月季RcHSP17.8基因克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月季(Rosa chinensis)为蔷薇属中能连续开花的观赏花卉植物,在园林绿化领域中享有极高的声誉,深受人们喜爱。由于全球“温室效应”现象日益明显,高温已成为制约植物生长和发育的主要环境因子,月季的生长发育也面临着高温逆境的严峻挑战,因此,如何提高月季对高温等逆境胁迫的抗性研究意义重大。
     高质量基因组DNA、总RNA的有效提取是月季分子生物学研究基础。月季富含单宁、多糖、酚等次生代谢物,严重影响其DNA、RNA的提取。本文通过对经典CTAB法的改进而获得高质量的月季DNA;筛选到植物RNAout试剂盒较适合月季总RNA提取;为了获得大量的实验材料,本文还建立了有效的月季快速繁殖体系。
     本文筛选到两个耐热性差异明显的月季品种:耐热的‘曼海姆宫殿'(SM)与不耐热的‘新十全'(KP)。38℃/3h热激后经双向电泳,获得SM在高温下差异表达的蛋白质点。经肽质谱分析,初步推定该蛋白质点与拟南芥小分子热激蛋白HSP17.5同源性高。
     同源克隆获得251bp的片段,根据序列设计3对反式PCR引物,以SM热激后的cDNA为模板,采用反式PCR获得基因5'端序列,应用3'-RACE获得基因3'端序列。再以5'、3'端序列设计引物,PCR扩增获得基因的开放阅读框(ORF),全长465bp,包含154个氨基酸,命名为RcHSP17.8(登录号:EF053229)。BLAST检索显示它与其它物种小分子热激蛋白基因(sHSP)具有较高同源性,氨基酸序列比对发现其包含胞质Ⅰ类sHSP的特征保守序列,聚类分析显示它位于双子叶植物胞质Ⅰ类sHSP区域,该基因属胞质Ⅰ类sHSP基因。Southern杂交表明该基因在月季基因组中为低拷贝存在。
     月季RcHSP17.8为温度诱导表达基因,38℃热激5min就能检测转录子,5h后表达量开始下降。热激下,该基因在花中的表达量明显高于其它器官,推测RcHSP17.8可能与花发育有关。此外,NaCl、PEG4000、蔗糖、H_2O_2等胁迫均能诱导RcHSP17.8表达,证明RcHSP17.8参与月季对高盐、高渗、氧化等非生物胁迫的响应。
     构建原核表达载体pET32a-RcHSP 17.8转化大肠杆菌BL21,SDS-PAGE结果显示,转化菌株在IPTG诱导下0.5h就可检测到含RcHSP17.8的融合蛋白。Western印迹显示在37℃常温下IPTG诱导0.5h转pET32a-RcHSP17.8菌株就表达目的融合蛋白,2h达最大值,6h后表达量开始下降;50℃高温胁迫下,0.5h时转化菌株就开始高表达目的蛋白,5h时还维持很高表达量。上述实验结果表明转化菌株在常温下能正常表达RcHSP17.8的融合蛋白,而高温引起其表达量增高。抗性胁迫实验证明RcHSP17.8的转入提高了大肠杆菌对高温、低温、高盐、高pH、重金属、氧化等非生物胁迫的耐性。
     构建酵母真核表达载体pPIC3.5K-YEP-RcHSP17.8,经BglⅡ线性化后采用电击法转化酵母SMD1168,通过G418筛选获得多拷贝阳性克隆菌株。共定位显微观察显示YEP只在胞质中表达,结果表明同源重组的酵母能正常表达含有目的基因的融合蛋白,且定位在细胞质,这与RcHSP17.8属胞质Ⅰ类sHSP的推理相吻合。同源重组酵母在50℃高温、4℃低温下的菌落生长状况明显好于空载转化酵母,表明RcHSP17.8基因的转入提高了酵母对高温与低温的耐受性。此外,转化后的酵母提高了对高盐、高pH、重金属、氧化等非生物胁迫的抗性。
     构建重组植物表达载体PHB-RcHSP17.8,通过农杆菌介导将RcHSP17.8基因转入拟南芥,经潮霉素筛选获得T_3代转基因种子。Western blot结果显示转基因植株高表达RcHSP17.8;对培养基上生长的株系,进行高温、高盐、高渗处理,发现转基因拟南芥平均根长与存活率均优于野生型拟南芥;对盆栽苗进行干旱处理,发现转基因株系具有较强的抗旱性。RT-PCR检测发现,转基因株系在胁迫时高表达RcHSP17.8,同时还发现一些与胁迫相关的基因,如HSP101、渗调蛋白基因(Osmotin)、甜菜碱醛脱氢酶基因(BADH)、脯氨酸合成酶基因(P5CS)、抗坏血酸过氧化物酶基因(APX)相应高或低表达,证明RcHSP17.8在胁迫条件下与HSP101协同行使了分子伴侣功能,并保护了上述蛋白或酶,从而提高了转基因拟南芥多种胁迫抗性。
     上述研究结果表明,在胁迫条件下,月季RcHSP17.8基因过表达导致其宿主体内RcHSP17.8的积累,从而提高了宿主对高温、低温、高盐、高渗、高pH、重金属、氧化等多种非生物胁迫的耐受性,证明RcHSP17.8参与了多种非生物胁迫的响应。
     应用反式PCR获得SM与KP的RcHSP17.8基因启动子,序列比对发现它们在顺式调控元件上存在一些差异,具有高温、低温、ABA、真菌病害等诱导顺式作用元件。启动子克隆与序列初步分析旨在探索月季RcHSP17.8响应多种非生物胁迫的分子机理。
Rosa chinensis,which belongs to Rosaceae,is an important continuously blossomed ornamental plant.It plays a key role in the garden ornaments for its various genotypes and colors.So more and more attentions were paid on the researches of Rosa chinensis.With the increasing global greenhouse effect,high temperature has become the main restrictive factor for plant growth and development.Therefore,the research on how to enhance the abiotic stress tolerance such as thermotolerance of Rosa chinensis has large significance.
     Molecular biology researches of Rosa chinensis are based on high quality extracted DNA and RNA,which is affected by high abundant tannin,polysaccharides,and phenols that contained in the plant body of Rosa chinensis.In this study,we extracted high quality DNA from Rosa chinensis through improved CTAB method,and verified that RNAout kit is suitable for extracting RNA from Rosa chinensis.Meanwhile,we had also constructed an effective rapidly subculture system for it.
     In this work,we selected two Rosa chinensis varieties,Sohloss Mannieim(SM) and Kordes'Perfecta(KP),which shows different tolerance to high temperature,SM as resistant and Kpas sensitive one.These two varieties of Rosa chinensis were placed at 38℃for 3 hours,and two-dimensional polyacrylamide gel electrophoresis(2D-PAGE) was used to analyze the protein expression pattern of these two varieties.Several spots which only appeared on the SM gel map were found out and the massspectrum and BLAST analysis implied that one of these spots might be a peptide of a small heat shock protein 17.8(sHSP 17.8).
     Open reading frame(ORF) of the HSP17.8 gene was attained by homology cloning, inverse-PCR and 3'-RACE.The ORF is a 465bp fragment,and encoding 154 amino acids,and was designated as RcHSP17.8(GeneBank accession number:EF053229). The deduced amino acid sequence was aligned with other representative sHSPs and demonstrated significant homology to sHSPs of other plants.Phylogenetic analysis revealed RcHSP17.8 to be a cytosolic class I sHSP.
     RT-PCR revealed that RcHSP17.8 is a high temperature induced expressing gene, and is rapidly induced expressing after 5min heat stress treatment(38℃),and after 5h, the mRNA level began to decline.RcHSP17.8 is more strongly expressed in flowers than that in other organs of Rosa chinensis under heat stress treatment.In addition, NaCl,PEG4000,sucrose and H_2O_2 also induce the expression of RcHSP17.8.
     Recombinant RcHSP17.8 was overexpressed in Escherichia coli(BL21) using pET32a,and also in yeast(SMD 1168) by the vector of pPIC3.5K to study its possible function under stress conditions.The recombinant E.coli and yeast cells that contained RcHSP17.8 showed improved viability under different stress conditions, such as high and low temperature,high salt concentration,heavy metal and oxidative stress,as compared with control cultures.Transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8 exhibited increased tolerance to thermal,salt and osmotic stress.These results suggest that expression of RcHSP17.8 enhances the thermotolerance and other abiotic stress resistance in both prokaryotes and eukaryotes. Besides,expressing of stress-correlative genes in Arabidopsis thaliana such as HSP101,Osmotin,BADH,P5CS and APX are parallel with the expressing of RcHSP 17.8.
     We also isolated promoter sequences of RcHSP17.8 from two varieties,SM and KP using inverse-PCR.Sequence alignment revealed that special elements existed in the promoter of SM,maybe it is related to regulate the expression of target gene.Some cis-regulate elements,such as HSE,LTR,ABA,MBS existed in both of promoter which are correlative with temperature and ABA stress regulation.
引文
Balogi Z,T(O|¨)r(O|¨)k Z,Balogh G,J(?)svay K,Shigapova N,Vierling E,Vigh L,Horv(?)th L:‘Heat shock lipid' in cyanobacteria during heat/light-acclimation[J].Arch Biochem Biophys,2005,436:346-354.
    Basha E,Friedrich KL,Vierling E:The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity[J].J Biol Chem,2006,281:39943-39952.
    Basha E,Lee GJ,Demeler B,Vierling E:Chaperone activity of cytosolic small heat shock proteins from wheat[J].Eur J Biochem,2004,271:1426-1436.
    B(O|¨)sl B,Grimminger V,Walter S:The molecular chaperone Hsp104-a molecular machine for protein disaggregation[J].J Struct Biol,2006,156:139-148.
    Buchner J,Brinkmann U,Pastan I.Renaturation of a single chain immunotoxin facilitated by chaperones and protein disulfide isomerase[J].Biotechnology,1992,10:682-685.
    Buchner J.Hsp90 & Co.-a holding for folding[J].Trends Biochem Sci,1999,24:136-141.
    Bukau B and Horwich AL.The Hsp70 and Hsp60 chaperone machines.Cell,1998,92:351-366.
    Ching-Hui Yeh,Pi-Fang Linda Chang,Kai-Wun Yeh,Wan-Chi Lin,Yih-Ming Chen,and Chu-Yung Lin.Expression of a gene encoding a 16.9 kDa heat-shock protein,Oshsp 16.9,in Escherichia coli enhances thermotolerance[J].Proc Natl Acad Sci USA,1997,94:10967-10972.
    Chung H J,Fu HY,Thomas TL.Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene[J].Planta,2005,220:424-433.
    Coca MA,Almoguera C,Thomas TL,et al.Differential regulation of small heatshock genes in plants:analysis of a water stress inducible and developmentally activated sunflower promoter[J].Plant Mol Biol,1996,31:863.
    Collade C,Gomez R,Casado R,Aragoncillo C.Purification and in vitro chaperone activity of a class Ⅰ small heat-shock protein abundant in recalcitrant chestnut seeds [J].Plant Physiol,1997,115:71-77.
    Concepcion Almoguera,Pilar Prieto-Dapena and Juan Jordano.Dual regulation of a heat shock promoter during embryogenesis:stage-dependent role of heat shock elements[J].The Plant Journal,1998,13(4):437-446.
    D Crone J, Rueda KL, Martin DA, Hamilton, JP, Mascarenhas. The differential expression of a heat shock promoter in floral and reproductive tissues [J]. Plant,Cell and Environment, 2001, 24: 869-874.
    DeRocher AE, Vierling E. Cytoplasmic Hsp70 homologues of pea: differential expression in vegetative and embryonic organs [J]. Plant Molecular Biology, 1995,27: 441-456.
    Easton DP. et al. The Hspl 10 and Grp170 stress proteins: newly recognized relatives of the Hsp70s [J]. Cell Stress Chaperones, 2000, 5: 276-290.
    Ehrnsperger MS. et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation [J]. EMBO J, 1997, 16:221-229.
    Forrciter C, Kirschner M, Nover L. Stable Transformation of an Arabidopsis Cell Suspension Culture with Firefly Luciferase Providing a Cellular System for Analysis of Chaperone Activity in Vivo [J]. The Plant Cell, 1997, 9: 2171-2181.
    Friedrich KL, Giese KC, Buan NR, Vierling E. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes [J]. J Biol Chem, 2004,279: 1080-1089.
    Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones [J]. Annu Rev Biochem, 2001, 70: 603-647.
    Giese KC, Basha E, Catague BY, Vierling E: Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity [J]. Proc Natl Acad Sci USA, 2005, 102: 18896-18901.
    Gittins JR, Pellny TK, Hiles ER, et al. Transgene expression driven by heterologous ribulose-l,5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple(Malus pumila Mill)[J]. Planta, 2000, 210(2): 232.
    Guo H, Chen X, Zhang H, et al. Characterion and activity enhancement of the phlonem-specific pumpkin PP2 gene promoter [J]. Transgenic Research, 2004,13: 559-566.
    Guo SJ, Zhoua HY, Zhanga XS, Lic XG, Menga QW: Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSⅡand PSⅠduring chilling stress under low irradiance [J]. J Plant Physiol, 2007, 164: 126-136.
    Gurr S J, Rushton P J. Engineering plants with increased disease resistance: how are we going to express it? [J]. Trends in Biotechnology, 2005, 23 (6): 283-290.
    Hamdahl U, Bufoni-Hall R, Osteryoung K W, Vierling E, Bornman J F, Sundby C. The chloroplast heat shock protein undergoes oxidation dependent conformational changes and may protect plants against oxidative stress [J]. Cell Stress Chaperones. 1999,4:129-138.
    Hamilton EW. Ⅲ and Heckathorn SA. Mitochondrial adaptations to NaCl: Complex Ⅰis protected by anti-oxidants and small heat shock proteins, whereas complex Ⅱ is protected by proline and betaine [J]. Plant Physiol, 2001, 126: 1266-1274.
    Han ZY, Wang XQ, S GZ, et al. Cloning of foreign gene's flanking sequences in transgenic rice by inverse PCR [J]. Acta Agriculturae Shanghai, 2001, 17(2): 27.
    Haralampidis K, Milioni D, Rigas S, et al. Combinatorial interaction of Cis elements specifies the exp ression of the A rabidopsis AtHsp90-l gene [J]. Plant Physiol, 2002,129:1138-1149.
    Hartl FU. Molecular chaperones in cellular protein folding [J]. Nature, 1996, 381: 571-580.
    Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Bucher J. Hsp26: a temprature regulated chaperone. EMBO J, 1999,18: 6744-6751.
    Heckathorn SA, Ryan SL, Baylis JA, Wang DF, Hamilton EW, Cundiff L, Dawn SL. in vivo evidence from an Agrostis stolonifera selection genotype that chloroplastsmall heat-shock proteins can protest photosystem Ⅱ during heat stress [J]. Fund Plant Biol, 2002,29: 933-944.
    Hong SW, Vierling E: Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress [J]. Plant J, 2001, 27: 25-35.
    Horwitz J. a-crystalin can function as a molecular chaperone [J]. Proc Natl Acad Sci USA, 1992,99: 1279-1284.
    Ishikawa A. et al. Deletion of a chaperonin 60 b gene leads to cell death in the Arabidopsis lesion initiation 1 mutant [J]. Plant Cell Physiol, 2003,44: 255-261.
    Larkindale J, Mishkind M, Vierling E: Plant responses to high temperature. In Plant Abiotic Stress [M]. Edited by Jenks MA, Hasegawa PM. Blackwell Publishing,2005, 100-144.
    Lee GJ and Vierling EA small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein [J]. Plant Physiol, 2000, 122:189-198.
    Lee GJ. et al. A small heat shock protein stably binds heatdenatured model substrates and can maintain a substrate in a folding competent state [J]. EMBO J, 1997, 16:659-671.
    Li ZT, Gray DJ. Isolation by improved thermal asymmetric interlaced PCR and characterization of a seed-specific Salbumin gene and its promoter from grape [J].Genome, 2005,48(2): 312.
    Liang MS, Zeng Y, Wang YP, et al. Isolation and characterization of gene promoter from Crambe abyssinica [J]. Chinese J Oil Crop Sei, 1998, 20(1): 1.
    Liu YG, Chen Y, Zhang Q, et al. Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction [J]. Methods Mol Biol, 2005,286:341.
    Lucia J, Pablo V. Local and systemic induction of two defense related subtilisin like protease promoters in transgenic Arabidopsis plants. Luciferin induction of Pi? gene expression [J]. Plant Physiol, 2000, 124(3): 1049.
    Maria-Angeles Lopez-Matas, Paulina Nunez, Alvaro Soto, Isabel Allona, Rosa Casado, Carmen Collada, Maria-Angeles Guevara, Cipriano Aragoncillo, and Luis Gomez. Protein Cryoprotective Activity of a Cytosolic Small Heat Shock Protein That Accumulates Constitutively in Chestnut Stems and Is Up-Regulated by Low and High Temperatures [J]. Plant Physiol, 2004,134: 1708-1717.
    Mariko Shono, Jian Liu, Kazutsuka Sanmiya, Ishwar Singh, Jalalud Din, Katsumi Suzuki, Tadashi Tsukaguchi, and Yoshinobu Egawa. Functional analysis of mitochondrial small heat shock protein [J]. JIRCAS Working Report, 2002,17-23.
    Mogk A. et al. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/ DnaK [J]. J. Biol. Chem, 2003,278: 31033-31042.
    Moorimoto RI, Tissieres A, Georgopoules C. stress protein in biology and medicine [M]. New York, Cold Spring Harbor Laboratory Press, 1990, pp 450
    Nakamoto H, Vigh L: The small heat shock proteins and their clients [J]. Cell Mol Life Sci, 2007, 64: 294-306.
    Naomi SS, Ichiro M, Shigeo N, et al. Constitutive promoters available for transgene expression instead of CaMV35S RNA promoter: Arabidopsis promoters of tryptophan synthase protein β subunit and phytochrome B [J]. Plant Biotech, 2002,19(1): 19.
    Neta-Sharir I, Isaacson T, Lurie S, Weiss D: Dual role for tomato heat shock protein 21: protecting photosystem Ⅱ from oxidative stress and promoting color changes during fruit maturation [J]. Plant Cell, 2005, 17: 1829-1838.
    Nover L, Scharf K-D. Heat stress proteins and transcription factor [J]. Cell. Mol. Life Sci, 1997, 53: 80-103.
    Park DJ, Renfree MB, Marshall GJA, et al. Universal fast walking applied to Cdna [J]. Preparative Biochem Biotechnol, 2004, 34(2): 123.
    Rawat R, Xu ZF, Yao KM, Chye ML. Identification of ciselements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase [J]. Plant Mol Biol, 2005, 57: 629-643.
    Rensink WA, Lobst S, Hart A, Stegalkina S, Liu J, Buell CR: Gene expression profiling of potato responses to cold, heat, and salt stress [J]. Fund Integr Genomics, 2005, 5:201-207.
    Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress [J]. Plant Physiol, 2004, 134: 1683-1696.
    Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila [J]. Experientia, 1962, 18: 571-573.
    Rojas A, Almoguera C, Carranco R, et al. Selective activation of the developmentally regulated hahsp17.6 G1 promoter by heat stress transcription factors [J]. Plant Physiology, 2002, 129: 1207.
    Rrandl R, Schoffl F. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation [J]. Plant Mol Biol, 1996, 31: 157.
    Sa Q, Wang Y, LiW, et al. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-in-ducible expression patterns and responds to both salicylic acid and jasmonic acid [J]. Plant Cell Rep, 2003, 22:79-84.
    Sabehat A, Lurie S, Weiss D. Expression of small heatshockproteins at low temperatures [J]. Plant Physiol, 1998, 117:651-658.
    Sachin Kotak, Jane Larkindale, Ung Lee, Pascal von Koskull-Doring, Elizabeth Vierling Klaus-Dieter Scharf. Complexity of the heat stress response in plants [J].Current Opinion in Plant Biology, 2007, 10: 310-316.
    Sanmiya K, Suzuki K, Egawa Y, Shono M: Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants [J]. FEBS Lett, 2004, 557: 265-268.
    Scharf KD. et al. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (ACD proteins) [J]. Cell Stress Chaperones, 2001, 6: 225-237.
    Skowyra D, Georgopoulos C, Zylicz M. The E Coli dnak gene product, the Hsp70 homolog: Can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner [J]. Cell, 1990, 62: 939-944.
    Song SQ, Kenneth M, Fredlund, et al. Changes in Low molecular Weight Heat Shock Protein 22 of Mitochondria during High-temperature Accelerated Ageing of Beta Vulgaris [J]. Seed, 2002,1577(1): 17.
    Stromer T, Ehrnsperger M, Gaestel M, Buchner J. Analysis of the interaction of small heat shock proteinswith unfolding proteins [J]. JBiol Chem, 2003, 278: 18015-18021.
    Sun W, Van MM, Verbruggen N. Small heat shock proteins and stress tolerance in plants [J]. Biochim Biophys Acre, 2002, 1577(1): 1-9.
    Sun W. et al. Small heat shock proteins and stress tolerance in plants [J]. Biochim. Biophys Ada, 2002, 1577, 1-9.
    Sung DY. et al. Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function [J]. Plant Physiol, 2001, 113: 443-451.
    Takahashi T, Naito S & Komeda Y. The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response [J]. Plant Journal, 1992, 2: 751-761.
    Tissere A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of drosophila melanogaster: Relation to chromosome puffs [J]. J Mol Biol, 1974, 84: 89-398.
    T(?)r(?)k Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovzki V, Los D, Vierling E, Crowe JH, Vigh L. Synechocystis HSP 17 is an amphitropic protein that stabilizes heat stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding [J]. Proceedings of the National Academy of Sciences of USA, 2001, 98: 3098-3103.
    Tsvetkova NM, Horvath I, T6r6k Z, Wolkers WF, BalogiZ, Shigapova N, Crowe LM, Tabin F, Vierling E, Crowe JH, Vigh L. Small heat-shock proteins regulate membrane lipid polymorphism [J]. Proceedings of the National Academy of Sciences of USA, 2002, 99: 13504-13509.
    Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L. production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and inmpairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells [J]. Plant Physiol, 2004,134: 1100-1112.
    Veinger L. et al. The small heat-shock protein IbpB from E. coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network[J].J Biol Chem,1998,273,11032-11037.
    Vierling E.The roles of heat shock proteins in plants.Annu.Rev.Plant[J].Physiol.Plant.Mol.Biol,1991,42:579-620.
    Vinocur B,Altman A:Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations.Curr Opin Biotechnol,2005,16:123-132.
    Volkov RA,Panchuk II,Mullineaux,PM,Sch(o|¨)ffl F.Heat stress-induced H_2O_2 is required for effective expression of heat shock genes in Arabidopsis[J].Plant Mol Biol,2006,61:733-746.
    Wang D and Luthe DS.Heat sensitivity in a bentgrass variant.Failure to accumulate a chloroplast heat shock protein is of orm implicated in heat tolerance[J].Plant Physiol,2003,133:319-327.
    Wang W,Vinocur B,Shoseyov O,Altman A:Rose of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J].Trends Plant Sci,2004,9:244-252.
    Wang WX.et al.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
    Waters ER,Lee G.J,and Vierling E.Evolution,structure and function of the small heat shock proteins in plants[J].J Exp Bot,1996,47:325-338.
    Waters ER.et al.Evolution,structure and function of the small heat shock proteins in plants[J].J Exp Bot,1996,47:325-338.
    Wehmcyer N,Hemandez LD,Finkeistein RR,Vierling E.Synthesis of small heat shock proteins is part of the developmental program of late seed maturation[J].Plant Physiol,1996,112:747-757.
    Yang JY,Sun Y,Sun A,Yi S,Qin J,Li M,Liu J:The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato[J].Plant Mol Biol,2006,62:385-395.
    Yee-yung Charng,Hsiang-chin Liu,Nai-yu Liu,et al.A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis [J].Plant Physiol,2007,143(1):251-262.
    Younousse Saidi,Andrija Finka,Mickhail Chakhporanian,Jean-Pierre Zry d,Didier G Schaefer and Pierre Goloubinoff.Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter:a tool for plant research and biotechnology[J].Plant Molecular Biology,2005,59:697-711.
    陈琰芳.月季[M].北京:中国农业大学出版社,2000
    李杰,张福城,王文泉,黄丽云.高等植物启动子的研究进展[J].生物技术通讯,2006,17(4):658-661
    李宁,樊守金,张增艳.植物抗病相关启动子及其研究进展[J].植物遗传资源学报2007,8(2):234-239
    李为民,王志兴,贾士荣等.中棉光诱导基因Gacab启动子的克隆及其功能分析[J].农业生物技术学报,2004,12(3):253
    王莹,韩烈保,曾会明.高等植物启动子克隆方法的研究进展[J].生物技术通报,2007,(3):97-100
    夏江东,程在全,吴渝生,季鹏章.高等植物启动子功能和结构研究进展[J].云南农业大学学报,2006,21(1):7-14
    伊淑莹,孙爱清,赵春梅,刘箭.番茄多胁迫诱导型LeMTshsp启动子的分子克隆及其功能分析[J].云南植物研究,2007,29(2):223-230
    张本.月季[M].上海:上海科学技术出版社,1998
    张春晓,王文棋,蒋湘宁等.植物基因启动子研究进展[J].遗传学报,2004,31(12):1455-1464
    张俊环,黄卫东.植物对温度逆境的交叉适应性及其机制研究进展[J].中国农学通报,2003,19(2):95-100
    张毅,尹辉,李丹,朱巍巍,李秋莉.植物启动子的化学因素诱导元件[J].植物生理学通讯,2007,43(4):787-794
    Niels Bredmose,Kell Kristiansen.Changes in concentrations of cytokinins(CKs) in root and axillary bud tissue of miniature rose suggest that local CK biosynthesis and zeatin-type CKs play important roles in axillary bud growth[J].Journal of Plant Growth Regulation,2005,24(3):238-250.
    Proberki S L,Bailey G,Baum R B.Modification of a CTAB DNA extraction protocol for plant containing high polysaccharide and polyphenol components[J].Plant Mol Rep,1997,12:8-15.
    Sambrook J,Fritsch E.F.,and Maniatis T.M.(eds.).Molecular cloning:a laboratory manual(2nd)[M],CHS Laboratory Press,Cold Spring Harbor,New York,2002,pp:516-657.
    Xia HW,Lu LX,and Chen GX.New method for total RNA extraction in legume of Bauhinia Variegata[J].Molecular Plant Breeding,2006,4(1):147-149.
    Zeng Y,and Yang Y.RNA isolation from highly viscous samples rich in polyphenols and polysaccharides[J].Plant Mol.Biol Rep,2002,20:417a-417e.
    艾呈祥,余贤美,刘庆忠,张力思.栗属植物基因组DNA的提取及RAPD、SSR分析[J].西北植物学报,2006,26(3):0624-0627
    高莉萍,包满珠.月季的植株再生及遗传转化研究进展[J].植物学通报,2005,22(2):231-237
    黄晓丹,张云贵,应铁进.高质量植物基因组DNA的提取[J].植物生理学通讯,2006,42(2):311-314
    李菁芳,黄劭毅,田仁鹏.一种适用于RT-PCR的杉树类植物中总RNA提取的方法[J].武汉植物学研究,2004,22(6):551-556
    刘会超,郭丽娟,贾文庆.月季组织培养研究进展[J].河南科技学院学报(自然科学版),2007,35(3):45-47;83
    史宝胜,卓丽环.紫叶李叶片总RNA提取方法的改进与比较[J].分子植物育种,2006,4(5):721-725
    王军,杨传平,刘桂丰.木本植物基因组DNA提取及鉴定[J].植物研究,2006,26(5):589-594
    文晓鹏,邓秀新.五种蔷薇属植物基因组DNA的提取及鉴定[J].种子,2002,126(6):18-21
    Alvaro Soto,Isabel Allona,Carmen Collada,Maria-Angeles Guevara,Rosa Casado,Emilio Rodriguez-Cerezo,Cipriano Aragoncillo,and Luis Gomez.Heterologous expression of a plant Small heat-Shock protein enhances Escherichia coli Viability under heat and cold stress[J].Plant Physiology,1999,120:521-528.
    Hong Z.Removal of feedback inhibition of I-pyrroling-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress[J].Plant physiology,2000,122:1129-1136.
    Lee U,Wie C,Escobar M,Williams B,Hong SW,Vierling E:Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperons system[J].Plant Cell,2005,17:559-571.
    Mukesh K Malik,Janet P Slovin,Cheol Ho Hwang,J Lynn Zimmerman.Modified expression of a carrot small heat shock protein gene,HSP17.7,results in increased or decreased thermotolerance[J].The Plant Journal,1999,20(1):89-99.
    Shigeoka S,Ishikawa T,Tamoi M,et al.Regulation and function of ascorbate peroxidase isoenzymes[J].J Exp Bot,2002,53(372):1305-1319.
    刘大丽,张欣欣,程玉祥,高野哲夫,柳参奎.逆境下水稻(Oryza sativa L.)rHsp90基因的克隆及功能分析[J].分子植物育种,2006,4(3):317-322
    庞彩红,冯兰东,王宝山.高等植物中编码APX的基因特点及其与逆境响应的关系[J].山东师范大学学报(自然科学版),2007,22(4):114-116
    韦朝领,袁家明.植物抗逆境的分子生物学研究进展[J].安徽农业大学学报,2000,27(2):204-208
    周宜君,冯金朝,马文文,林冬霞,钱芝惠,吕惠娟.植物抗逆分子机制研究进展[J].中央民族大学学报(自然科学版),2006,15(2):169-176
    Agius F,Amaya I,Botella M A,et al.Functional analysis of homologous and homologous promoters in strawberry fruits using transient expression[J].Journal of Experimental Botany,2005,56(409):37-46.
    Kotak S,Port M,Ganguli A,et al.Characterization of c-terminal domains of Arabidopsis heat stress transcription factors(Hsf) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization[J].Plant Journal,2004,39:98-112.
    Narusaka Y,Nakashima K,Shinwari ZK,Sakuma Y,Furihata T,Abe H,Narusaka M,Shinozaki K,Yanguchi-Shinozaki K.Interaction between two cis-element,ABRE andDRE,in ABA-dependent expression of Arabidopsis rd29Agene in response to dehydration and high-salinity stresses[J].Plant Journal,2003,34:137-148.
    Shenk T.Transcriptional control regions:nucleotide sequence requirements for initiation by RNA Polymerase Ⅱ and Ⅲ[J].Curr Top Microbiol Immunol,1981,93:25-46.
    Stephane Rombauts,Patrice D(?)hais,Marc Van Montagu and Pierre Rouz(?).Plant CARE,a plant cis-acting regulatory element database[J].Nucleic Acids Res,1999,27(1):295-6.
    张毅,尹辉,李丹,朱巍巍,李秋莉.植物环境响应启动子的诱导元件及转录因子[J].中国生物工程杂志,2007,27(7):122-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700