice died in one or two days after birth due to a lack of the instinct of milk sucking.Histological analysis revealed that the cerebral cortex of Sun1~(Flox/-);Sun2~(-/-);Nestin-Cre mice displayed severe laminary defects,which was similar with those of Sun1~(-/-);Sun2~(-/-) mice.
     Our studies on Drosophila MSP-300 and mouse Syne-1/2 and SUN1/2 proteins discovered their crucial functions in nurse cell and oocyte nuclei anchorage during cytoplasmic transport process in fly oogenesis and in photoreceptor cell nuclear migration during retinal development and neuronal migration of brain cortex in mice.These results would advance our knowledge on the molecular mechanism of nuclear positioning and migration during multiple processes,and provide new insights into the development of retina, brain and related diseases.
     Dentatorubral-pallidoluysian atrophy(DRPLA)is a dominant hereditary neurodegenerative disorder caused by the expansion of a poly-glutamine (poly-Q) repeat in Atrophin-1 protein.Ectopic expression of a poly-Q expanded human Atrophin-1 protein is sufficient to induce DRPLA phenotypes in transgenic mice.However,it is still unclear whether the dominant effect of poly-Q expansion is due to its functional interference with wild-type Atrophin-1 proteins,which are present in both human patients and transgenic mouse models.Here,we report the generation and analysis of an Atrophin-1 gene targeting allele.Homozygous mutant mice exhibit growth retardation and progressive male infertility,but no obvious signs of neurodegeneration. Disruption of wild-type Atrophin-1 gene neither blocked nor enhanced the neurodegenerative phenotypes caused by a poly-Q expanded transgene.Our result supports the model that the DRPLA disease is induced by poly-Q expanded proteins in a manner independent of any functional interaction with the non-poly-Q expanded proteins present in patients.
引文
1.Morris,A.R.,J.Drawbridge,and M.S.Steinberg,Axolotl pronephric duct migration requires an epidermally derived,laminin 1-containing extracellular matrix and the integrin receptor alpha(o|")betal.Development,2003.130(23):p.5601-8.
    2.Starr,D.A.and M.Han,ANChors away:an actin based mechanism of nuclear positioning.J Cell Sci,2003.116(Pt 2):p.211-6.
    3.Mosley-Bishop,K.L.,et al.,Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye.Curr Biol,1999.9(21):p.1211-20.
    4.Starr,D.A.,et al.,unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration.Development,2001.128(24):p.5039-50.
    5.Starr,D.A.and M.Han,Role of ANC-1 in tethering nuclei to the actin cytoskeleton.Science,2002.298(5592):p.406-9.
    6.Malone,C.J.,et al.,The C.elegans hook protein,ZYG-12,mediates the essential attachment between the centrosome and nucleus.Cell,2003.115(7):p.825-36.
    7.Grady,R.M.,et al.,Syne proteins anchor muscle nuclei at the neuromuscular junction.Proc Natl Acad Sci U S A,2005.102(12):p.4359-64.
    8.Yu,J.,et al.,The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis.Dev Biol,2006.289(2):p.336-45.
    9.Starr,D.A.,Communication between the cytoskeleton and the nuclear envelope to position the nucleus.Mol Biosyst,2007.3(9):p.583-9.
    10.Malone,C.J.,et al.,UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C.elegans development.Development,1999.126(14):p.3171-81.
    11.Ding,X.,et al.,SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice.Dev Cell,2007.12(6):p.863-72.
    12.Kracklauer,M.P.,et al.,Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye.Fly(Austin),2007.1(2):p.75-85.
    13.Starr,D.A.and J.A.Fischer,KASH'n Karry:the KASH domain family of cargo-specific cytoskeletal adaptor proteins.Bioessays,2005.27(11):p.1136-46.
    14.Wilhelmsen,K.,et al.,Nesprin-3,a novel outer nuclear membrane protein,associates with the cytoskeletal linker protein plectin.J Cell Biol,2005.171(5):p.799-810.
    15.Zhang,Q.,et al.,Nesprins:a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues.J Cell Sci,2001.114(Pt 24):p.4485-98.
    16.Zhen,Y.Y.,et al.,NUANCE,a giant protein connecting the nucleus and actin cytoskeleton.J Cell Sci,2002.115(Pt 15):p.3207-22.
    17.Fischer,J.A.,et al.,Drosophila klarsicht has distinct subcellular localization domains for nuclear envelope and microtubule localization in the eye.Genetics,2004.168(3):p.1385-93.
    18.Hedgecock,E.M.and J.N.Thomson,A gene required for nuclear and mitochondrial attachment in the nematode Caenorhabditis elegans.Cell,1982.30(1):p.321-30.
    19.Horvitz,H.R.and J.E.Sulston,Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans.Genetics,1980.96(2):p.435-54.
    20.Welte,M.A.,et al.,Developmental regulation of vesicle transport in Drosophila embryos:forces and kinetics.Cell,1998.92(4):p.547-57.
    21.Volk,T.,A new member of the spectrin superfamily may participate in the formation of embryonic muscle attachments in Drosophila.Development,1992.116(3):p.721-30.
    22.Zhang,S.,et al.,Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes.Cell,2002.108(1):p.45-56.
    23.Apel,E.D.,et al.,Syne-1,a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction.J Biol Chem,2000.275(41):p.31986-95.
    24.Mislow,J.M.,et al.,Myne-1,a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane,interacts with lamin A/C.J Cell Sci,2002.115(Pt 1):p.61-70.
    25.Padmakumar,V.C.,et al.,Enaptin,a giant actin-binding protein,is an element of the nuclear membrane and the actin cytoskeleton.Exp Cell Res,2004.295(2):p.330-9.
    26.Gough,L.L.,et al.,Golgi localization of Syne-1.Mol Biol Cell,2003.14(6):p.2410-24.
    27.Horvitz,H.R.,et al.,Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans.Cold Spring Harb Symp Quant Biol,1983.48 Pt 2:p.453-63.
    28.Wilhelmsen,K.,et al.,KASH-domain proteins in nuclear migration,anchorage and other processes.J Cell Sci,2006.119(Pt 24):p.5021-9.
    29.Rosenberg-Hasson,Y.,M.Renert-Pasca,and T.Volk,A Drosophila dystrophin-related protein,MSP-300,is required for embryonic muscle morphogenesis.Mech Dev,1996.60(1):p.83-94.
    30.Zhang,Q.,et al.,The nesprins are giant actin-binding proteins,orthologous to Drosophila melanogaster muscle protein MSP-300.Genomics,2002.80(5):p.473-81.
    31.Patterson,K.,et al.,The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye.Mol Biol Cell,2004.15(2):p.600-10.
    32.Zhang,X.,et al.,Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation.Development,2007.134(5):p.901-8.
    33.Puckelwartz,M.J.,et al.,Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice.Hum Mol Genet,2009.18(4):p.607-20.
    34.Zhang,X.,et al.Unpublished Work.
    35.Penkner,A.,et al.,The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C.elegans meiosis.Dev Cell,2007.12(6):p.873-85.
    36.Fridkin,A.,et al.,Matefin,a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein,is essential for early embryonic and germ cell development.Proc Natl Acad Sci U S A,2004.101(18):p.6987-92.
    37.Crisp,M.,et al.,Coupling of the nucleus and cytoplasm:role of the LINC complex.J Cell Biol,2006.172(1):p.41-53.
    38.Tzur,Y.B.,K.L.Wilson,and Y.Gruenbaum,SUN-domain proteins:'Velcro' that links the nucleoskeleton to the cytoskeleton.Nat Rev Mol Cell Biol,2006.7(10):p.782-8.
    39.Shao,X.,et al.,Spag4,a novel sperm protein,binds outer dense-fiber protein Odf1 and localizes to microtubules of manchette and axoneme.Dev Biol,1999.211(1):p.109-23.
    40. Hodzic, D.M., et al., Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem, 2004. 279(24): p. 25805-12.
    41. Liu, Q., et al., Functional association of Sun1 with nuclear pore complexes. J Cell Biol, 2007.178(5): p. 785-98.
    42. Haque, F., et al., SUN1 Interacts with Nuclear Lamin A and Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina and the Cytoskeleton. Mol Cell Biol, 2006. 26(10): p. 3738-51.
    43. Padmakumar, V.C., et al., The inner nuclear membrane protein Sunl mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci, 2005.118(Pt 15): p. 3419-30.
    44. Dreger, M., et al., Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci U S A, 2001.98(21): p. 11943-8.
    45. Morgan, T.H., Sex limited inferitance in Drosophila. Science, 1910. 32: p. 120.
    46. Adams, M.D., et al., The genome sequence of Drosophila melanogaster. Science, 2000. 287(5461): p. 2185-95.
    47. Venken, K.J., et al., PfacmanJ: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 2006.314(5806): p. 1747-51.
    48. Duffy, J.B., GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis, 2002.34(1-2): p. 1-15.
    49. Golic, K.G. and S. Lindquist, The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell, 1989. 59(3): p.499-509.
    50. Xu, T. and G.M. Rubin, Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 1993.117(4): p. 1223-37.
    51. St Johnston, D., The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet, 2002. 3(3): p. 176-88.
    52. Chou, T.B. and N. Perrimon, Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics, 1992.131(3): p.643-53.
    53. Robinson, D.N. and L. Cooley, Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu Rev Cell Dev Biol, 1997.13: p. 147-70.
    54. Spradling, A., Developmental genetics of oogenesis, in The Development of Drosophila melanogaster, M. Bate and A.M. Arias, Editors. 1993, Cold Spring Harbor Lab. Press: NY. p. 1-70.
    55. Matova, N. and L. Cooley, Comparative aspects of animal oogenesis. Dev Biol, 2001. 231(2): p. 291-320.
    56. Morris, N.R., Nuclear migration. From fungi to the mammalian brain. J Cell Biol, 2000.148(6): p. 1097-101.
    57. Tran, P.T., et al., A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol, 2001.153(2): p. 397-411.
    58. Guild, G.M., et al., Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping.J Cell Biol, 1997.138(4): p. 783-97.
    59. Duffy, J.B., D.A. Harrison, and N. Perrimon, Identifying loci required for follicular patterning using directed mosaics. Development, 1998. 125(12): p.2263-71.
    60. Rorth, P., Gal4 in the Drosophila female germline. Mech Dev, 1998. 78(1-2): p. 113-8.
    61. Van Doren, M., A.L. Williamson, and R. Lehmann, Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol, 1998. 8(4):p. 243-6.
    62. Chou, T.B. and N. Perrimon, The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics, 1996.144(4): p. 1673-9.
    63. Roberts, D.B., Drosophila : a practical approach. 2nd ed. Practical approach series. 1998, Oxford: IRL Press at Oxford University Press, xxiv,389.
    64. Robinson, D.N., K. Cant, and L. Cooley, Morphogenesis of Drosophila ovarian ring canals. Development, 1994.120(7): p. 2015-25.
    65. Cant, K., et al., Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J Cell Biol, 1994. 125(2): p. 369-80.
    66. Cooley, L., E. Verheyen, and K. Ayers, chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis.Cell, 1992. 69(1): p. 173-84.
    67. Mahajan-Miklos, S. and L. Cooley, The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell, 1994. 78(2): p. 291-301.
    68. Mahajan-Miklos, S. and L. Cooley, Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol, 1994.165(2): p. 336-51.
    69. Wheatley, S., S. Kulkarni, and R. Karess, Drosophila nonmuscle myosin Ⅱ is required for rapid cytoplasmic transport during oogenesis and for axial nuclear migration in early embryos. Development, 1995.121(6): p. 1937-46.
    70. McCall, K. and H. Steller, Requirement for DCP-1 caspase during Drosophila oogenesis. Science, 1998. 279(5348): p. 230-4.
    71. Peifer, M., et al., A role for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis. Development, 1993.118(4): p. 1191-207.
    72. White, P., H. Aberle, and J.P. Vincent, Signaling and adhesion activities of mammalian beta-catenin and plakoglobin in Drosophila. J Cell Biol, 1998.140(1): p. 183-95.
    73. McNeil, G.P., F. Smith, and R. Galioto, The Drosophila RNA-binding protein Lark is required for the organization of the actin cytoskeleton and Hu-li tai shao localization during oogenesis. Genesis, 2004. 40(2): p. 90.
    74. Oda, H., T. Uemura, and M. Takeichi, Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion akd cytoskeletal organization.Genes Cells, 1997. 2(1): p. 29-40.
    75. Kolb, H., et al. WEBVISION The Organization of the Retina and Visual System. Available from: http://webvision.med.utah.edu.
    76. Turner, D.L. and C.L. Cepko, A common progenitor for neurons and glia persists in rat retina late in development. Nature, 1987. 328(6126): p. 131-6.
    77. Cepko, C.L., et al., Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A, 1996. 93(2): p. 589-95.
    78. Young, R.W., Cell differentiation in the retina of the mouse. Anat Rec, 1985. 212(2): p. 199-205.
    79. Blanks, J.C., A.M. Adinolfi, and R.N. Lolley, Synaptogenesis in the photoreceptor terminal of the mouse retina. J Comp Neurol, 1974.156(1): p.81-93.
    80. Hinds, J.W. and P.L. Hinds, Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic,serial section analysis. J Comp Neurol, 1979.187(3): p. 495-511.
    81. Young, R.W., Cell death during differentiation of the retina in the mouse. J Comp Neurol, 1984. 229(3): p. 362-73.
    82. Young, R.W., Cell proliferation during postnatal development of the retina in the mouse. Brain Res, 1985. 353(2): p. 229-39.
    83. Jeon, C.J., E. Strettoi, and R.H. Masland, The major cell populations of the mouse retina. J Neurosci, 1998. 18(21): p. 8936-46.
    84. Wikipedia. 2001; Available from: httn://en.wikipedia.org/wiki/Main Page.
    85. Kaneko, A., Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol, 1970. 207(3): p. 623-33.
    86.Werblin,F.S.,Lateral interactions at inner plexiform layer of vertebrate retina:antagonistic responses to change.Science,1972.175(25):p.1008-10.
    87.Wetts,R.and S.E.Fraser,Multipotent precursors can give rise to all major cell types of the frog retina.Science,1988.239(4844):p.1142-5.
    88.Alexiades,M.R.and C.L.Cepko,Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny.Development,1997.124(6):p.1119-31.
    89.Dyer,M.A.and R.Bremner,The search for the retinoblastoma cell of origin.Nat Rev Cancer,2005.5(2):p.91-101.
    90.Olney,J.W.,An electron microscopic study of synapse formation,receptor outer segment development,and other aspects of developing mouse retina.Invest Ophthalmol,1968.7(3):p.250-68.
    91.Fisher,L.J.,Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina.J Comp Neurol,1979.187(2):p.359-72.
    92.Szel,A.,et al.,Unique topographic separation of two spectral classes of cones in the mouse retina.J Comp Neurol,1992.325(3):p.327-42.
    93.Soucy,E.,et al.,A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina.Neuron,1998.21(3):p.481-93.
    94.Rich,K.A.,Y.Zhan,and J.C.Blanks,Migration and synaptogenesis of cone photoreceptors in the developing mouse retina.J Comp Neurol,1997.388(1):p.47-63.
    95.Tsujikawa,M.,et al.,Mechanism of positioning the cell nucleus in vertebrate photoreceptors.Proc Natl Acad Sci U S A,2007.104(37):p.14819-24.
    96.Smith,R.,et al.,Systematic Evaluation of the Mouse EYE,ed.J.Sundberg.2002:CRC Press.
    97.Pautler,E.and R.A.Wilson,Analysis of a and B Wave Interaction in the Rabbit Retina.Nature,1963.200:p.1212-3.
    98.Miller,R.E and J.E.Dowling,Intracellular responses of the Muller(glial)cells of mudpuppy retina:their relation to b-wave of the electroretinogram.J Neurophysiol,1970.33(3):p.323-41.
    99.Nair,K.S.,et al.,Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions.Neuron,2005.46(4):p.555-67.
    100.Zhang,X.,et al.,SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice.Unpublished Work.
    101.Zhu,X.,et al.,Mouse cone arrestin expression pattern:light induced translocation in cone photoreceptors.Mol Vis,2002.8:p.462-71.
    102.Zhu,X.,et al.,Mouse cone arrestin gene characterization:promoter targets expression to cone photoreceptors.FEBS Lett,2002.524(1-3):p.116-22.
    103.Dubois,N.C.,et al.,Nestin-Cre transgenic mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system,kidney,and somite-derived tissues.Genesis,2006.44(8):p.355-60.
    104.Barski,J.J.,K.Dethleffsen,and M.Meyer,Cre recombinase expression in cerebellar Purkinje cells.Genesis,2000.28(3-4):p.93-8.
    105.Hennet,T.,et al.,T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination.Proc Natl Acad Sci U S A,1995.92(26):p.12070-4.
    106.Kisanuki,Y.Y.,et al.,Tie2-Cre transgenic mice:a new model for endothelial cell-lineage analysis in vivo.Dev Biol,2001.230(2):p.230-42.
    107.Lallemand,Y.,et al.,Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase.Transgenic Res,1998.7(2):p.105-12.
    108.Naito,H.and S.Oyanagi,Familial myoclonus epilepsy and choreoathetosis:hereditary dentatorubral-pallidoluysian atrophy.Neurology,1982.32(8):p. 798-807.
    109.Inazuki,G.,et al.,[A clinical study and neuropathological findings of a familial disease with myoclonus and epilepsy--the nosological place of familial essential myoclonus and epilepsy(FEME)].Seishin Shinkeigaku Zasshi,1990.92(1):p.1-21.
    110.Becher,M.W.,et al.,Dentatorubral and pallidoluysian atrophy(DRPLA).Clinical and neuropathological findings in genetically confirmed North American and European pedigrees.Mov Disord,1997.12(4):p.519-30.
    111.Ross,C.A.,et al.,Huntington's disease and dentatorubral-pallidoluysian atrophy:proteins,pathogenesis and pathology.Brain Pathol,1997.7(3):p.1003-16.
    112.Koide,R.,et al.,Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy(DRPLA).Nat Genet,1994.6(1):p.9-13.
    113.Nagafuchi,S.,et al.,Structure and expression of the gene responsible for the triplet repeat disorder,dentatorubral and pallidoluysian atrophy (DRPLA).Nat Genet,1994.8(2):p.177-82.
    114.Onodera,O.,et al.,Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS.Am J Hum Genet,1995.57(5):p.1050-60.
    115.Ying,M.,et al.,Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA.J Biol Chem,2006.281(18):p.12580-6.
    116.Schilling,G.,et al.,Nuclear accumulation of truncated atrophin-1fragments in a transgenic mouse model of DRPLA.Neuron,1999.24(1):p.275-86.
    117.Sato,T.,et al.,Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients.Hum Mol Genet,1999.8(1):p.99-106.
    118.Yazawa,I.,et al.,Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy(DRPLA) brain.Nat Genet,1995.10(1):p.99-103.
    119.Okamura-Oho,Y.,et al.,Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3domain of an insulin receptor tyrosine kinase substrate.Hum Mol Genet,1999.8(6):p.947-57.
    120.Nucifora,F.C.,Jr.,et al.,Nuclear localization of a non-caspase truncation product of atrophin-1,with an expanded polyglutamine repeat,increases cellular toxicity.J Biol Chem,2003.278(15):p.13047-55.
    121.Yazawa,I.,et al.,Expression of dentatorubral-pallidoluysian atrophy (DRPLA) proteins in patients.Neurosci Lett,1997.225(1):p.53-6.
    122.Wang,L.,et al.,Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors.Genes Dev,2006.20(5):p.525-30.
    123.Wood,J.D.,et al.,Atrophin-1,the dentato-rubral and pallido-luysian atrophy gene product,interacts with ETO/MTG8 in the nuclear matrix and represses transcription.J Cell Biol,2000.150(5):p.939-48.
    124.Zoltewicz,J.S.,et al.,Atrophin 2 recruits histone deacetylase and is required for the function of multiple signaling centers during mouse embryogenesis.Development,2004.131(1):p.3-14.
    125.Yanagisawa,H.,et al.,Protein binding of a DRPLA family through arginine-glutamic acid dipeptide repeats is enhanced by extended polyglutamine.Hum Mol Genet,2000.9(9):p.1433-42.
    126.Ross,C.A.,When more is less:pathogenesis of glutamine repeat neurodegenerative diseases.Neuron,1995.15(3):p.493-6.
    127.Ross,C.A.,et al.,Pathogenesis of neurodegenerative diseases associated with expanded glutamine repeats:new answers,new questions.Prog Brain Res,1998.117:p.397-419.
    128.Nakamura,K.,et al.,SCA17,a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein.Hum Mol Genet,2001.10(14):p.1441-8.
    129.Igarashi,S.,et al.,Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch.Nat Genet,1998.18(2):p.111-7.
    130.Benn,C.L.,et al.,Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington's disease.Hum Mol Genet,2005.14(20):p.3065-78.
    131.Mangiarini,L.,et al.,Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.Cell,1996.87(3):p.493-506.
    132.Davies,S.W.,et al.,Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation.Cell,1997.90(3):p.537-48.
    133.Clark,H.B.,et al.,Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors,followed by a progressive cerebellar dysfunction and histological alterations.J Neurosci,1997.17(19):p.7385-95.
    134.Cemal,C.K.,et al.,YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit.Hum Mol Genet,2002.11(9):p.1075-94.
    135.Yvert,G.,et al.,Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice.Hum Mol Genet,2000.9(17):p.2491-506.
    136.Ross,C.A.,et al.,Huntington disease and the related disorder,dentatorubral-pallidoluysian atrophy(DRPLA).Medicine(Baltimore),1997.76(5):p.305-38.
    137.Dragatsis,I.,M.S.Levine,and S.Zeitlin,Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice.Nat Genet,2000.26(3):p.300-6.
    138.Cattaneo,E.,et al.,Loss of normal huntingtin function:new developments in Huntington's disease research.Trends Neurosci,2001.24(3):p.182-8.
    139.Shen,Y.,et al.,Functional architecture of atrophins.J Biol Chem,2007.282(7):p.5037-44.
    140.Yamada,M.,et al.,Widespread occurrence of intranuclear atrophin-1accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy.Ann Neurol,2001.49(1):p.14-23.
    141.Davis,J.N.,et al.,ETO-2,a new member of the ETO-family of nuclear proteins.Oncogene,1999.18(6):p.1375-83.
    142.Wolford,J.K.and M.Prochazka,Structure and expression of the human MTG8/ETO gene.Gene,1998.212(1):p.103-9.
    143.Kiehl,T.R.,et al.,Generation and characterization of Sca2(ataxin-2)knockout mice.Biochem Biophys Res Commun,2006.339(1):p.17-24.
    144.Schmitt,I.,et al.,Inactivation of the mouse Atxn3(ataxin-3) gene increases protein ubiquitination.Biochem Biophys Res Commun,2007.362(3):p.734-9.
    145.Schilling,G.,et al.,Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA.Neurobiol Dis,2001.8(3):p.405-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700