哈茨木霉几丁质酶V基因等克隆及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今世界大力倡导可持续发展的大环境下,可持续发展思想及环保意识提高了生物防治技术的重要性,受到了国际社会的极大关注。构建出高效、广谱及价格低廉的生物农药来替代化学农药,最低限度的减少环境污染,达到绿色生产、绿色环保的目的。
     哈茨木霉(Trichoderma harzianum)是一种优良的生物防治真菌,在植物病害,尤其是土壤传染病害的生物防治中具有重要的应用价值。哈茨木霉主要通过重寄生作用、溶菌作用、抗生素作用、蛋白酶作用以及对空间和营养的竞争机制达到防治植物病原菌的目的。在各种恶劣的生存条件下哈茨木霉的抑菌功能受到了极大限制和破坏,限制了其生防潜力的进一步发挥。因而,提高哈茨木霉的防治效果,及保证其在逆境条件下生防功能顺利实现具有重要的意义。
     为增强哈茨木霉防治效果和对外界抵抗能力,利用真菌表达载体pBI121,pCAMBIA1301和克隆载体pUC18,成功构建了用于根癌农杆菌介导的丝状真菌遗传转化表达载体pCA-GChiⅤ和pCA-GSOD。以潮霉素抗性基因为选择标记,目的基因的启动子为CaMV35S,两种载体分别含有几丁质酶(ChiⅤ)基因、超氧化物岐化酶(SOD)基因。对影响哈茨木霉转化的因素进行优化,获得了该系统转化哈茨木霉的最佳条件。经过潮霉素抗性选择培养,Southern杂交,RT-PCR及传代分析得到稳定遗传的转化子。采用与三种植物病原菌室内拮抗实验,检测重组ChiⅤ和SOD后的哈茨木霉转化子的抑菌活性。结果表明通过根癌农杆菌介导的转化系统所获得转ChiⅤ哈茨木霉转化子具有良好的抑菌活性,对植物病原菌都表现出很强的拮抗作用。通过根癌农杆菌介导的转化系统所获得SOD哈茨木霉转化子保持了哈茨木霉菌的抑菌活性,对哈茨木霉原菌和SOD哈茨木霉转化子进行高温和盐胁迫实验进行了比较,结果证实,哈茨木霉原菌在逆境下不能正常存活;而SOD木霉转化子转化后的哈茨木霉菌,在逆境下仍能正常存活,且对植物病原菌仍具备良好的拮抗作用。
     ChiⅤ基因在哈茨木霉中的表达,明显提高了哈茨木霉的抑菌能力。SOD基因在哈茨木霉中的表达,提高了哈茨木霉对高温和高盐的抗逆性,保证了哈茨木霉能够在高温和高盐的条件下发挥其生防功能。从而,为哈茨木霉的抑菌功能在更广泛的领域中应用奠定了基础。
     在获得的哈茨木霉(T. harzianum)EST序列基础上,为提高哈茨木霉菌抗外界干扰能力,克隆了与抗碱性盐和干旱相关的sod和hsp24基因的DNA序列,克隆获得的这些序列已在GenBank上注册。将克隆得到的sod和hsp24基因构建原核表达载体pET-sod、pET-hsp24,通过双酶切、测序检测证明重组载体构建成功。通过IPTG诱导使sod、hsp24基因在大肠杆菌(Escherichia coli)BL21中表达,SDS-PAGE检测分别获得15.7kD、24.0kD的蛋白带,蛋白大小与预期相符,说明它们已经在大肠杆菌(E. coli)中表达,并检测了sod蛋白粗酶活和hsp24的耐热功能,证明了哈茨木霉(T. harzianum)基因能够在原核生物中良好表达。
     为提高哈茨木霉菌(T. harzianum)的sod和hsp24基因表达效率,我们将sod和hsp24基因构建到带有高效启动子的酿酒酵母( Saccharomyces cerevisiae)表达载体pYES2上,并转入酿酒酵母(S. cerevisiae)INVSc1细胞,得到了携带sod、hsp24外源基因的酵母转化子。逆境胁迫实验表明转sod、hsp24基因酵母对Na_2CO_3和干旱的耐受能力明显提高,表明sod、hsp24基因与哈茨木霉(T. harzianum)的抗逆境胁迫相关,这对研究哈茨木霉(T. harzianum)在自然界常见逆境下的生物防治能力具有重要意义。
     以上基因的克隆和功能研究为哈茨木霉(T. harzianum)其它功能基因的克隆和研究建立了完善的技术平台,对哈茨木霉(T. harzianum)重要生物防治基因的进一步发掘和利用具有重要意义。同时,将几丁质酶基因和超氧化物歧化酶基因分别转化到哈茨木霉(T. harzianum)中并表达,以及转化后的哈茨木霉菌的功能认定,使我们获得了良好生物防治效果的基因工程菌。为今后应用提供了科学依据。
     本项研究克隆了涉及生物防治和胁迫响应方面的基因,这些基因的获得将在揭示生物防治机理、研究哈茨木霉(T. harzianum)逆境下的生物防治能力变化以及其体内高价值酶基因的发掘等方面也具有重要意义,是系统地、多方位地对哈茨木霉(T. harzianum)的生物防治分子机理研究的开始。
In the sustainable development circumstance of the world,awareness of sustainable development and environmental protection improved the important bio-technology, which got the focus of the international society. Using the high-effect, broad and cheap biology pesticide instead of chemical pesticide could decrease the environment pollution for green produce and green environmental protection.
     Trichoderma Harzianum, an important plant biocontrol fungus with wide application, had important applied value in the biocontrol of plant diseases, especially diseases infected through soil. T. harzianum can produce many kinds of antibiotics and ergosterols against plant fungal pathogens based on different mechanisms, such as the production of antifungal metabolites, competition for space and nutrients and mycoparasitism. It was widely used in biocontrol of plant disease. But because of various adverse suvivial conditions, the antimicrobial efficacy of T. harzianum was restricted and badly damaged, so it was necessary to enhance the antimicrobial efficacy and the adversity resistance of T. harzianum in order to realize its function of biocontrol.
     We used the vector of pBI121,pCAMBIA1301 and clone vector of pUC18 to successfully construct express vector pCA-GChiⅤand pCA-GSod for filamentous fungi transformation mediated by Agrobacterium tumefaciens. Including the ChiⅤand Sod gene, hygromycin resistance gene as selected marker and CaMV35S promoter with section of T-DNA the vector pCA-GChiⅤand pCA-GSod could be used for genetic transformation of mycelial fungus. The construction of vector pCA-GChiⅤand pCA-GSod, suggests a stratergy for the enhancement of ChiⅤand Sod expression in T. harzianum and improvement of T. harzianum’environmental resistance. The best conditions of this system to transformate T. harzianum was got by analysis every transformation factors.Positive transformant was harvested by the selected method, southern blot analysis, RT-PCR and passage culturing.Antifungal activities of the ChiⅤand Sod transformants of T. harzianum was tested by means of dual culture with three kinds of plant pathogens. The ChiⅤtransformants of T. harzianum results showed that it improve the inhibition activity to these pathogens compared with original strain of T. harzianum. The SOD transformants of T. harzianum results showed that there was no obvious difference in inhibition activity to these pathogens between original strain of T. harzianum and its transformants obtained by A. tumefaciens. These results indicated that our transgenic operation didn’t influence its antifungal ability. Then stress experiment of wild T. harzianum and its transformant were tested in high temperature and salt conditions. The result indicated that transformant still suvived. Moreover, dual cultured with plant pathogens, the SOD transformant also keep the inhibition activity to these pathogens.however, wild T. harzianum could not live in high temperature and salt conditions.
     The ChiⅤgene expression in the T. harzianum obviously improved the ability to the inhibit the pathogens. The SOD gene in the T. harzianum improved the ability to the high temperature and salt.This established the foundation of the application for more fields.
     Based on the EST sequences of T. harzianum obtained by our laboratory, The cloned sod and hsp24 were inserted into prokaryotic expression vector, respectively, and the recombinant expression vectors were named pET-sod and pET-hsp24. Double enzymes digestion and sequencing were performed for confirming whether the expression vector constructed successfully. Genes of sod and hsp24 were expressed respectively in E. coli BL21 induced by IPTG, the protein bands of 15.7kD and 24kD were observed respectively by SDS-PAGE.The enzyme activity of SOD and survival to high temperature of hsp24 were tested. The result conformed to expectation, indicating that these genes have been expressed in E. coli, also suggesting that genes from T. harzianum could express well in E.coli. All these genes had registered in GenBank.
     Genes of sod and hsp24 from T. harzianum were respectively inserted into pYES2 vector, an expression vector of Saccharomyces cerevisiae with high efficiency promoter, and transformed them into the cells of S. cerevisiae INVSc1, generating transformants of sod and hsp24. Stress testing showed that S. cerevisiae cell transformed with sod and hsp24 both enhanced their tolerance to Na_2CO_3 and drought, indicating the two genes are involved in stress tolerance in T. harzianum.
     The cloning and functional studies of these genes has built a solid technical platform for cloning and study other genes from T. harzianum, and have a significant effect in further exploiting and application of important biocntrol genes in T. harzianum. In this study, genes involved in the functions of biocontrol and stress response have been cloned. The cloning of these genes will make an important role in investigating the biocontrol of T. harzianum under stress and exploiting its important enzymes genes, and is the beginning of studying the biocontrol mechanism of T. harzianum systemically and broadly. The chiⅤand sod gene was transformed into T. harzianum and well expressed in T. harzianum, which means that we have obtained a genetic engineering strain efficiently. This study enhanced the resistance of T. harzianum, ensured its excellent biocontriol function in various adverse conditions so as to widen the application area of T. harzianum.
引文
1 M.D. Adams, J.M. Kelley, J.D. Gocayne, et al. Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Science. 1991, 252:1651-1656
    2 D. Bhattramakki. An Integrated SSR and RELP Linkage Map of Sorghum Bicolor Moench. Genome. 2000, (43): 988-1002
    3 S. Brenner. The Human Genome: the Nature of the Enterprise. Ciba Found Symp.1990, (149): 6-12
    4 E. Birney. Mining the Draft Human Genome. Nature. 2001, (409): 827-828
    5 M. Mao, G. Fu. Identification of Genes Expressed in Human CD34(+) Hematopoietic Stem Cells by Expressed Sequence Tags and Efficient Full-length cDNA Cloning. Proc. Natl. Acad. Sci. 1998, (95): 8175-8180
    6 H. Zhang, Q. Yang. Expressed Sequence Tags-based Identification of genes in the Biocontrol agent Chaetomium cupreum.Appl Microbiol Biotechnol. 2007, 74(3): 650-8.
    7 P.G Liu, Q.Yang. Construction of Trichoderma harzianum cDNA library and analysis of partial EST sequences. Journal of Harbin Institute of Technology. 2005,37, 1503-1506
    8 Y. Elad, I. Chet, J. Katan. Trichoderma harzianum, a biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology. 1980, 70:119–121
    9 R. Weindling, H. Emerson. The isolation of toxic substance from the culture filtrates of Trichoderma. Phytopathology. 1936, 26:1068–1070
    10蔡芷荷,吴清平,许红立等.木霉和粘帚霉的生物防治研究进展.微生物学通报. 1998, 25(5): 284-286
    11 S. Haran, H. Schinckler, I. Chet. Molecular mechanism of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiol. 1996, 142:2312-2331
    12徐同,钟静萍.木霉对土传病原真菌的拮抗作用.植物病理学报. 1993, 23(1):63-67
    13 R.J. Cook, K.F. Baker. The nature and practice of biological control of plantpathogensM.St. Paul. Minn: The Am. Phytopathol. Soc. Press. 1983, 374–382
    14 Z. Na_ar, M. Kecsk_es. Factors influencing the competitive saprophytic ability of Trichoderma species. Microbiol. Res. 1998, 153:119–129
    15 J.A. Vizcaíno, L. Sanz, R.E. Cardoza, et al. Detection of putative peptide synthetase genes in Trichoderma species: Application of this method to the cloning of a gene from T. harzianum CECT 2413. FEMS Microbiology Letters. 2005, 244:139–148
    16赵蕾,张华英.木霉菌与种子生物处理.微生物学杂志. 1998, 18(3): 50-57
    17田连生,王伟华,石万龙等.利用木霉防治大棚草莓灰霉病.植物保护. 2000, 26(2):47-49
    18 H.T Yang, W.H Tang,R.Maarten , et al. Mode of action of oxysporum f.sp.Trichoderma spp.against Fusarium vasinfectum and Verticillium dahliae. Shangdong Science.2005, 18(3):9-15
    19 H.T Yang, W.H Tang, R.Maarten , et al. Efficacy of isolates and formulation of Trichoderma spp.against cotton fungal diseases.Shangdong Science.2005, 18(3):85-90
    20 J. H. Andrews. Biological Control in the Phyllosphere: Realistic or False Hope Can. J. Plant Pathol. 1990, 12:300-307
    21童蕴慧,纪兆林,徐敬友等.灰霉病生物防治研究进展.中国生物防治. 2003, 19(3):1131-135
    22 G.E. Haraman. Myths and dogmas of biocontrol—changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 2000, 84:377–931
    23 Y. Elad. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot. 2000, 19:709–714
    24 T. Benítez, J. Delgado-Jarana, A. Rincón, et al. Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. Rec. Res. Dev. Microbiol. 1998, 2:129–150
    25 L. Manczinger, Z. Antal, L. Kredics. Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiol. Immunnol. Hung. 2000,49:1–14
    26于新,田淑慧,徐文兴.木霉菌生防作用的生化机制研究进展.中山大学学报(自然科学版). 2005, 44(12):86-90
    27朱廷恒,邢小平,孙顺娣.木霉T97菌株对几种植物病原真菌的拮抗作用机制和温室防治试验.植物保护学报. 2004, 31(2):139-144
    28徐同.木霉分子生物学研究进展.真菌学报. 1996, 15(2):143-148
    29 H.D. Wells. Trichoderma as a biocontrol agent. A. Biocontrol of plant diseases. 1998, 1:71–82
    30 M.G. Mortuza, L.L. Ilag. Potential for Biocontrol of (Pat.) Griff. & Maubl. in Banana Fruits by Trichoderma Species. Biological Control. 1999, 15(3):235-240
    31 I. Jacob, M. Ana, C. Ilan. Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biology & Biochemistry. 1996, 28(6):757-763
    32 I. Yedidia, N. Benhamou, Y. Kapulnik, et al. Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry. 2000, 38(11):863-873
    33 A. Szekeres, L. Kredics, Z. Antal, et al. Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiology Letters. 2004, 233(2):215-222
    34 J. Kovach, R. Petzoldt, Harman, E. Gary, Use of Honey Bees and Bumble Bees to Disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis Control. Biological Control. 2000, 18(3):235-242
    35陈伯清,潘国庆,高慧等.木霉菌HT-03对草莓灰霉病防治的研究.江苏农业科学. 2004, 4:47–50
    36 Zheng zuoxing, K. Shetty, Effect of apple pomace-based Trichoderma inoculants on seedling vigour in pea (Pisum sativum) germinated in potting soil. Press Biochemistry. 1999, 34(6-7): 731 - 735
    37 L.E. Datnoff, S. Nemec, K. Pernezny. Biological Control of Fusarium Crown and Root Rot of Tomato in Florida Using Trichoderma harzianum and Glomus intraradices. Biological Control. 1995, 5(3):427-431
    38 R.D. Prasad, R. Rangeshwaran, S.V. Hegde, et al. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Protection. 1998,21(4):293-297
    39 L. Tsror, R. Barak, B. Sneh. Biological control of black scurf on potato underorganic management. Crop Protection. 2001, 20(2):145-150
    40 B.A. Latorre, E. Agosín, M.R. San, et al. Effectiveness of conidia of Trichoderma harzianum produced by liquid fermentation against Botrytis bunch rot of table grape in Chile. Crop Protection. 1997, 16(3):209-214
    41 Y. Elad. Biological control of grape grey mould by Trichoderma harzianum. Crop Protect. 1994, 13:35–38
    42 Y. Elad, M.L. Gullino, D. Shtienberg, et al. Managing Botrytis cinerea on tomatoes in greenhouses in the Mediterranean. Crop Protection. 1995, 14(2):105-109
    43 R. Thangayelu, A. Palaniswami, R. Velazhahan. Mass production of Trichoderma harzianum for managing fusarium wilt of banana. Agriculture Ecosystems&Environment. 2004, 103(1):259-263
    44 R. A. Muzzarelli. Human Enzymatic Activities Related to the Therapeutic Administration of Chitin Derivatives. Cell. Mol. Life Sci. 1997, 53: 131-140
    45 B. Davis. Chitin Chitosan and Crelated Enzymes, Orlando: Academic Press.1984, 161-179
    46 Ming Chung Chang, Pe Lin Lai, Mei Lin Wu. Biochemical characterization and site-directed mutational analysis of the double chitin-binding domain from chitinase 92 of Aeromonas hydrophila JP101. FEMS Microbiology Letter. 2004, 232: 61-66
    47 F. Hamel, R. Boivin, C. Temblay, et al. Structural and evolutionary relationships among chitinases of flowing plants. J Mol Evol. 1997, 44:614-624
    48冯俊丽,朱旭芬.微生物几丁质酶的分子生物学研究.浙江大学学报(农业与生命科学版). 2004,30(1): 102-108
    49 Y. Arakane, D. Koga. Purification and characterization of a novel chitinase isozyme from Yam Tuber. Bioscience Biotechnology Biochemistry. 1999, 63(11):1895– 1901
    50 S.L. Wang, W.T. Chang. Purification and characterization of two bifunctional chitinase / lysozymes extracellularly produced by Pseudomonas aeruginosa K2187 in a shrimp and shell powder medium. Applied Environmental Microbiology. 1997, 63 (2):380 -386
    51 T. Tanaka, S. Fujiwara, S. Nishiori, et al. A unique chitinase with dual activesites and triple substrate binding sites fromthe hyperthermophilic archaeon Pyrococcus kodakaroensis KOD1. Applied Environmental Microbiology. 1999, 65(12):5338– 5344
    52 B. Iseli, T. Boller, T.M. Neuhaus. The N-terminal cysteine-rich domain of tobacco classⅠchitinase is easential for chitin binding but not for catalytic or antifungal activity. Plant Physiol. 1993, 103:221-226
    53 H. Tsujibo, H. Orikoshi, H. Tanno, et al. Cloning, sequence, and exp ression of a chitinase gene from a marine bacterium A lterom onas sp. strain O 27. J Bacteriol. 1993, 175 (1):176-181
    54 Markus Hardt. A Roger Laine. Mutation of active site residues in the chitin-bingding domain ChBDChA1 from chitinase A1 of Bacillus circulans alters substrate specificity: use of a green fluorescent protein binding assay. ABB. 2004, 426: 286-297
    55 K. Brogile, I. Chet, M. Holliday, et al. Transgenic Plants with enhanced resistance to the fungal pathogen Rhizoctonia solani . Science. 1991, 254:1194-1197
    56 H. Shinshi. Regulation of a plant pathogenesis related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc. Natl. Acad. Sci. USA. 1997, 84:89-93
    57 Q. Zhu. Isolation and characterization of a rice gene encoding a basic chitinase. Mol. Gen. Genet. 1991, 226:289-296
    58于平.几丁质酶基因及其应用新进展.生物学杂志. 2004, 21(3):5-7
    59 M. Ficker, T. Wemmer, R. D. Thompson. A promoter directing high level expression in pistils of transgenic plants. Plant Mol Biol. 1997, 35:425-431
    60 L.M. Robert, K.P. Clemens, P. Kathrin. Expression two major genes of Trichoderma atroviride is triggered by different regulatory signals. Applied Environmental Microbiology. 1999, 65(5):1858 -1863
    61 S. Techkarnjanaruk, S. Pongpattanakitshote, A.E. Goodman. Use of a promoterless lacZ gene insertion to investigate chitinase gene expression in the marine bacterium Pseudoalteromonas sp. strain S9.Applied Environmental Microbiology. 1997, 63 (8):2989–2996
    62 C.J. Ulhoa, J.F. Peberdy. Regulation of Chitinase synthesis in Trichderma harzianum. Journal Germany Microbiology. 1991, 137:2163–2169
    63 K. Morimoto, S. Karita, T. Kimura, et al . Sequencing, expression and transcription analysis of the Clostridium paraputrificum chiA gene encoding chitinase chiA. Applied Microbiological Biotech-nology. 1999, 51:340– 347
    64 L.A. Rivas, V. Parro, M.M. Paz, et al. The Bacillus subtilis 168 csn gene encodes a chitosanase with similar properties to a Streptomyces enzyme. Microbiology. 2000, 146:2929–2936
    65 H. Schickler, S. Haran, A. Oppenheim, I. Chet. Innduction of the Trichoderma harzianum chitinolytic system is triggered by the chitin monomer,n-acetylglucosamine. Mycol. Res. 1998, 102 (10):1224-1226
    66 E. Margolles-clark, G. E. Harman and M. Penttila. Enhanced expression of endochitinase in Trichoderma harzianum with the cbhI promoter of Trichoderma reesei. Appl. Environ. Microbiol. 1996, 62:2152-2155
    67 Gabor Giczey, Zoltan Kerenyi, Geza. Dallmann, Laszlo Hornok, Homologous transformation of Trichoderma hamatum with an endochitinase encoding gene, resulting in increased levels of chitinase activity. FEMS Microbiology Letters. 1998, 165: 247-252
    68 M. Lorito, R.L. Mach, P. Sposato, et al. Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harziznum. Proc Natl Acad USA.1996, 93: 14868-14872
    69 M. Carmen limon, Emilio Margolles-Clark Tahia Benitez, Merja Penttila. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiology Letters. 2001, 198: 57-63
    70 M. Carmen Limon, J. M. Lora, J. Dela Cruz, A. Llobell. Primery structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus T .harzianum. Curr. Genet. 1995, 28: 478- 483
    71 De La Cruz, A Hidalgo, J. M. Lora, et al. Isolation and characterization of three chitinases from Trichoderma harzianum. Eur. J. Biochem. 1992, 206: 859-867
    72孙胜利,喻子牛,贾新成.微生物产几丁质酶的研究和应用进展.微生物学杂志. 2002, 22(5):47-50
    73 Z.K. Punja, S.H.T. Raharjo. Response of transgenic cucumber and carrotplants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Diseases. 1996, 80:999–1005
    74 R. Grison, B. Grezes, M. Schneider, et al. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology. 1996, 14:643–646
    75 Y. Takatsu, Y. Nishizaw, T. Hibi and K. Akutsu. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea ). Scientia Horticulturae. 1999, 82(1-2):113– 123
    76 K. Kishimoto, Y. Nishizaw, Y. Tabei, et al. Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Science. 2002 , 162 (5) : 655– 662
    77 J.M. Neuhaus, P. AhlGoy, U. Hinz, et al. High2level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol. Biol. 1991, 16:141– 151
    78 Q. Zhu, E.A. Maher, S. Masoud, et al. Enhanced protection against fungal attack by constitutive coexpression of chitinase and glucanase genes in transgenic tobacco. Bio. Technology. 1994, 12: 807-812
    79蓝海燕,田颖川,王长海等.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报. 2000, 27(1):70–77
    80 E. Jongedijk, H. Tigelaar, et al. Synergistic activity of chitinases and beta-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica. 1995, 85:173–180
    81许明辉,唐祚舜,谭亚玲等.几丁质酶葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性研究.遗传学报. 2003, 30(4):330–334
    82陈淮扬,刘望荑.从SOD的分布与结构看其分子进化.生物化学与生物物理进展.1996,23(5):408-412
    83王爱国,罗广华,邵从本等.植物的氧化代谢及活性氧对细胞的伤害.中国科学院华南植物研究所集刊:华南理工大学出版社,1989.11-22
    84 J.M.Mc Cord and Fridovich.Superoxide diamutase.J,Boil chem.1969,224:6069-6055
    85 J.M.Mc Cord and Fridovich.Superoxide diamutase:an enzymic function forerthrocuprein (hemocuprein) J.Boil chem.1969,193:353-358
    86 Oberley.L.W .Superoxid Dismutase,CRC Press,F1orida:1965
    87 Hendriekson.W .A.Lamy.J.Invertebrate Oxygen-Binding Proteins:Structure,Active Site and Function,1981
    88陆珍,周迎会,邹玉珍等.蔬菜SOD活性比较及其某些性质研究.南京师范大学学报(自然科学版),1991,14(2):110-116
    89吴宝轩,格林托德.小麦幼苗中SOD活性与幼苗脱水忍耐力相关性的研究.植物学报,1985,27(2):152-160
    90 Shimazaki K.et a1.Plant Cell Ph.1980,21:1193-1196
    91吴国荣,魏锦城,程光宇等.植物药SOD活性与某些性质研究.南京师范大学学报(自然科学版),1991,14(2):97-101
    92刘学军,苗以农,许守民等.大豆中过氧化物酶和SOD活性的初步研究.东北师范大学学报(自然科学版),1991,14(4):65-71
    93魏锦城,吴鼎福,王成毅等.高光强对核酮糖二磷酸羧化酶/加氧酶与SOD的影响.南京师范大学学报(自然科学版),1991,14(2):102-109
    94牛淑敏,洪伟,刘方等.大鼠CuZn-SODcDNA的克隆及高效表达.南开大学学报.2001,3(5):69-73
    95耶兴元,马锋旺.植物热激蛋白研究进展.H西北农业学报H.2004, 13(2): 109-114
    96钟文英,普雄明.热休克蛋白的分子生物学研究进展.医学综述.2005,11(2):148-150
    97张杰.热休克蛋白及其生物学功能文献综述.国外医学.外科册.2003, 5(3): 265-268
    98 Zhang W. The regulation of heat shock gene transcription: HSF structure and function J .Third Med Mil Siniga. 2000, 22(6): 37-43
    99 C.S, Z.H. Xin,J.Y. Yuan.Advance in Research on Biological Function and Transcriptional Control of Heat Shock Proteins. Developmental& Reproductive Biology.2002, 11 (2): 88-94
    100 McGarry TJ, Lindquist S. The preferential translation of Drosophila HSP70 mRNA requires sequences in the untranslated leader. J Cell.1986, 42(17): 903-910.
    101 Riesmeier, J.W. et al. Potato Sucrose Transporter Expression in Minor Veins Indicates a Role in Phloem Loading. Plant Cell. 1993, 5:1591-1598
    102吕裕强,贺涵贞,张国高等.热应激蛋白功能研究.铁道劳动安全卫生与环保.1996, 23(4): 252-256
    103郭尚敬,陈娜,孟庆伟.叶绿体小分子量热激蛋白介绍.植物学通报.2005, 22 (2): 223-230
    104宋松泉, KennethM.Fredlund,IanM.Mller.高温加速老化过程中甜菜种子线粒体小分子量热激蛋白22的变化(英文).植物生理学报.2001, 27(1): 73-80
    105王枫,赵法仍,郭俊生等.HSP70高表达对K562细胞热耐力的影响.中国公共卫生学报.1999, 18(5): 287-289
    106朱世江,季作梁.热激蛋白与园艺植物的耐冷性.园艺学报. 2002, 29 (增刊): 607-612
    107郎印海,聂俊华,曹正梅.逆境胁迫下作物基因表达更替的研究进展.生物技术通报.1999, 2: 9-12
    108舒卫国,陈受宜.植物在渗透胁迫下的基因表达及信号传递.生物工程进展.2000,20: 33-37
    109 109Y. Sugiyama, A. Suzuki, M. Kishikawa, et al. Muscle Develops a Specific Form of Small Heat Shock Protein Complex Composed of MKBP/hspB 2 and hspB3during Myogenic Differentiation. J BioChem. 2000, 275(2):1095-1104
    110 N. Lentze, S. Studer and F. Narberhaus. Structural and Functional Defects Caused by Point Mutations in the Alpha-Crystallin Domain of a Bacterial Alpha-Heat Shock Protein. J Mol Biol. 2003, 328(4):927-937
    111 X. Fu, Z. Chang. Temperature-dependent Subunit Exchange and Chaperone-like Activities of Hsp16.3, a Small Heat Shock Protein from Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2004, 316(2):291-299
    112 Y. Iimura, K. Tatsumi. Structure of Genes for Hsp30 from the White-rot Fungus Coriolus versicolor and the Increase of Their Expression by Heat Shock and Exposure to a Hazardous Chemical. Biosci Biotechnol Biochem. 2002,66(7):1567-1570
    113 C. Riou, J. M. Nicaud, P. Barre, et al. Stationary-phase Gene Expression in Saccharomyces cerevisiae during Wine Fermentation. Yeast. 1997, 13(10): 903-915
    114 I. J. Seymour, P. W. Piper. Stress Induction of hsp30, the Plasma MembraneHeat Shock Protein Gene of Saccharomyces cerevisiae, Appears not to Use Known Stress-regulated Transcription Factors. Microbiology. 1999, 145 (1):231-239
    115 M. A. Lopez-Matas, P. Nunez, A. Soto, et al. Protein Cryoprotective Activity of a Cytosolic Small Heat Shock Protein That Accumulates Constitutively in Chestnut Stems and Is Up-Regulated by Low and High Temperatures. Plant Physiol. 2004,134(4):1708-1717
    116 G. Klein, E. Laskowska, A. Taylor, et al. IbpA/B Small Heat-shock Protein of Marine Bacterium Vibrio harveyi Binds to Proteins Aggregated in a Cell During Heat Shock. Mar Biotechnol (NY). 2001, 3(4):346-354
    117 R. Gu, S. Fonseca, L. G. Puskas, et al. Transcript Identification and Profiling during Salt Stress and Recovery of Populus euphratica. Tree Physiol. 2004, 24(3):265-276
    118 F. Xinmiao, C. Zengyi. Identification of a Highly Conserved Pro-Gly Doublet in Non-animal Small Heat Shock Proteins and Characterization of Its Structural and Functional Roles in Mycobacterium tuberculosis Hsp16.3, Biochemistry. 2006, 71 : 83-90.
    119 N. J. Misshra E. L. Tatum. Proceedings of the National Academy of Sciences. 2004, 87:2175.
    120 P. J. Punt. Gene transfer system and vector development for filamentous fungi. Applied Molecular Genetics of Fungi. Cambridge Univ. Press. 2003, Cambridge, UK, 4-29.
    121 M. Lorito, C. K. Hayes, G. E. Harman. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 2004, 44: 239-276.
    122 A. Radfor, S. Pope, A. Sazci, et al. Liposome mediated genetic transformation of Neurospora crassa. Mol. Gene. Genet, 2001, 164:647-689.
    123 S. Kruszewslca Joama. Heterologous expression of genes in filamentous fungi. Acta Biochimica Polonica. 1999, 46(1):181-195.
    124 M. J. A. de Groot, P. Bundock, P. J. J. Hooykaas, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol, 2003, 16:839-842.
    125 R. J. Gouka, C. Gerk, P. J. J. Hooykaas, et al. Transformation of Aspergillusawamori by Agrobacterium tumefaciens-mediated homologous recombination. Nature Biotechnology, 1999, 17:598-601.
    126 S. F. Covert, P. Kapoor, M. Lee, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol. Res., 2001, 105(3):259-264.
    127李卫,郭光沁,郑国昌.根癌农杆菌介导的遗传转化研究的若干新进展.科学通报, 2000, 45(8):798-807.
    128闫培生,罗信昌,周启.丝状真菌基因工程研究进展.生物工程进展. 2001, 19(1):36-41.
    129郭丽红,陈善娜,龚明.根癌农杆菌法转化烟草的条件探索.云南大学学报(自然科学版). 2003, 25(2): 148-152.
    130吴迪,周长梅,朱延明.酚类物质对葡萄遗传转化效率的影响.园艺学报. 2003, 30(1): 77-78.
    131尹鸿瑛,安韩冰,安利佳.影响根癌农杆菌介导水稻转化的因素分析.植物研究. 2001, 21(3): 441-448.
    132王革,方敦煌,李天飞等.木霉拮抗烟草赤星病菌菌株的筛选及拮抗机制.烟草科技. 2000, 3: 45-47.
    133王革,李梅云,段玉琪等.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究.云南大学学报(自然科学版). 2001, 23(3): 222-226.
    134高培基,曲音波,段永城等.纤维毛壳菌玉米及发酵饲料的系统独立分析和营养价值测定.山东大学学报(自然科学版). 1999,34(3):326-331.
    135邢来君,李明春.普通真菌学.北京:高等教育出版社. 1999,346-347.
    136郭润芳,史宝胜,高宝嘉等.木霉菌在植物生物防治中的应用.河北林果研究. 2001, 16(3): 294-298.
    137 H.S.Rho,S.Kang,Y.H.Lee.Agrobacteriumtumefaciens-mediatedtransformation of the plant pathogenic fungus Magnaporthe grisea. Mol. Cells. 2001, 12(3): 407-411.
    138涂玉琴.生物农药的研究和应用进展.江西植保. 1998,(4):32-35.
    139徐同.木霉分子生物学研究进展.真菌学报. 1996,15(2):143-148.
    140 J. S. Ahmad, R. Baker. Rhizosphere competence of Trichoderma harzianum. Phytopathology. 2005, 77:182-189.
    141 K. J. Fullner, J. C. Lara, E. W. Nester. Pilus assembly by Agrobacterium T-DNA transfer genes. Science. 1996, 273:1107-1109.
    142方卫国,张永军,杨星勇.根癌农杆菌介导真菌遗传转化的研究进展.中国生物工程杂志. 2002, 22(5): 40-44.
    143王政逸,李德葆.限制酶介导的插入突变及其在丝状真菌中的应用.菌物系统. 2001, 20(1): 142-147.
    144吴冠英,潘华珍.生物化学与分子生物学实验常用数据手册.北京:科学出版社. 2002:127-129.
    145李建武,余瑞元,袁明秀等.生物化学实验原理和方法.北京:北京大学出版社. 1994:279-283.
    146杨建雄.生物化学与分子生物学实验技术教程.北京:科学出版社. 2002:227-228.
    147 J.萨姆布鲁克, D. W.拉赛尔.分子克隆实验指南(第三版).北京:科学出版社, 2002: 492-499.
    148刘进元.分子生物学实验指导.北京:清华大学出版社. 2002, 11: 128-134.
    149纪晓东.从双元质粒系统农杆菌中制备微型质粒.丹东师专学报. 1997, 19(3): 56-58
    150李东栋,石玮,邓秀新等.不同根癌农杆菌菌株对柑橘愈伤组织遗传转化效率的影响.华中农业大学学报. 2002, 21(4): 379-381.
    151张旭东,刘云龙,张中义.木霉生防菌对植物生长的影响.云南农业大学学报. 2001, 16(4): 299-304.
    152马炳田,文成敬.几种核盘菌菌核重寄生真菌生物防治潜能的研究.中国农学通报. 2002, 18(6): 58-63.
    153田连生,王伟华,石万龙等.木霉对尖镰孢菌的拮抗机制及生防效果研究.植物保护. 2001, 27(4): 47-48.
    154郭丽红,陈善娜,龚明.根癌农杆菌法转化烟草的条件探索.云南大学学报(自然科学版), 2003, 25(2): 148-152
    155高兴喜,杨谦,郭兆奎等.影响根癌农杆菌介导的哈茨木霉菌遗传转化因素分析.微生物学通报, 2005, 32(1), 74-78
    156孙胜利,喻子牛.微生物几丁质酶的研究和应用进展.生物技术. 2001,11(5):47-50
    157韩放,李景鹏.植物几丁质酶的研究进展.生物技术. 2001,11(5):25-28
    158冯波.微生物几丁酶的研究概况.天津师大学报. 1998,18(3):50-55
    159欧阳石文,谢丙炎.转几丁质酶基因研究进展.生物技术通讯. 2001,(3):28-31
    160 Cirano, F. John. Purification and Some Properties of the ExtracellularChitinase Produced by Trichoderma harzianum. Enzyme Microb.Technol. 1992, (14): 236-240
    161 F. Trail, J. R. Xu, P. S. Miguel. Analysis of Expressed Sequence Tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology. 2003, (38): 187–197
    162 D. Utob, P. Hraber, B. Sobral. Comparative Analysis of Expressed Sequences in Phytophthora sojae. Plant Physiol. 2000, (123): 243– 253
    163 D. Manjula, H. Isabelle, C. Lee. Full-length cDNAs: More Than just Reaching the Ends. Physiol Genomics 2001, (6): 57-80
    164 W. M. Schmidt, M. W. Mueller. CapSelect: a Highly Sensitive Method for 59 CAP-dependent Enrichment of Full-length cDNA in PCR-mediated Analysis of mRNAs. Nucleic Acids Res, 1999, (27): e31
    165 S. M. Wang, S. Fears, L. Zhang, J. D. Rowley. Screening Poly(dA/dT)-cDNAs for Gene Identification. Proc. Natl. Acad. Sci. USA, 2000, (97): 4162–4167
    166 M. D. Ospina-Giraldo, P. D. Collopy, C. P. Romaine. Classification of Sequences Expressed during the Primordial and Basidiome Stages of the Cultivated Mushroom Agaricus bisporus. Fung. Genet. Biol. 2000, (29): 81–94
    167秦玉静,刘世利,鲍晓明等.高效的酵母完整细胞转化法.生物技术. 1997,7(3): 37-38
    168 R. H. Schiestl, R. D. Gietz. High Efficiency Transformation of Intact Cells Using Single Stranded Nucleic Acids as a Carrier. Curr. Genet. 1989, 16(5-6): 339-346
    169胡又佳,高枫,朱春宝等. PEG/LiAc转化酵母细胞方法的改进.生物技术. 1998,8(5): 22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700