超高压对大豆脂肪氧合酶、营养抑制因子和蛋白性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来超高压食品加工技术飞速发展并逐渐步入产业化。但是,和其他的新技术一样,超高压技术的产业化突破必须通过建立一个评价其对食品安全、质量方面影响的科学基础来实现,这样的定量评价无论是对满足立法安全需要还是对满足目前消费者的食品质量需求都是必不可少的。大豆富含丰富的蛋白质和合理的氨基酸组成,是国际上公认的一种全营养食品。大豆蛋白具有重要的营养价值和理化及功能特性(如凝胶性、乳化性、起泡性等),所以被作为一种具有加工功能性的食品添加用中间原料而广泛应用于食品行业。但大豆中含有多种酶类和一些抗营养因子,传统的热处理技术虽然能有效杀死致病微生物和钝化酶类,但是同样会导致一些不良的化学变化从而影响产品的品质。本研究的目的是利用新型超高压加工技术处理豆浆及大豆分离蛋白溶液,初步探讨超高压处理对豆浆品质、大豆脂肪氧合酶失活、营养抑制因子失活、大豆分离蛋白理化及功能性质的影响,为超高压加工技术在大豆制品加工中的应用、大豆蛋白的改性以及食品安全提供理论参考。
     以豆浆和脂肪氧合酶粗提液为对象,研究了大豆脂肪氧合酶的超高压失活动力学。结果表明,大豆脂肪氧合酶的超高压失活是不可逆的并且符合一阶反应动力学规律;在某一恒定的温度下,脂肪氧合酶的失活速率常数k随着超高压处理压力的增加而增大,表明增加压力可以加快脂肪氧合酶失活;在某一恒定的压力下,脂肪氧合酶的失活速率常数在10-20℃出现最小值,表明Arrhenius方程不能适用于整个温度区间;在中温区域(20℃≤T≤60℃),温度对脂肪氧合酶失活速率常数的影响随着压力的增加而降低;而脂肪氧合酶失活速率常数对压力的敏感性大约在30℃最大。豆浆体系中脂肪氧合酶的失活速率常数要比粗酶提取液中小,但是从动力学角度来看,体系的不同并没有影响到脂肪氧合酶超高压失活的反应级数以及失活速率常数的温度敏感性和压力敏感性。
     在此基础上,采用两种完全不同的数学模型来描述压力与温度对脂肪氧合酶超高压失活速率常数的影响。结果表明,不管以Eyring方程为起点建立的经验数学模型还是以Hawley提出的热力学方程为基础建立的热动力学数学模型,都能够成功地模拟两个体系中压力与温度对大豆脂肪氧合酶超高压失活速率常数的影响,但热动力学模型要比经验数学模型更加精确。
     以豆浆作为研究对象,研究并优化了大豆营养抑制因子的超高压失活条件。同样的超高压处理条件下,尿素酶发生失活的温度(室温)低于胰蛋白酶抑制剂(≥40℃),温度升高、压力增大和时间延长有利于营养抑制因子的失活。中心组合旋转设计优化显示,在所考察的因素中,对尿素酶和胰蛋白酶抑制剂超高压失活的影响程度从大到小的排序为压力、时间、温度;理想的大豆营养抑制因子的超高压失活条件为压力750MPa、温度60℃、时间5min。
     两种不同pH缓冲溶液体系中超高压处理对大豆分离蛋白理化及功能性质的研究发现,pH3.0的Gly-HCl缓冲溶液中超高压处理提高大豆分离蛋白溶解度的程度显著大于pH8.0的Tris-HCl缓冲溶液。游离巯基含量和蛋白质表面疏水性的测定结果表明,压力处理很可能导致了蛋白质结构的展开、内部疏水基团的暴露以及新的二硫键的形成。超高压处理前后大豆分离蛋白的体积排阻高效液相、动态光散射技术和凝胶电泳分析发现,在pH3.0的Gly-HCl缓冲溶液中超高压处理使大豆分离蛋白(包括不溶部分)发生结构重组,形成可溶性大分子聚集体;在pH8.0的Tris-HCl缓冲溶液中超高压处理可能造成了可溶性大分子聚集体的解聚。这些现象说明,由于在不同pH缓冲溶液中大豆分离蛋白的存在形式不同,可能造成了其在超高压处理过程中产生不同的结构变化。超高压处理可以改善大豆分离蛋白的乳化性能和起泡性能,这种改善作用在pH3.0Gly-HCl缓冲溶液中得到显著体现,这是因为超高压处理不但显著提高了酸性条件下大豆分离蛋白的溶解度,而且还使其表面疏水性得到显著的提高。超高压能够诱导一定浓度的大豆分离蛋白溶液形成凝胶。与处理时间以及温度相比,压力的变化对凝胶质构性质的影响最大。凝胶的硬度随着压力的增加、温度的升高以及处理时间的延长而增大。12%大豆分离蛋白溶液在20℃、700MPa条件下处理15min后所形成的凝胶,其硬度已经超过了常压下85℃热处理20min后形成的热凝胶的硬度值。
     未处理、热处理和超高压处理豆浆的理化、风味、色泽和流变等性质比较表明,超高压处理和热处理不影响豆浆的pH值和电导率;热处理提高了豆浆的表观粘度,这是豆浆中蛋白质的热聚集效应造成的;热处理和超高压处理对豆浆色泽影响较小;超高压处理降低豆浆中已生成挥发性风味成分的效果甚微,打浆前的超高压处理可有效降低豆腥味;超高压处理和热处理不影响豆浆中蛋白质的氨基酸组成;热处理和超高压处理减小豆浆的流态特性指数,流变特性趋向假塑性流体;热处理后豆浆样品的稠度系数显著提高,说明热处理显著增加豆浆的表观粘度。总之,热处理对豆浆样品流变特性的影响远大于超高压处理,这可能是由于热处理导致豆浆中蛋白质展开、变性和聚集的程度远大于超高压处理。
Over the last twenty years, high pressure technology has developed rapidly and its applications in food processing are gradually stepping into industrialization. But, the industrial breakthrough of high pressure technology in food processing, like that of other novel technologies, can only be forced by the establishment of a scientific basis to assess its impact on food safety and quality aspects. Such quantitative assessment is indispensable to fulfill legislative food safety requirements as well as to respond to the consumers’increasing demand for high quality food. Soybean is generally acknowledged as full-nutrient food because of its abounding proteins and rational amino acids composition. And soybean protein is widely used as functional food ingredient or food additive because of its good nutritional values and excellent functional properties, such as gelatin, emulsification, foamability etc. Besides its favorable features, soybean is known to contain some adverse enzymes and nutritional inhibitors. Traditional heat treatment could effectively inactivate these enzymes and destroy microorganisms. However, it would simultaneously cause some adverse chemical changes which could affect the final quality of products. The purpose of this study is to investigate the effects of high pressure treatment on the quality of soymilk, the lipoxygenase and nutritional inhibitors in soybean, and also the physicochemical properties of soybean protein isolates, thus provide some theoretical references for the application and safety assessment of high pressure treatment in soybean products processing, and possible modification of soybean proteins by high pressure treatment.
     The high pressure inactivation of lipoxygenase in soy milk and crude soybean extract was studied in the pressure range 200-650 MPa with temperature varying from 5 to 60℃. And the results suggest that, for both systems, the isobaric-isothermal inactivation of lipoxygenase was irreversible and followed a first-order reaction at all pressure-temperature combinations tested. In the entire pressure-temperature area studied, the lipoxygenase inactivation rate constants increased with increasing pressure at constant temperature for both systems, indicating an acceleration of the lipoxygenase inactivation by increasing pressure. At constant elevated pressure, lipoxygenase exhibited the greatest stability around 10-20℃in both systems, indicating the Arrhenius equation not to be valid over the entire temperature range. For both systems, the temperature dependence of the lipoxygenase inactivation rate constants in mild temperature area (20℃≤T≤60℃) decreased with increasing pressure, while the highest sensitivity of the lipoxygenase inactivation rate constants to pressure was observed at about 30℃. The lipoxygenase inactivation rate constants in soy milk system were somewhat smaller than those in crude soybean extract, but on a kinetic basis, neither the reaction order of inactivation nor the pressure and temperature sensitivities of the inactivation rate constants were influenced by the different levels of food complexity between the two systems.
     Based on thoroughly studies of the kinetics for high pressure inactivation of lipoxygenase, two absolutely different mathematical models were used to describe the combined pressure-temperature dependence of the high pressure inactivation rate constants for lipoxygenase in both systems. Results showed that the pressure-temperature dependence of the high pressure inactivation rate constants for lipoxygenase in both systems could be described by either the thermodynamic kinetic model which built on the basis of the thermodynamic equation proposed by Hawley or the empirical mathematical model which used the Eyring equation as a starting point. By comparison, the former could do more accurately than the latter.
     The high pressure inactivation of nutritional inhibitors in soy milk was studied and the inactivation conditions were optimized. Results showed that the high pressure inactivation of urease in soy milk could occur at room temperature, while high pressure inactivation of trypsin inhibitors was possible only trough combination with elevated temperature (T≥40℃). The inactivation could be speeded up by increasing any one of the three influencing factors (pressure, temperature and processing time). For both urease and trypsin inhibitors inactivation, the three process parameters were optimized by using central composite rotatable design and response surface methodology. Results showed that pressure is the uppermost influencing factor, while temperature is the most minor factor. The ideal high pressure inactivation conditions of nutritional inhibitors in soy milk were as follows: pressure, 750 MPa; temperature, 60℃and processing time, 5 min.
     Effects of high pressure treatment on physicochemical and functional properties of soybean protein isolates (SPI) in two different buffers were studied. Results showed that the increase of SPI’s solubility in pH3.0 Gly-HCl buffer induced by high pressure treatment was more remarkable than that in pH8.0 Tris-HCl buffer. Analysis of free sulfhydryl group and surface hydrophobicity of SPI showed that high pressure treatment produced a molecular unfolding of the protein with the exposure of the hydrophobic groups to the medium and thus formed new S-S bonds through SH/S-S interchange reactions. Aggregation of SPI after high pressure treatment was investigated by size exclusion chromatography, laser light scattering analysis and SDS-PAGE. High pressure treatment could induce structural reorganization of SPI in pH3.0 Gly-HCl buffer with the formation of soluble high molecular aggregates, whereas in pH8.0 Tris-HCl buffer high pressure might produce disaggregation of the protein aggregates. These phenomena demonstrated that the different existing forms of SPI in different buffers might result in the different structural changes of SPI under high pressure treatment. High pressure treatment could improve the emulsifying and foaming properties of SPI and this improvement was much remarkable in pH3.0 Gly-HCl buffer because of the significant increase of SPI’s solubility and surface hydrophobicity. High pressure could induce the dispersions of SPI with a certain concentration to form a gel. Compared with temperature and processing time, pressure is the uppermost influencing factor of high pressure treatment on textural properties of the gel. The hardness of the gel is increasing when elevate the pressure, temperature and prolong the processing time. The hardness of pressure-induced gel of SPI (12% protein concentration), treated under 700MPa and 20℃for 15 minutes, was greater than that of heat-induced gel of SPI with the same protein concentration, treated under ambient pressure and 85℃for 20 minutes.
     Comparing the physicochemical properties, color, flavor and rheological properties of the untreated, heat treated and high pressure treated soy milk, it was shown that high pressure treatment and heat treatment did not affect the pH and electric conductivity of the soy milk; the apparent viscosity of the soy milk was increased by the heat treatment, which might because of the thermo-aggregation effect of the soybean protein; heat treatment and high pressure treatment had little effect on the color of the soy milk; high pressure treatment had little effect on reducing the existed volatile flavor compounds; however, the beany flavor of the soy milk were much decreased when high pressure treatment were done before the refining process; high pressure treatment and heat treatment had no effect on the protein based amino acid composition of the soy milk; high pressure treatment and heat treatment reduced the flow behavior index of soy milk, and the flow behavior tended to be the pseudo-plastic fluid; the consistency factor of the soy milk was dramatically increased after heat treatment, which indicated that heat treatment could elevate the apparent viscosity of the soy milk. In summary, heat treatment had greater impact on the rheological property of the soy milk than high pressure treatment, which might because of the soybean protein folded, denatured and aggregated to a far greater extent under heat treatment than high pressure treatment.
引文
1. Bridgman PW. The rheological properties of matter under high pressure[J]. Journal of Colloid Science, 1947, 2(1): 7-16.
    2. Bridgman PW. General survey of the effects of pressure on the properties of matter[J]. Journal of the Franklin Institute, 1931, 211(3): 398-404.
    3. Bridgman PW. Certain aspects of high-pressure research[J]. Journal of the Franklin Institute, 1925, 200(2): 147-160.
    4. Bridgman PW. High pressures and five kinds of ice[J]. Journal of the Franklin Institute, 1914, 177(3): 315-332.
    5. Bridgman PW and Conant J. Irreversible Transformations of Organic Compounds under High Pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1929, 15: 680-683.
    6.高福成.现代食品工程高新技术[M].北京:中国轻工业出版社, 1997.
    7. Royer H. Archives de Physiologie Normale et Pathologique, 1895, 7: 12.
    8. Hite BH. The effect of pressure in the preservation of milk[J]. Bulletin of West Virginia University Agricultural Experiment Station, 1899, 58: 15-35.
    9. Hite BH, Giddings N and Weakly CE. The effects of pressure on certain microorganisms encountered in the preservation of fruits and vegetables[J]. Bulletin of West Virginia University Agricultural Experiment Station, 1914, 146: 1-67.
    10. Bridgman PW. The coagulation of albumen by pressure[J]. Journal of Biological Chemistry, 1914, 19: 511-512.
    11.吴晓梅,孙志栋,陈惠云.食品超高压技术的发展及应用前景[J].中国农村小康科技, 2006, 1: 50-52.
    12.励建荣,傅月华,顾振宇,等.高压催陈黄酒的研究[J].食品与发酵工业, 1999, 25: 36-38.
    13.叶怀义,徐倩,李艳华.超高压对过氧化物酶的影响[J].食品科学, 1995, 16: 29-31.
    14.叶怀义,王禾,王金凤,等.微生物耐压性及酸性食品(果酱等)常温超高压杀菌工艺[J].食品科学, 1996, 17: 30-34.
    15. Mozhaev VV, Heremans K, Frank J, et al. Exploiting the effects of high hydrostatic pressure in biotechnological applications[J]. Trends in Biotechnology, 1994, 12(12): 493-501.
    16. Cheftel JC. Effects of high hydrostatic pressure on food constituents: an overview[J]. High pressure and biotechnology [M], 1992, p:195-209.
    17. Hui Bon Hoa G, McLean MA and Sligar SG. High pressure, a tool for exploring heme protein active sites[J]. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2002, 1595(1): 297-308.
    18. Knorr D. Effects of high hydrostatic pressure processes on food safety and quality[J]. Food Technology, 1993, 47: 156-161.
    19. Mertens B. Hydrostatic pressure treatment of food: equipment and processing[M]. Blackie, London, 1994.
    20.励建荣,夏道宗.超高压技术在食品工业中的应用[J].食品工业科技, 2002, 23: 79-81.
    21.杨巧绒,陈迎春.高压设备及其在食品加工中的应用[J].江苏理工大学学报, 1999, 20: 13-17.
    22. Hoover DG. Pressure effects on biological systems[J]. Food Technology, 1993, 47: 150-155.
    23. Hoover DG, Metrick C, Papineau AM, et al. Biological effects of high hydrostatic pressure on food microorganisms[J]. Food Technology, 1989, 3: 99-107.
    24.励建荣,夏道宗.食品超高压杀菌技术[J].广州食品工业科技, 2002, 18: 45-47.
    25. Maggi A, Cassara A, Rovere P, et al. Use of high pressure for inactivation of butyric clostridia in tomato serum[J]. Industria Conserve, 1995, 70: 289-293.
    26.池元斌,马小凡,崔田,等.静水压对牛奶中细菌生长繁殖的影响[J].高压物理学报, 1995, 3: 224-227.
    27. Calik H, Morrissey MT, Reno PW, et al. Effect of high-pressure processing on Vibrio parahaemolyticus strains in pure culture and Pacific oysters[J]. Journal of Food Science, 2002, 67: 1506-1510.
    28. Carlez A, Rosec J-P, Richard N, et al. High Pressure Inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in Inoculated Minced Beef Muscle[J]. Lebensmittel-Wissenschaft und-Technologie, 1993, 26(4): 357-363.
    29. Horie Y, Kimura K and Hori K. Development of a new fruit processing method by high hydrostatic pressure[J]. Nippon Nogeikagaku Kaishi, Journal of the Agricultural Chemistry Society of Japan, 1991, 65: 1469-1474.
    30. Ludwig H, vanAlmsick G and Sojka B. High pressure inactivation of microorganisms. High PressureBioscience and Biotechnology, Progress in Biotechnology 13, Elsevier Science B. V., Amsterdam, The Netherlands, 1996, p: 237-244.
    31. Aleman GD, Walker M, Farkas DF, et al. Pulsed Ultra High Pressure Treatments for Pasteurization of Pineapple Juice[J]. Journal of Food Science, 1996, 61(2): 388-390.
    32. Hayakawa I, Kanno T, Yoshiyama K, et al. Oscillatory Compared with Continuous High Pressure Sterilization on Bacillus stearothermophilus Spores[J]. Journal of Food Science, 1994, 59(1): 164-167.
    33.励建荣,蒋家羚.高压技术在食品工业中的应用研究[J].食品与发酵工业, 1997, 23: 9-15.
    34. Kajiyama N, Akizumi K, Abei K, et al. Sterilization of Escherichia coli by high pressure[J]. Journal of Japanese Society of Food Science & Technology, Nippon Shokuhin Kogyo Gakkaishi, 1993, 40: 406-413.
    35. Neuman R, Kauzmann W and Zipp A. Pressure dependence of weak acid ionization in aqueous buffers[J]. J Phys Chem, 1973, 77: 2687-2691.
    36. Gola S, Maggi A, Rovere P, et al. Microbial inactivation in apricot nectar and model systems by high-pressure treatment[J]. Industria Conserve, 1994, 69: 194-198.
    37. Roberts CM and Hoover DG. Tolerance of Bacillus coagulans 7050 spores to combinations of high hydrostatic pressure, heat, acidity, and nisin[J]. IFT annual meeting, 1995.
    38. Takahashi K, Ishii H and Ishikawa H. Sterilization of bacteria and yeast by hydrostatic pressurization at low temperature: effect of temperature, pH, and the concentration of proteins, carbohydrates, and lipids. Sanei, Kyoto, 1993.
    39.李汴生.超高压处理蛋白质和多糖胶体特性的变化及其机理研究. 1997,华南理工大学博士学位论文.
    40. Pandya Y, Jewett FF and Hoover DG. Concurrent effects of high hydrostatic pressure, acidity and heat on the destruction and injury of yeasts[J]. Journal of Food Protection, 1995, 58: 301-304.
    41. Oxen P and Knorr D. Baroprotective effects of high solute concentrations against inactivation of Rhodotorula rubra[J]. Lebensmittel-Wissenschaft und -Technologie, 1993, 26: 220-223.
    42. Palou E, Lopez-Malo A, Barbosa-Canovas GV, et al. Kinetic Analysis of Zygosaccharomyces bailiiInactivation by High Hydrostatic Pressure[J]. Lebensmittel-Wissenschaft und-Technologie, 1997, 30(7): 703-708.
    43. Hashizume C, Kimura K and Hayashi R. Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures[J]. Bioscience, Biotechnology, & Biochemistry, 1995, 59: 1455-1458.
    44. Simpson RK and Gilmour A. The effect of high hydrostatic pressure on Listeria monocytogenes inphosphate-buffered saline and model food systems[J]. JAppl Microbiol, 1997, 83: 181-188.
    45. Metrick C, Hoover DG and Farkas DF. Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella[J]. Journal Food Science, 1989, 54: 1547-1549.
    46. Sonoike K, Setoyama T, Kuma Y, et al. Effect of pressure and temperature on the death rate of Lactobacillus casei and Escherichia coli. In High Pressure and Biotechnology, ed. by Balny C, Hayashi R, Heremans K, Masson P, John Libbey Eurotext Ltd, London, 1992, p 297-301.
    47. Administration USFaD and Nutrition CfFSaA. Kinetics of Microbial Inactivation for Alternative Food Processing Technologies: High Pressure Processing, 2000.
    48.李勇.高压致死微生物的研究进展[J].微生物学通报, 1995, 22: 243-245.
    49. Patterson MF, Quinn M and Simpson R. High pressure inactivation in foods of animal origin. In High pressure Bioscience and Biotechnoloty, ed. by Hayashi R and Balny C, Tokyo, 1996, p 267-272.
    50. Arroyo G, Sanz PD and Prestamo G. Effect of high pressure on the reduction of microbial population in vegetables[J]. Journal of Applied Microbiology, 1997, 82: 735-742.
    51.邱伟芬,江汉湖.食品超高压杀菌技术及其研究进展[J].食品科学, 2001, 22: 81-84.
    52. Sale JH, Gould GW and Hamilton WA. Inactivation of bacterial spores by hydrostatic pressure[J]. Journal of General Microbiology, 1970, 60: 323-334.
    53. Heinz V and Knorr D. High pressure germination and inactivation kinetics of bacterial spores. In High Pressure Food Science, Bioscience and Chemistry, ed. by Isaacs NS, The Royal Society of Chemistry, Cambridge, 1998, p 436-441.
    54. Kinugasa H and Takeo T. Processing and preservation of tea extract by hydrostatic pressure, In生物と食品の高压科学[M], ed. by林力丸,さんぇい出版, 1993, p 243.
    55. Crawford YJ, Murano EA, Olson DG, et al. Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes spores in chicken breast[J]. J Food Protect, 1996, 59: 711-715.
    56. Li T M, Hook JW, Drickamer HG, et al. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme[J]. Biochenistry, 1976, 15: 5571-5580.
    57. Masson P, Arciero D, Hooper AB, et al. Electrophoresis at elevated hydrostatic pressure of the imultiheme hydroxylamine oxidoreductase[J]. Electrophoresis, 1990, 11: 128-133.
    58. Weber G. Dissociation of Oligomeric Proteins by Hydrostatic Pressure, in High Pressure Chemistry and Biochemistry, ed. by Jonas RvEaJ. D.Redel, Dordrecht, 1987.
    59. Hawley SA. Reversible pressure-temperature denaturation of chymotrypsinogen[J]. Biochemistry, 1971, 10: 2436-2442.
    60. Hayakawa I. Mechanism of high pressure denaturation of proteins[J]. Lebensmittel-Wissenschaft und-Technologie, 1996, 29: 756-762.
    61. Defaye AB, Ledward DA, MacDougall DB, et al. Renaturation of metmyoglobin subjected to high isostatic pressure[J]. Food Chemistry, 1995, 52(1): 19-22..
    62. Kajiyama N, Isobe S, Uemura K, et al. Changes of soy protein under ultra-high hydraulic pressure[J] International Journal of Food Science & Technology, 1995, 30: 147-158.
    63. Dufour E, Bon Hoa GH and Haertle T. High pressure effects onβ-lactoglobulin interactions with ligands studied by fluorescence[J]. Biochem Biophys Acta, 1994, 1206: 166-172.
    64. Molina E, Papadopoulou A and Ledward AD. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins[J]. Food Hydrocolloids, 2001, 15: 263-269.
    65. Hayashi R, Kawamura Y, Nakasa T, et al. Application of high pressure to food processing: pressurization of egg white and yolk, and properties of the gel formed[J]. Agric Biol Chem, 1989, 53: 2935-2939.
    66.李汴生,阮征,曾庆孝,等.超高压处理对豆浆凝胶特性的影响[J].食品与发酵工业, 1999, 2: 10-15.
    67.张宏康,李里特,辰巳英三.超高压对大豆分离蛋白凝胶的影响[J].中国农业大学学报, 2001, 6: 87-91.
    68. Fukuda M and Kunugi S. The Mechanism of Salt Activation of Thermolysin: Relation with Pressure Activation and Implications of Hydration Change Coupled With Rate Process[J] Biocatalysis and Biotransformation, 1989, p 225-233.
    69.黄丽,孙远明,潘科.超高压处理对荔枝果肉中两种酶和可溶性蛋白的影响[J].高压物理学报, 2005, 19: 179-183.
    70. Shook CM and shellhammer TH. Polygalacturonase,pectinesterase,and lipoxygenase activeties in high pressure-processed diced tomatoes[J]. Journal of Agricultural & Food Chemistry, 2001, 49: 664-668.
    71. Rapeanu G, Loey Av, Smout C, et al. Effect of pH on thermal and/or pressure inactivation of Victoria grape (Vitis vinifera sativa) polyphenol oxidase: a kinetic study[J]. Journal of Food Science, 2005, 70: E301-E307.
    72. Rapeanu G, Loey Av, Smout C, et al. Thermal and high pressure inactivation kinetics of Victoria grape polyphenol oxidase: from model systems to grape must[J]. Journal of Food Process Engineering, 2006, 29: 269-286.
    73. Dalmadi I, Rapeanu G, Loey Av, et al. Characterization and inactivation by thermal and pressure processing of strawberry (Fragaria ananassa) polyphenol oxidase: a kinetic study[J]. Journal of Food Biochemistry, 2006, 30: 56-76.
    74. Rapeanu G, Loey Av, Smout C, et al. Thermal and high-pressure inactivation kinetics of polyphenol oxidase in Victoria grape must[J]. Journal of Agricultural & Food Chemistry, 2005, 53: 2988-2994.
    75. Weemaes CA, Ludikhuyze LR, Broeck I, et al. Influence of pH, benzoic acid, glutathione, EDTA, 4-hexylresorcinol, and sodium chloride on the pressure inactivation kinetics of mushroom polyphenol oxidase[J]. Journal of Agricultural & Food Chemistry, 1999, 47(9): 3526-3530.
    76. Weemaes CA, Ludikhuyze LR, Broeck I, et al. Activity, electrophoretic characteristics and heat inactivation of polyphenoloxidases from apples, avocados, grapes, pears and plums[J]. Lebensmittel-Wissenschaft und-Technologie, 1998, 31: 44-49.
    77. Weemaes CA, Ludikhuyze LR, Broeck I, et al. Kinetics of combined pressure temperature inactivation of avocado polyphenoloxidase[J]. Biotechnology & Bioengineering, 1998, 60: 292-300.
    78. Weemaes CA, Lidikhuyze LR, Broeck I, et al. Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: a kinetic study[J]. Journal of Agricultural & Food Chemistry, 1998, 46: 2785-2792.
    79. Sila DN, Smout C, Satara Y, et al. Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity[J]. Journal of Food Engineering, 2007, 78: 755-764.
    80. Rodrigo D, Cortes C, Clynen E, et al. Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties[J]. Food Research International, 2006, 39: 440-448.
    81. Nunes CS, Castro SM, Saraiva JA, et al. Thermal and high pressure stability of purified pectin methylesterase from plums (Prunus domestica) [J]. Journal of Food Biochemistry, 2006, 30: 138-154.
    82. Marilia Castro S, Loey Av, Saraiva JA, et al. Identification of pressure temperature combinations for optimal pepper (Capsicum annuum) pectin methylesterase activity[J]. Enzyme & Microbial Technology, 2006, 38: 831-838.
    83. Castro SM, Loey AV, Saraiva JA, et al. Inactivation of pepper (Capsicum annuum) pectin methylesterase by combined high-pressure and temperature treatments[J]. Journal of Food Engineering, 2006, 75: 50-58.
    84. Marilia Castro S, Loey Av, Saraiva JA, et al. Process stability of Capsicum annuum pectinmethylesterase in model systems, pepper puree and intact pepper tissue[J]. European Food Research & Technology, 2005, 221: 452-458.
    85. Verlent I, Loey Av, Smout C, et al. Changes in purified tomato pectinmethylesterase activity during thermal and high pressure treatment[J]. Journal of the Science of Food & Agriculture, 2004, 84: 1839-1847.
    86. Fachin D, Loey AMv, Binh Ly N, et al. Comparative study of the inactivation kinetics of pectinmethylesterase in tomato juice and purified form[J]. Biotechnology Progress, 2002, 18: 739-744.
    87. Binh L-N, Loey AMv, Fachin D, et al. Partial purification, characterization, and thermal and high-pressure inactivation of pectin methylesterase from carrots (Daucus carrota L.) [J]. Journal of Agricultural & Food Chemistry, 2002, 50: 5437-5444.
    88. Binh L-N, Loey AMv, Fachin D, et al. Strawberry pectin methylesterase (PME): purification, characterization, thermal and high-pressure inactivation[J]. Biotechnology Progress, 2002, 18: 1447-1450.
    89. Ludikhuyze LR, Claeys WL and Hendrickx ME. Effect of temperature and/or pressure on lactoperoxidase activity in bovine milk and acid whey[J]. Journal of Dairy Research, 2001, 68: 625-637.
    90. Claeys WL, Loey AMv and Hendrickx ME. Kinetics of alkaline phosphatase and lactoperoxidase inactivation, and of beta-lactoglobulin denaturation in milk with different fat content[J]. Journal of Dairy Research, 2002, 69: 541-553.
    91. Claeys WL, Ludikhuyze LR, Loey AMv, et al. Inactivation kinetics of alkaline phosphatase and lactoperoxidase, and denaturation kinetics of beta-lactoglobulin in raw milk under isothermal and dynamic temperature conditions[J]. Journal of Dairy Research, 2001, 68: 95-107.
    92. Fachin D, Smout C, Verlent I, et al. Inactivation kinetics of purified tomato polygalacturonase by thermal and high-pressure processing[J]. Journal of Agricultural & Food Chemistry, 2004, 52: 2697-2703..
    93. Verlent I, Smout C, Duvetter T, et al. Effect of temperature and pressure on the activity of purified tomato polygalacturonase in the presence of pectins with different patterns of methyl esterification[J]. Innovative Food Science & Emerging Technologies, 2005, 6: 293-303.
    94. Verlent I, Loey Av, Smout C, et al. Purified tomato polygalacturonase activity during thermal and high-pressure treatment[J]. Biotechnology & Bioengineering, 2004, 86: 63-71.
    95. Peeters L, Fachin D, Smout C, et al. Influence of beta-subunit on thermal and high-pressure processstability of tomato polygalacturonase[J]. Biotechnology & Bioengineering, 2004, 86: 543-549.
    96. Fachin D, Loey Av, Indrawati, et al. Thermal and high-pressure inactivation of tomato polygalacturonase: a kinetic study[J]. Journal of Food Science, 2002, 67: 1610-1615.
    97. Eylen Dv, Indrawati, Hendrickx M, et al. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase[J]. Food Chemistry, 2006, 97: 263-271.
    98. Ludikhuyze L, Ooms V, Weemaes C, et al. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. Italica) [J]. Journal of Agricultural & Food Chemistry, 1999, 47: 1794-1800.
    99. Rodrigo D, Jolie R, Loey Av, et al. Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase[J]. European Food Research & Technology, 2006, 222: 636-642..
    100. Indrawati I, Ludikhuyze LR, Loey AMv, et al. Lipoxygenase inactivation in green beans (Phaseolus vulgaris L.) due to high pressure treatment at subzero and elevated temperatures[J]. Journal of Agricultural & Food Chemistry, 2000, 48: 1850-1859.
    101. Indrawati, Loey AMv, Ludikhuyze LR, et al. Kinetics of pressure inactivation at subzero and elevated temperature of lipoxygenase in crude green bean (Phaseolus vulgaris L.) extract[J]. Biotechnology Progress, 2000, 16: 109-115.
    102. Indrawati, Loey AMv, Ludikhuyze LR, et al. Single, combined, or sequential action of pressure and temperature on lipoxygenase in green beans (Phaseolus vulgaris L.): a kinetic inactivation study[J]. Biotechnology Progress, 1999, 15: 273-277.
    103. Indrawati, Loey AMv, Ludikhuyze LR, et al. Soybean lipoxygenase inactivation by pressure at subzero and elevated temperatures[J]. Journal of Agricultural & Food Chemistry, 1999, 47: 2468-2474.
    104.刘延奇,周婧琦.超高压处理对淀粉的影响研究进展[J].食品科技, 2006, 21: 56-59.
    105. Thevelein JM, Assche JAV and Heremans K. Gelatinisation temperature of starch, as influenced by high pressure[J]. Carbohydrate Research, 1981, 93: 304-307.
    106. Muhr AH and Blanshard JMV. Effect of hydrostatic pressure on starch gelatinization[J].Carbohydrate Polymers, 1982, 2: 61-74.
    107.叶怀义,杨素玲.高压对淀粉糊化特性的影响[J].中国粮油学报, 2000, 15: 10-13.
    108.左春柽,张守勤,马成林,等.高压处理玉米淀粉的X射线衍射图谱分析[J].农业工程学报, 1997, 13: 206-210.
    109. Katopo H, Song Y and Jane J. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches[J]. Carbohydrate Polymers, 2002, 47: 233-244.
    110. Stute R, Klingler RW, Boguslawski S, et al. Effects of high pressures treatment on starches[J]. Starch, 1996, 48: 399- 408.
    111. Stolt M, Stoforos NG, Taoukis PS, et al. Evaluation and modeling of rheological properties of high pressure treated waxy maize starch dispersion[J]. Journal of Food Engineering, 1999, 40:293-298.
    112. Rubens P, Snauwaert J, Heremans K, et al. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell[J]. Carbohydrate Polymers, 1999, 39: 231-235.
    113. Stolt M, Oinonen S and Autio K. Effect of high pressure on the physical properties of barley starch[J]. Innovative Food Science and Emergin Technologies, 2001, 1: 167-175.
    114. Barbosa-Canovas GV, Pothakamury UR, Palou E, et al. Nonthermal Preservation of Foods[M]. New York, 1998.
    115. Ludikhuzye L, Indrawati, Broeck Ivd, et al. Effect of combined pressure and temperature on soybean lipoxygenase. II. Modeling inactivation kinetics under static and dynamic conditions[J]. Journal of Agricultural & Food Chemistry, 1998, 46: 4081-4086.
    116. Friedman M and Brandon DL. Nutritional and health benefits of soy proteins[J]. Journal of Agriculture and Food Chemistry, 2001, 49: 1069-1086.
    117. Kato Y and Matsuda T. Glycation of proteinous inhibitors: loss in trypsin inhibitory activity by the blocking of arginine and lysine residues at their reactive sites[J]. Journal of Agricultural & Food Chemistry, 1997, 45: 3826-3831.
    118. Vasconcelos IM, Maia AAB, Siebra EA, et al. Nutritional study of two Brazilian soybean (Glycine max) cultivars differing in the contents of antinutritional and toxic proteins[J]. Journal of Nutritional Biochemistry, 2001, 12: 55-62.
    119. Baur C, Groch W, Wieser H, et al. Enzymatic oxidation of linoleic acid: formation of bittertasting fatty acids[J]. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung, 1977, 164: 171-176.
    120. Obata A, Matsuura M and Kitamura K. Degradation of sulfhydryl groups in soymilk by lipoxygenase during soybean grinding[J]. Bioscience Biotechnology Biochemistry, 1996, 60: 1229-1232.
    1. Rodrigo D, Jolie R, van Loey A, et al. Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase [J]. European Food Research & Technology, 2006, 222: 636-642.
    2. Shook C M, Shellhammer T H, and Schwartz S J. Polygalacturonase, pectinesterase, and lipoxygenase activities in high-pressure-processed diced tomatoes [J]. Journal of Agricultural & Food Chemistry, 2001, 49: 664-668.
    3. Indrawati I, van Loey A M, Ludikhuyze L R, et al. Kinetics of pressure inactivation at subzero and elevated temperature of lipoxygenase in crude green bean (Phaseolus vulgaris L.) extract [J]. Biotechnology Progress, 2000, 16: 109-115.
    4. Ludikhuyze L R, Indrawati I, van den Broeck I, et al. Effect of combined pressure and temperature on soybean lipoxygenase I. Influence of extrinsic and intrinsic factors on isobaric-isothermal inactivation kinetics [J]. Journal of Agricultural & Food Chemistry, 1998a, 46: 4074-4080.
    5. Sonati S, and Appu Rao A G. Structure and kinetic thermal stability studies of the interaction of monohydric alcohols with lipoxygenase 1 from soybeans (Glycine max) [J]. Journal of Agricultural & Food Chemistry, 1995, 43: 562-567.
    6. Lopez P, and Burgos J. Lipoxygenase inactivation by manothermosonication: effects of sonication physical parameters, pH, KCl, sugars, glycerol, and enzyme concentration [J]. Journal of Agricultural & Food Chemistry, 1995, 43: 620-625.
    7. Bhirud P R, and Sosulski F W. Thermal inactivation kinetics of wheat germ lipoxygenase [J]. Journal of Food Science, 1993, 58: 1095-1098.
    8. Indrawati, van Loey A M, Ludikhuyze L R, et al. Soybean lipoxygenase inactivation by pressure at subzero and elevated temperatures [J]. Journal of Agricultural & Food Chemistry, 1999, 47: 2468-2474.
    9. Ludikhuyze L R, Indrawati I, van den Broeck I, et al. High pressure and thermal denaturation kinetics of soybean lipoxygenase: a study based on gel electrophoresis [J]. Lebensmittel-Wissenschaft und -Technologie, 1998b, 31: 680-686.
    10. Castro S M, Loey A V, Saraiva J A, et al. Inactivation of pepper (Capsicum annuum) pectin methylesterase by combined high-pressure and temperature treatments [J]. Journal of Food Engineering, 2006, 75: 50-58.
    11. Indrawati I, Ludikhuyze L R, van Loey A M, et al. Lipoxygenase inactivation in green beans (Phaseolus vulgaris L.) due to high pressure treatment at subzero and elevated temperatures [J]. Journal of Agricultural & Food Chemistry, 2000, 48: 1850-1859.
    12. Indrawati, van Loey A M, Ludikhuyze L R, et al. Single, combined, or sequential action of pressure and temperature on lipoxygenase in green beans (Phaseolus vulgaris L.): a kinetic inactivation study [J]. Biotechnology Progress, 1999, 15: 273-277.
    13. Weemaes C A, Ludikhuyze L R, van den Broeck I, et al. Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: a kinetic study [J]. Journal of Agricultural & Food Chemistry, 1998, 46: 2785-2792.
    14. Denys S, van Loey A M, and Hendrickx M E. A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model andenzyme inactivation kinetics [J]. Innovative Food Science & Emerging Technologies, 2000, 1: 5-19.
    15. Rapeanu G, van Loey A, Smout C, et al. Thermal and high pressure inactivation kinetics of Victoria grape polyphenol oxidase: from model systems to grape must [J]. Journal of Food Process Engineering, 2006, 29: 269-286.
    16. Dalmadi I, Rapeanu G, van Loey A, et al. Characterization and inactivation by thermal and pressure processing of strawberry (Fragaria ananassa) polyphenol oxidase: a kinetic study [J]. Journal of Food Biochemistry, 2006, 30: 56-76.
    17. Rapeanu G, van Loey A, Smout C, et al. Effect of pH on thermal and/or pressure inactivation of Victoria grape (Vitis vinifera sativa) polyphenol oxidase: a kinetic study [J]. Journal of Food Science, 2005, 70: E301-E307.
    18. Rapeanu G, van Loey A, Smout C, et al. Thermal and high-pressure inactivation kinetics of polyphenol oxidase in Victoria grape must [J]. Journal of Agricultural & Food Chemistry, 2005, 53: 2988-2994.
    19. Sila D N, Smout C, Satara Y, et al. Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity [J]. Journal of Food Engineering, 2007, 78: 755-764.
    20. Marilia Castro S, van Loey A, Saraiva J A, et al. Identification of pressure/temperature combinations for optimal pepper (Capsicum annuum) pectin methylesterase activity [J]. Enzyme & Microbial Technology, 2006, 38: 831-838.
    21. Seyderhelm I, Boguslawski S, Michaelis G, et al. Pressure induced inactivation of selected food enzymes [J]. Journal of Food Science, 1996, 61: 308-310.
    22. Rodrigo D, Cortes C, Clynen E, et al. Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties [J]. Food Research International, 2006, 39: 440-448.
    23. Fachin D, van Loey A, Indrawati I, et al. Thermal and high-pressure inactivation of tomato polygalacturonase: a kinetic study [J]. Journal of Food Science, 2002, 67: 1610-1615.
    24. Eylen D V, Indrawati I, Hendrickx M, et al. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase [J]. Food Chemistry, 2006, 97: 263-271.
    25. Ludikhuyze L, Ooms V, Weemaes C, et al. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. Italica) [J]. Journal of Agricultural & Food Chemistry, 1999, 47: 1794-1800.
    26. van der Ven C, Matser A M, van den Berg R W. Inactivation of soybean trypsin inhibitors andlipoxygenase by high-pressure processing [J]. Journal of Agricultural & Food Chemistry, 2005, 53: 1087-1092.
    27. Tangwongchai R, Ledward D A, Ames J M. Effect of high-pressure treatment on lipoxygenase activity [J]. Journal of Agricultural & Food Chemistry, 2000, 48: 2896-2902.
    28. Sonati S, Appu Rao A G. Structure and kinetic thermal stability studies of the interaction of monohydric alcohols with lipoxygenase 1 from soybeans (Glycine max) [J]. Journal of Agricultural & Food Chemistry, 1995, 43: 562-567.
    29. Kermasha S, Bisakowski B, Ramaswamy H, et al. Thermal and microwave inactivation of soybean lipoxygenase [J]. Lebensmittel-Wissenschaft und -Technologie, 1993, 26: 215-219.
    1. Tahiri I, Makhlouf J, Paquin P, et al. Inactivation of food spoilage bacteria and Escherichia coli O157:H7 in phosphate buffer and orange juice using dynamic high pressure [J]. Food Research International, 2006, 39: 98-105.
    2. Bayindirli A, Alpas H, Bozoglu F, et al. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices [J]. Food Control, 2005, 17: 52-58.
    3. Erkmen O, Dogan C. Kinetic analysis of Escherichia coli inactivation by high hydrostatic pressure in broth and foods [J]. Food Microbiology, 2004, 21: 181-185.
    4. Seyderhelm I, Boguslawski S, Michaelis G, et al. Pressure induced inactivation of selected food enzymes [J]. Journal of Food Science, 1996: 308-310.
    5. Gow Chin Y, Hsin Tang L. Comparison of high pressure treatment and thermal pasteurization effects on the quality and shelf life of guava puree [J]. International Journal of Food Science & Technology, 1996, 31: 205-213.
    6. Styles MF, Hoover DG, Farkas DF. Response of Listeria monocytogenes and Vibrio parahaemolyticusto high hydrostatic pressure [J]. Journal of Food Science, 1991, 56: 1404-1407.
    7. Rapeanu G, Loey A van, Smout C, et al. Thermal and high-pressure inactivation kinetics of polyphenol oxidase in Victoria grape must [J]. Journal of Agricultural & Food Chemistry, 2005, 53: 2988-2994.
    8. Ngarize S, Adams A, Howell N. A comparative study of heat and high pressure induced gels of whey and egg albumen proteins and their binary mixtures [J]. Food Hydrocolloids, 2005, 19: 984-996.
    9. Camp J van, Huyghebaert A. A comparative rheological study of heat and high pressure induced whey protein gels [J]. Food Chemistry, 1995, 54: 357-364.
    10. Ohshima T, Ushio H, Koizumi C. High-pressure processing of fish and fish products [J]. Trends in Food Science & Technology, 1993, 4: 370-375.
    11. Famelart M H, Chapron L, Piot M, et al. High pressure-induced gel formation of milk and whey concentrates [J]. Journal of Food Engineering, 1998, 36: 149-164.
    12. Camp J van, Huyghebaert A. High pressure-induced gel formation of a whey protein and haemoglobin protein concentrate [J]. Lebensmittel-Wissenschaft und–Technologie, 1995, 28: 111-117.
    13. Vilela R M, Lands L C, Hing M C, et al. High hydrostatic pressure enhances whey protein digestibility to generate whey peptides that improve glutathione status in CFTR-deficient lung epithelial cells [J]. Molecular Nutrition & Food Research, 2006, 50: 1013-1029.
    14. Ohmori T, Shigehisa T, Taji S, et al. Effect of high pressure on the protease activities in meat [J]. Agricultural & Biological Chemistry, 1991, 55: 357-361.
    15. Ludikhuyze L R, Indrawati I, van den Broeck I, et al. Effect of combined pressure and temperature on soybean lipoxygenase. II. Modeling inactivation kinetics under static and dynamic conditions [J]. Journal of Agricultural & Food Chemistry, 1998, 46: 4081-4086.
    16. Indrawati, van Loey A M, Ludikhuyze L R, et al. Soybean lipoxygenase inactivation by pressure at subzero and elevated temperatures [J]. Journal of Agricultural & Food Chemistry, 1999, 47: 2468-2474.
    17. Hawley S A. Reversible Pressure-Temperature Denaturation of Chymotrypsinogen [J]. Biochemistry, 1971, 10: 2436-2442.
    18.吴有炜.试验设计与数据处理[M].苏州:苏州大学出版, 2002, 143-147.
    19. Indrawati I, van Loey A M, Ludikhuyze L R, et al. Kinetics of pressure inactivation at subzero and elevated temperature of lipoxygenase in crude green bean (Phaseolus vulgaris L.) extract [J]. Biotechnology Progress, 2000, 16: 109-115.
    20. Ludikhuyze L R, van den Broeck I, Weemaes C A, et al. Kinetics for isobaric-isothermal inactivation ofBacillus subtilis alpha-amylase [J]. Biotechnology Progress, 1997,13: 532-538.
    21. Weemaes C A, Ludikhuyze L R, van den Broeck I, et al. Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase [J]. Biotechnology & Bioengineering, 1998, 60: 292-300.
    22. Indrawati I, Ludikhuyze L R, van Loey A M, et al. Lipoxygenase inactivation in green beans (Phaseolus vulgaris L.) due to high pressure treatment at subzero and elevated temperatures [J]. Journal of Agricultural & Food Chemistry, 2000, 48: 1850-1859.
    23. Sonoike K, Setoyama T, Kuma Y, et al. Effect of pressure and temperature on the death rates of Lactobacillus casei and Escherichia coli. In High Pressure and Biotechnology. C Balny, R Hayashi, K Heremans, and P Masson. Eds. John Libbey Eurotext: Montrouge, France,1992. Colloque INSERM 224, p297-301.
    24. Hashizume C, Kimura K, Hayashi R. Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures [J]. Bioscience Biotechnology & Biochemistry, 1995, 59: 1455-1458.
    1.李里特.大豆加工与利用[M].北京:化学工业出版社, 2002.
    2. Bode W and Huber R. Natural protein proteinase inhibitors and their interaction with proteinases [J]. European Journal of Biochemistry, 1992, 204: p. 433-451.
    3. Dipietro CM and Liener IE. Soybean protease inhibitors in foods [J]. Journal of Food Science, 1989, 54: p. 606-609.
    4. Jiao JA, Yee BC, Kobrehel K, et al. Effect of thioredoxin-linked reduction on the activity and stability of the Kunitz and Bowman-Birk soybean trypsin inhibitor proteins [J]. Journal of Agricultural & Food Chemistry, 1992, 40: p. 2333-2336.
    5. van den Hout R, Pouw M, Gruppen H, et al. Inactivation Kinetics Study of the Kunitz Soybean Trypsin Inhibitor and the Bowman-Birk Inhibitor [J]. Journal of Agricultural & Food Chemistry, 1998, 46: p. 281-285.
    6. Kwok KC, Liang HH and Niranjan K. Optimizing Conditions for Thermal Processes of Soy Milk [J]. Journal of Agricultural & Food Chemistry, 2002, 50: p. 4834-4838.
    7. Ven Cvd, Matser AM and Berg RWvd. Inactivation of soybean trypsin inhibitors and lipoxygenase by high-pressure processing [J]. Journal of Agricultural & Food Chemistry, 2005, 53: p. 1087-1092.
    8. Kunitz M. Crystallization of a Trypsin Inhibitor from Soybean [J]. Science, 1945, 101: p. 668-669.
    9. Kunitz M. Isolation of a Crystalline Protein Compound of Trypsin and of Soybean Trypsin-inhibitor [J]. The Journal of General Physiology, 1947, 30: p. 311-320.
    10. Koide T, Tsunasawa S, Ikenaka T. Studies on Soybean Trypsin Inhibitors. 2. Amino-Acid Sequence around the Reactive Site of Soybean Trypsin Inhibitor (Kunitz) [J]. European Journal of Biochemistry, 1973, 32: p. 408-416.
    11. Koide T, Ikenaka T. Studies on soybean trypsin inhibitors. 1. Fragmentation of soybean trypsin inhibitor (Kunitz) by limited proteolysis and by chemical cleavage [J]. European Journal of Biochemistry, 1973, 32: p. 401-407.
    12. Koide T, Ikenaka T. Studies on soybean trypsin inhibitors. 3. Amino-acid sequences of the carboxyl-terminal region and the complete amino-acid sequence of soybean trypsin inhibitor (Kunitz) [J]. European Journal of Biochemistry, 1973, 32: p. 417-431.
    13. Odani S and Ikenaka T. Studies on Soybean Trypsin Inhibitors. VIII. Disulfide Bridges in Soybean Bowman-Birk Proteinase Inhibitor [J]. Journal of Biochemistry, 1973, 74: p. 697-715
    14. Frattali V. Soybean Inhibitors. III. Properties of a Low Molecular Weight Soybean Proteinase Inhibitor [J]. J Biol Chem, 1969, 244: p. 274-280.
    15. Millar DBS, Willick GE, Steiner RF, et al. Soybean Inhibitors. IV. The Reversible Self-Association of a Soybean Proteinase Inhibitors [J]. J Biol Chem, 1969, 244: p. 281-284.
    16. Steiner RF and Frattali V. Purification and properties of soybean protein inhibitors of proteolytic enzymes [J]. Journal of Agricultural & Food Chemistry, 1969, 17: p. 513-518.
    17.李荣和.大豆新加工技术原理与应用[M].北京:科学技术文献出版社, 1999.
    18. Rizzi C, Galeoto L, Zoccatelli G, et al. Active soybean lectin in foods: quantitative determination by ELISA using immobilised asialofetuin [J]. Food Research International, 2003, 36: p. 815-821.
    19. Machado FPP, Queir JH, Oliveira MGA, et al. Effects of heating on protein quality of soybean flour devoid of Kunitz inhibitor and lectin [J]. Food Chemistry, 2008, 107: p. 649-655.
    20. Kato Y and Matsuda T. Glycation of proteinous inhibitors: loss in trypsin inhibitory activity by the blocking of arginine and lysine residues at their reactive sites [J]. Journal of Agricultural & Food Chemistry, 1997, 45: p. 3826-3831.
    21. Vasconcelos IM, Maia AAB, Siebra EA, et al. Nutritional study of two Brazilian soybean (Glycine max) cultivars differing in the contents of antinutritional and toxic proteins [J]. Journal of Nutritional Biochemistry, 2001, 12: p. 55-62.
    22. Bajpai S, Sharma A and Nath Gupta M. Removal and recovery of antinutritional factors from soybean flour [J]. Food Chemistry, 2005, 89: p. 497-501.
    23. Osman MA, Reid PM and Weber CW. Thermal inactivation of tepary bean (Phaseolus acutifolius), soybean and lima bean protease inhibitors: effect of acidic and basic pH [J]. Food Chemistry, 2002, 78: p. 419-423.
    24.陈星,刘蕾,刘玉.大豆抗营养因子钝化失活速度的研究[J].食品科技, 2005, 4: p. 95-97.
    25.赵宇星.发酵型酸豆乳饮料的研究[D]. 2005,江南大学硕士论文.
    26. Kwok KC, Qin WH and Tsang JC. Heat Inactivation of Trypsin Inhibitors in Soymilk at Ultra-High Temperatures [J]. Journal of Food Science, 1993, 58: p. 859-862.
    27. Kin-Chor K, Han-Hua L and Niranjan K. Mathematical modelling of the heat inactivation of trypsin inhibitors in soymilk at 121-154 degrees C [J]. Journal of the Science of Food & Agriculture, 2002, 82: p. 243-247.
    28. Huei-Ju W and Murphy PA. Mass balance study of isoflavones during soybean processing [J]. Journal of Agricultural & Food Chemistry, 1996, 44: p. 2377-2383.
    29. Gruen IU, Adhikari K, Chunqin L, et al. Changes in the profile of genistein, daidzein, and their conjugates during thermal processing of tofu [J]. Journal of Agricultural & Food Chemistry, 2001, 49: p. 2839-2843.
    30. Lei MG, Bassette R and Reeck GR. Effect of cysteine on heat inactivation of soybean trypsin inhibitors [J]. Journal of Agricultural & Food Chemistry, 1981, 29: p. 1196-1199.
    31. Liu W-H, Feinstein G, Osuga DT, et al. Modification of arginines in trypsin inhibitors by 1,2-cyclohexanedione [J]. Journal of Agricultural & Food Chemistry, 1968, 7: p. 2886-2892.
    32. Sessa DJ, Haney JK and Nelsen TC. Inactivation of soybean trypsin inhibitors with ascorbic acid plus copper [J]. Journal of Agricultural & Food Chemistry, 1990, 38: p. 1469-1474.
    33. Friedman M, Grosjean OKK and Zahnley JC. Inactivation of soya bean trypsin inhibitors by thiols [J]. Journal of the Science of Food & Agriculture, 1982, 33: p. 165-172.
    34. Friedman M and Gumbmann MR. Nutritional improvement of soy flour through inactivation of trypsin inhibitors by sodium sulfite [J]. Journal of Food Science, 1986, 51: p. 1239-1241.
    35. Kin-Chor K and Niranjan K. Review: effect of thermal processing on soymilk [J]. International Journal of Food Science & Technology, 1995, 30: p. 263-295.
    36. Orf JH and Hymowitz TH. Inheritance of the Absence of the Kunitz Trypsin Inhibitor in Seed Protein of Soybeans [J]. Crop Science, 1979, 19: p. 107-109.
    37. McNiven MA, Grimmelt B, MacLeod JA, et al. Biochemical characterization of a low trypsin inhibitor soybean [J]. Journal of Food Science, 1992, 57: p. 1375-1377.
    38. Kakade ML, Simons N and Liener IE. An evaluation of natural vs. synthetic substrates for measuring the antitryptic activity of soybean samples [J]. Cereal Chemistry, 1969, 46: p. 518-26.
    39. Kakade ML, Rackis JJ, McGhee JE, et al. Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure [J]. Cereal Chemistry, 1974, 51: p. 376-382.
    40. Smith C, Megen Wv, Twaalfhoven L, et al. The determination of trypsin inhibitor levels in foodstuffs [J]. Journal of the Science of Food & Agriculture, 1980, 31: p. 341-350.
    41. Hout Rvd, Meerdink G and Riet Kvt. Modelling of the inactivation kinetics of the trypsin inhibitors in soy flour [J]. Journal of the Science of Food & Agriculture, 1999, 79: p. 63-70.
    42. Roa V, DeStefano MV, Perez CR, et al. Kinetics of thermal inactivation of protease (trypsin and chymotrypsin) inhibitors in black bean (Phaseolus vulgaris) flours [J]. Journal of Food Engineering, 1989, 9: p. 35-46.
    43. Birk Y. Purification and some properties of a highly active inhibitor of trypsin and [alpha]-chymotrypsin from soybeans [J]. Biochimica et Biophysica Acta, 1961, 54: p. 378-381.
    44. Obara T and Watanabe Y. Heterogeneity of soybean trypsin inhibitors. II. Heat inactivation [J]. Cereal Chemistry, 1971, 48: p. 523-527.
    45. Rouhana A, Adler-Nissen J, Cogan URI, et al. Heat Inactivation Kinetics of Trypsin Inhibitors During High Temperature-Short Time Processing of Soymilk [J]. Journal of Food Science, 1996, 61: p. 265-269.
    46. Hackler LR, Buren JP, Steinkraus KH, et al. Effect of Heat Treatment on Nutritive Value of Soymilk Protein Fed to Weanling Rats [J]. Journal of Food Science, 1965, 30: 723-728.
    47. Miyagi Y, Shinjo S, Nishida P, et al. Trypsin inhibitor activity in commercial soybean products in Japan [J]. Journal of Nutritional Science & Vitaminology, 1997, 43: 575-580.
    1.李里特.大豆加工与利用[M].北京:化学工业出版社, 2002.
    2. Utsumi S, Maruyama N, Satoh R, et al. Structure-function relationships of soybean proteins revealed by using recombinant systems [J]. Enzyme and Microbial Technology, 2002, 30:284-288.
    3. Utsumi S and Kinsella JE. Structure-function relationships in food proteins: subunit interactions in heat-inducted gelation of 7S, 11S, and soy isolate proteins [J]. Journal of Agricultural and Food Chemistry, 1985, 33:297-303.
    4. Staswick PE, Hermodson MA and Nielsen NC. Identification of the acidic and basic subunit complexes of glycinin [J]. The Journal of Biological Chemistry, 1981, 256:8752-8755.
    5.钟芳.方便(即冲即凝)豆腐花的制备及大豆蛋白速凝机理研究[D]. 2001,江南大学博士论文.
    6. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent [J]. J Biol Chem, 1951, 193:265-275.
    7. Shimada K and Cheftel JC. Determination of sulfhydryl groups and disulfide bonds in heat-induced gels of soy protein isolate [J]. Journal of Agricultural and Food Chemistry, 1988, 36:147-153.
    8. Van der Plancken I, Van Loey A and Hendrickx ME. Effect of heat-treatment on the physico-chemical properties of egg white proteins: A kinetic study [J]. Journal of Food Engineering, 2006, 75:316-326.
    9.郭尧军.蛋白质电泳实验技术[M].北京:科学出版社, 1999.
    10. Pearce KN and Kinsella JE. Emulsifying properties of proteins: evaluation of a turbidimetric technique [J]. Journal of Agricultural and Food Chemistry, 1978, 26:716-723.
    11. Molina E, Papadopoulou A and Ledward DA. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins [J]. Food Hydrocolloids, 2001, 15:263-269.
    12. Sathe SK. Functional properties of lupin seed (lupinus mutabilis) proteins and protein concentrates [J]. Journal of Food Science, 1982, 47:491-497.
    13.王洪晶,华欲飞,黄友如,等.过氧化脂质对分离蛋白凝胶性质的影响[J].中国油脂, 2006, 31:12-16.
    14.菲尼马著.王璋等译.食品化学(第三版)[M].北京:中国轻工业出版社, 2003.
    15. Bigelow CC. On the average hydrophobicity of proteins and the relation between it and protein structure [J]. Journal of Theoretical Biology, 1967, 16:187-211.
    16. Puppo C, Chapleau N, Speroni F, et al. Physicochemical Modifications of High-Pressure-Treated Soybean Protein Isolates [J]. Journal of Agricultural and Food Chemistry, 2004, 52:1564-1571.
    17. Chapleau N and de Lamballerie-Anton M. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation [J]. Food Hydrocolloids, 2003, 17:273-280.
    18.刘国琴,李琳,李冰,等.超声和超高压处理对大豆分离蛋白特性影响的研究[J].河南工业大学学报(自然科学版), 2005, 26:1-4.
    19.张少兰,曾庆孝.高静压处理对大豆分离蛋白功能特性的改善[J].广州食品工业科技, 2003, 19:1-4.
    20.李汴生,曾庆孝,彭志英,等.高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报, 1999, 13:22-29.
    21. Zhang H, Li L, Tatsumi E, et al. Influence of high pressure on conformational changes of soybean glycinin [J]. Innovative Food Science & Emerging Technologies, 2003, 4:269-275.
    22. Handa A, Gennadios A, Hanna MA, et al. Physical and Molecular Properties of Egg-white Lipid Films [J]. Journal of Food Science, 1999, 64:860-864.
    23.欧仕益,郭乾初,包惠燕,等.豆奶蛋白质中巯基含量的测定[J].中国食品学报, 2003, 3:59-62.
    24. Funtenberger S, Dumay E and Cheftel JC. High Pressure Promotesβ-Lactoglobulin Aggregation through SH/S-S Interchange Reactions [J]. Journal of Agricultural and Food Chemistry, 1997, 45:912-921.
    25. Kajiyama N, Isobe S, Uemura K, et al. Changes of soy protein under ultra-high hydraulic pressure [J]. International Journal of Food Science & Technology, 1995, 30:147-158.
    26. Kato A and Nakai S. Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta, 1980, 624:13-20.
    27. Tedford LA, Smith D and Schaschke CJ. High pressure processing effects on the molecular structure of ovalbumin, lysozyme andβ-lactoglobulin [J]. Food Research International, 1999, 32:101-106.
    28. Hayakawa I, Linko Y-Y and Linko P. Mechanism of High Pressure Denaturation of Proteins [J]. Lebensmittel-Wissenschaft und-Technologie, 1996, 29:756-762.
    29. Abtahi S and Aminlari M. Effect of Sodium Sulfite, Sodium Bisulfite, Cysteine, and pH on Protein Solubility and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis of Soybean Milk Base [J]. Journal of Agricultural and Food Chemistry, 1997, 45:4768-4772.
    30. Hou DJ and Chang KC. Structural characteristics ofβ-conglycinin purified from soybeans stored under four conditions [J]. Journal of Agricultural and Food Chemistry, 2004, 52:7931-7937.
    31. Hou DJ and Chang KC. Structural characteristics of glycinin purified from soybeans stored under various conditions [J]. Journal of Agricultural and Food Chemistry, 2004, 52:3792-3800.
    32.黄友如,华欲飞,裘爱泳.醇洗豆粕对大豆分离蛋白功能性质的影响.Ⅱ乳化性能[J].中国油脂, 2003, 28:35-38.
    33. Nakai S. Structure-function relationships of food proteins: with an emphasis on the importance of protein hydrophobicity [J]. Journal of Agricultural and Food Chemistry, 1983, 31:676-683.
    34.刘坚,江波,张涛,等.超高压对鹰嘴豆分离蛋白功能性质的影响[J].食品与发酵工业, 2006, 32:64-68.
    35.黄友如,华欲飞,裘爱泳.醇洗豆粕对大豆分离蛋白功能性质的影响.Ⅲ起泡性能[J].中国油脂, 2003, 28:16-18.
    36.黄友如,裘爱泳,华欲飞.大豆蛋白结构与功能的关系[J].中国油脂, 2004, 29:24-28.
    37.黄友如,华欲飞,裘爱泳.醇洗豆粕对大豆分离蛋白功能性质的影响.Ⅰ凝胶性能[J].中国油脂, 2003, 28:54-57.
    38. Damodaran S. Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: effect on gelation [J]. Journal of Agricultural and Food Chemistry, 1988, 36:262-269.
    39. Catsimpoolas N and Meyer C. Gelation phenomena of soybean globulins. I. protein-protein interactions [J]. Cereal Chemistry, 1970, 47:559-570.
    40. Famelart MH, Chapron L, Piot M, et al. High pressure-induced gel formation of milk and whey concentrates [J]. Journal of Food Engineering, 1998, 36:149-164.
    41. Keim S and Hinrichs J. Influence of stabilizing bonds on the texture properties of high-pressure-induced whey protein gels [J]. International Dairy Journal, 2004, 14:355-363.
    42. Molina E and Ledward DA. Effects of combined high-pressure and heat treatment on the textural properties of soya gels [J]. Food Chemistry, 2003, 80:367-370.
    43. Ngarize S, Adams A and Howell N. A comparative study of heat and high pressure induced gels of whey and egg albumen proteins and their binary mixtures [J]. Food Hydrocolloids, 2005, 19:984-996.
    44. Van Camp J, Messens W, Clement J, et al. Influence of ph and sodium chloride on the highpressure-induced gel formation of a whey protein concentrate [J]. Food Chemistry, 1997, 60:417-424.
    45. Van Camp J, Feys G and Huyghebaert A. High Pressure Induced Gel Formation of Haemoglobin and Whey Proteins at Elevated Temperatures [J]. Lebensmittel-Wissenschaft und-Technologie, 1996, 29:49-57.
    1. Friedman M and Brandon DL. Nutritional and Health Benefits of Soy Proteins [J]. Journal of Agricultural and Food Chemistry, 2001, 49: 1069-1086.
    2. vanderVen C, Matser AM and vandenBerg RW. Inactivation of Soybean Trypsin Inhibitors and Lipoxygenase by High-Pressure Processing [J]. Journal of Agricultural and Food Chemistry, 2005, 53: 1087-1092.
    3. Kato Y and Matsuda T. Glycation of proteinous inhibitors: loss in trypsin inhibitory activity by the blocking of arginine and lysine residues at their reactive sites [J]. Journal of Agricultural & Food Chemistry, 1997, 45: 3826-3831.
    4. Vasconcelos IM, Maia AAB, Siebra EA, et al. Nutritional study of two Brazilian soybean (Glycine max)cultivars differing in the contents of antinutritional and toxic proteins [J]. Journal of Nutritional Biochemistry, 2001, 12: 55-62.
    5. Baur C, Groch W, Wieser H, et al. Enzymatic oxidation of linoleic acid: formation of bittertasting fatty acids [J]. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung, 1977, 164: 171-176.
    6. Obata A, Matsuura M and Kitamura K. Degradation of sulfhydryl groups in soymilk by lipoxygenase during soybean grinding [J]. Bioscience Biotechnology Biochemistry, 1996, 60: 1229-1232.
    7. Vollman J, Grausgruber H, Wagentristl H, et al. Trypsin inhibitor activity of soybean as affected by genotype and fertilization [J]. Journal Science of Food and Agriculture, 2003, 83: 1581-1586.
    8. Moazhaev VV, Heremans K, Frank J, et al. Exploiting the effects of high hydrostatic pressure in biotechnological applications [J]. Trends in biotechnology, 1994, 12: 493-501.
    9.高福成.现代食品工程高新技术[M].北京:中国轻工业出版社, 1997.
    10. Kwok KC, MacDougall DB and Niranjan K. Reaction kinetics of heat-induced colour changes in soymilk [J]. Journal of Food Engineering, 1999, 40: 15-20.
    11. Rodrigo D, van Loey A and Hendrickx M, Combined thermal and high pressure colour degradation of tomato puree and strawberry juice [J]. Journal of Food Engineering, 2007, 79: 553-560.
    12.黄友如,裘爱泳,华欲飞,等.大豆分离蛋白风味物质的气相色谱-质谱分析[J].分析化学, 2005, 33: 389-391.
    13.赵汝松,柳仁民,崔庆新.固相微萃取-气相色谱-质谱联用测定水中酚类化合物[J].分析化学, 2002, 10: 1240-1242.
    14. Jung DM and Ebeler SE. Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds [J]. Journal of Agricultural and Food Chemistry, 2003, 51: 200-205.
    15.钟芳.方便(即冲即凝)豆腐花的制备及大豆蛋白速凝机理研究[D]. 2001,江南大学博士论文.
    16.李汴生,曾庆孝,芮汉明,等.高压对食品胶溶液流变特性的影响[J].高压物理学报, 2001, 15: 64-69.
    17.李汴生,曾庆孝,彭志英,等.高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报, 1999, 13: 22-29.
    18.李迎秋.脉冲电场对大豆蛋白理化性质和脂肪氧化酶的影响[D]. 2007,江南大学博士论文.
    19. Moreira MA, Tavares SR, Ramos V, et al. Hexanal production and TBA number are reduced in soybean [Glycine max (L.) Merr.] seeds lacking lipoxygenase isozymes 2 and 3 [J]. Journal of Agricultural and Food Chemistry, 1993, 41: 103-106.
    20. Smouse TH. A review of soybean oil reversion flavor [J]. Journal of American Oil and Chemistry Society, 1979, 56: 747-751.
    21. Borhan M and Snyder HE. Lipoxygenase destruction in whole soybeans by combinations of heating and soaking in ethanol [J]. Journal of Food Science, 1979, 44: 586-590.
    22. Masahiko S, Chiaki M, Jiroh K, et al. Improvement of the Off-flavor of Soy Protein Isolate by Removing Oil-body Associated Proteins and Polar Lipids [J]. Bioscience, Biotechnology,and Biochemistry, 1998, 62: 935-940.
    23.陈克复等.食品流变学及其测量[M].北京:轻工业出版社, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700