高糖对脑微血管内皮细胞抗氧化系统和ATP水平的影响及白藜芦醇的干预机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     高糖对脑微血管内皮细胞抗氧化系统及ATP水平的影响
     糖尿病认知功能损伤与脑微血管并发症密切相关,一般认为是持续高糖对脑微小血管侵害导致脑组织缺血缺氧的结果。研究发现,糖尿病动物模型脑内ATP水平下降,是否也与认知损伤有一定关系?糖尿病微血管病变部位是否也同样存在这种能量代谢障碍以及其具体机制如何目前尚未见相关研究。氧化应激是糖尿病微血管病变产生的一个非常关键的致病机制,尽管细胞内存在铜锌超氧化物岐化酶(SOD1)、锰超氧化物岐化酶(SOD2)、过氧化氢酶(CAT)及脂质过氧化物酶(GPX)等多种抗氧化酶,然而高糖刺激时血管内皮细胞仍然会产生大量氧自由基。因此我们猜测高糖刺激时脑微血管内皮细胞,尤其氧自由基大量产生的线粒体部位某些关键的抗氧化酶可能出现了调控障碍,影响了自由基的清除,导致细胞ATP水平下降。解耦联蛋白(UCP)系统在线粒体内具有降低ATP生成和清除自由基的双重功能,线粒体内抗氧化酶的调控障碍,是否可能会引起解耦联蛋白的上调,从而进一步导致细胞ATP水平下降。
     为验证我们的假设,我们通过体外培养的小鼠脑微血管内皮细胞系bEnd.3,采用H2DCF荧光法检测氧自由基(ROS)生成,RT-PCR检测高糖刺激下内皮细胞SOD1、SOD2、GPX、CAT、UCP1、UCP2、UCP3、UCP4、UCP5的表达,并通过werstern blot法检测内皮细胞内SOD2蛋白水平。结果显示高糖刺激10小时抗氧化酶SOD2、GPX、CAT的mRNA水平无明显变化,SOD1mRNA水平略有增高;SOD1、SOD2的mRNA水平在高糖刺激24小时后有明显增加,但是SOD2蛋白水平在高糖刺激48小时内并无明显增加,蛋白酶体抑制剂MG132能显著减少高糖下SOD2蛋白水平,提示高糖下SOD2的蛋白合成可能受到一定程度抑制;我们还观察到NF-kB抑制剂及显性负性突变体IkB (Dominant negtive IkB)和P13K抑制剂能上调高糖状态下的SOD2蛋白水平,而NF-kB抑制剂对高糖下SOD2 mRNA水平无明显影响,提示NF-kB可能是通过提高高糖下SOD2蛋白合成率起作用,NF-KB抑制剂对高糖下的氧自由基生成也显示出抑制作用。另外我们还观察到24小时高糖刺激下脑微血管内皮细胞能同时上调解耦联蛋白(UCP4.UCP5)mRNA水平,而对UCP1及UCP2无明显影响。NF-kB抑制剂有降低UCP5基因表达的趋势,但没有达到显著性,提示UCP5激活可能还有其他因素参与。我们也观察到高糖刺激能显著降低脑微血管内皮细胞的ATP水平,而NF-kB抑制剂有升高ATP水平的趋势但没有能达到显著性,可能与NF-kB抑制剂对UCP作用不明显有关。
     我们的研究结果提示高糖确实导致了脑微血管内皮细胞内SOD2蛋白翻译障碍,NF-kB激活可能参与其中;高糖同时也引起脑微血管内皮细胞内UCP4及UCP5上调,但这种上调并非完全由SOD2调控障碍引起;高糖显著性的导致了脑微血管内皮细胞ATP水平下降,但是否与SOD2调控障碍以及UCP蛋白上调密切相关还需进一步研究。
     第二部分
     白藜芦醇对高糖下脑微血管内皮细胞NADPH氧化酶的影响及干预机制
     近年来越来越多的证据提示,高糖刺激下还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶活性增高引起的氧化应激反应对糖尿病微血管和大血管病变的病情发展起重要作用。NADPH氧化酶广泛分布于血管内皮细胞,具有产生活性氧簇(ROS)的功能,尤其在细胞因子、高糖、高脂等作用下可以产生更高水平的ROS。白藜芦醇(Resveratrol)是一种常见于葡萄、虎杖等植物中的一种多酚类化合物,目前的研究显示它具有抗氧化、抗肿瘤、抗炎以及延缓衰老等多种药理功能,流行病学调查也显示白藜芦醇对心血管有显著的保护作用。白藜芦醇良好的抗氧化作用是否是能通过作用于糖尿病状态下脑微血管内皮细胞NADPH氧化酶,以降低细胞损伤水平?本课题在离体水平研究了白藜芦醇在高糖所致脑微血管内皮细胞损伤中的保护机制以及对NADPH氧化酶的影响。
     我们在标准糖浓度下(5.5mM)体外培养bEnd.3细胞系并利用高糖(25mM)刺激细胞,用H2DCF-DA、MTT、Hoechst 33258及化学发光法检测高糖下脑微血管内皮细胞氧化应激水平、细胞活性、凋亡状况及NADPH氧化酶活性。RT-PCR和Western blot分别在mRNA、蛋白质水平检测高糖刺激下NADPH氧化酶亚基NOX1、NOX2、p22phox表达情况。结果发现高糖刺激下脑微血管内皮细胞氧化应激水平显著增加,细胞活性降低,凋亡增加。同时NADPH氧化酶活性增加,其亚基NOX1基因表达增加,蛋白水平升高,而NOX2及p22phox亚基mRNA水平无明显变化。NADPH氧化酶抑制香草乙酮(apocynin)及白藜芦醇能显著降低高糖刺激下脑微血管内皮细胞氧化应激水平和凋亡水平;白藜芦醇同时能降低NADPH氧化酶活性,降低NOX1 mRNA及蛋白水平。实验同时证实高糖能激活NF-kB信号通路,NF-kB抑制剂及显性负性突变体IkB (Dominant negative IkB)能显著抑制高糖下NOX1亚基的蛋白水平升高,而白藜芦醇也能抑制高糖下NF-kB的激活,提示白藜芦醇作用于NADPH氧化酶可能与NF-kB通路相关。上述结果提示NADPH氧化酶介导了高糖引起的脑微血管氧化应激反应,白藜芦醇能通过抑制NADPH氧化酶NOX1的蛋白表达从而抑制NADPH氧化酶活性,在糖尿病脑微血管病变中发挥抗氧化作用。
To study the effect of hyperglycemia on antioxidase gene expression and ATP level in brain microvascular endothelial cells(BMESs). Mouse brain microvascular endothelial cells line bEnd.3 was used. Reactive oxygen species (ROS) producrion was measured using 2'7'-dichlorofluorescin diacetate (DCFH-DA); SOD1,SOD2,GPX,CAT,UCP1,UCP2,UCP3,UCP4 and UCP5 gene expression were determined in bEnd.3 under high glucose(25mM) or normal glucose(5.5mM) by reverse transcription PCR;We also determined the protein level of SOD2 and the effect of inhibitors of PI3K,NF-kB,JNK,PKC on protein level of SOD2.We found that hyperglycemia can significantly increased the mRNA levels of SOD1,SOD2,UCP4 and UCP5,while there were no increase in protein of SOD2 found under hyperglycemia condition.The inhibitor of NF-kB and PI3K can increase the protein level of SOD2 in hyperglycemia,while the inhibitors of JNK,PKC have little effect.At the same time,we found the inhibitor of NF-kB have no effect on the mRNA level of SOD2 and UCP5 under hyperglycemia.Hyperglycemia also can reduce the ATP level of bEnd.3 while the inhibitor of NF-kB could not significant increase the ATP level of bEnd.3 under hyperglyceia. These results sugget that hyperglycemia inhibit SOD2 protein synthesis maybe partial through NF-kB pathway in spite of increased mRNA level; The increased gene expression of UCP4 and UCP5 and the decreased ATP level have no significant relative with the protein level of SOD2.
     Elevated oxidative stress plays an important role in diabetes-associated micro vasuclar disease in which NADPH oxidases maybe a major source of ROS generation.In this study we tested the hypothesis that high glucose induced oxidative stress was associated with changes in the expression of NADPH oxidase subunits and resveratrol can counteract this change. Fluoresence labelling with dihydroethidum,lucigenin-enhenced chemiluminescence, polymerase chain reaction,western blotting were empbyed to determine oxidative stress,NADPH oxidase activity and NADPH oxidse subunits mRNA and protein expression in cell cultures of mouse brain microvessel endothelial cells(bEnd.3).High glucose enhenced NADPH oxidase activity and ROS production in bEnd.3.High glucose also increased protein and mRNA level of NADPH catalytic isoform Noxl but had little effect on mRNA level of NOX2 and p22phox. Inhibition of NADPH oxidase activity by apocynin can significant reduced high glucose induced ROS production. The increases of NADPH oxidase activity,Noxl protein and mRNA level were significant suppressed by resveratrol which pretect endothelial cells from injury.High glucose increased NOX1 protein level was decreased by the inhibitor of NF-kB sulfasalazine and Resveratrol can inhibit the NF-kB activity by suppressing high glucose increased phosphate-IkB-alpha.These results suggest that Resveratrol could inhibite the NADPH oxidase activity through NF-kB pathway which can protect brain microvessel endothelial cells from oxidative stress damage induced by high glucose.
引文
[1]U. Menon, R.E. Kelley, Subcortical ischemic cerebrovascular dementia, Int Rev Neurobiol,84 (2009) 21-33.
    [2]AL. Christman, T.D.Vannorsdall, G.D. Pearlson, F. Hill-Briggs, D.J. Schretlen, Cranial volume, mild cognitive deficits, and functional limitations associated with diabetes in a community sample, Arch Clin Neuropsychol,25 (2010) 49-59.
    [3]H. Umegaki, Pathophysiology of cognitive dysfunction in older people with type 2 diabetes: vascular changes or neurodegeneration?, Age Ageing,39 (2010) 8-10.
    [4]M. Rastogi, RP. Ojha, G.V Rajamanickam, A. Agrawal, A Aggarwal, G.P. Dubey, Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain, Free Radic Res,42 (2008) 999-1005.
    [5]M. Brownlee, The pathobiology of diabetic complications:a unifying mechanism, Diabetes,54 (2005) 1615-1625.
    [6]T.M. el-Masry, MA Zahra, M.M. el-Tawil, R.A Khalifa, Manganese superoxide dismutase alanine to valine polymorphism and risk of neuropathy and nephropathy in Egyptian type 1 diabetic patients, Rev Diabet Stud,2 (2005) 70-74.
    [7]X. Du, T. Matsumura, D. Edelstein, L. Rossetti, Z. Zsengeller, C. Szabo, M. Brownlee, Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells, J Clin Invest,112 (2003) 1049-1057.
    [8]AM. Vincent, J.W. Russell, K.A Sullivan, C. Backus, J.M. Hayes, L.L. McLean, E.L. Feldman, SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy, Exp Neurol,208 (2007) 216-227.
    [9]N. Nath, S.N. Chari, AB. Rathi, Superoxide dismutase in diabetic polymorphonuclear leukocytes, in: Diabetes,1984, pp.586-589.
    [10]Y Kishi, K.K. Nickander, J.D. Schmelzer, P.A Low, Gene expression of antioxidant enzymes in experimental diabetic neuropathy, J Peripher Nerv Syst,5 (2000) 11-18.
    [11]M. Garcia-Ramirez, G. Francisco, E. Garcia-Arumi, C. Hernandez, R. Martinez, AL. Andreu, R. Simo, Mitochondrial DNA oxidation and manganese superoxide dismutase activity in peripheral blood mononuclear cells from type 2 diabetic patients, Diabetes Metab,34 (2008) 117-124.
    [12]C. Quijano, L. Castro, G. Peluffo, V.Valez, R. Radi, Enhanced mitochondrial superoxide in hyperglycemic endothelial cells:direct measurements and formation of hydrogen peroxide and peroxynitrite, Am J Physiol Heart Circ Physiol,293 (2007) H3404-3414.
    [13]T. Jung, B. Catalgol, T. Grune, The proteasomal system, Mol Aspects Med,30(2009) 191-296.
    [14]S.A Comhair, W. Xu, S. Ghosh, F.B. Thunnissen, A Almasan, W.J. Calhoun, AJ. Janocha, L. Zheng, S.L. Hazen, S.C. Erzurum, Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity, Am J Pathol,166 (2005) 663-674.
    [15]KS. Echtay, D. Roussel, J. St-Pierre, M.B. Jekabsons, S. Cadenas, J.A Stuart, J.A Harper, S.J. Roebuck, A Morrison, S. Pickering, J.C. Clapham, M.D. Brand, Superoxide activates mitochondrial uncoupling proteins, Nature,415 (2002) 96-99.
    [16]A. Eid, S. Bodin, B. Ferrier, H. Delage, M. Boghossian, M. Martin, G. Baverel, A. Conjard, Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats, J Am Soc Nephrol,17(2006)398-405.
    [17]KR. Hegde, M.G. Henein, S.D.Varma, Establishment of mouse as an animal model for study of diabetic cataracts:biochemical studies, Diabetes Obes Metab,5 (2003) 113-119.
    [18]S. Munusamy, L.A MacMillan-Crow, Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells, Free Radic Biol Med,46 (2009) 1149-1157.
    [19]L. Gao, G.E. Mann,Vascular NAD(P)H oxidase activation in diabetes:a double-edged sword in redox signalling, Cardiovasc Res,82 (2009) 9-20.
    [20]Y Cui, X. Xu, H. Bi, Q. Zhu, J. Wu, X. Xia, R. Qiushi, P.C. Ho, Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose:the role of reactive oxygen species in diabetic retinopathy, Exp Eye Res,83 (2006) 807-816.
    [21]M.A Catherwood, L.A. Powell, P. Anderson, D. McMaster, P.C. Sharpe, E.R. Trimble, Glucose-induced oxidative stress in mesangial cells, Kidney Int,61 (2002) 599-608.
    [22]C.L. Allen, U. Bayraktutan, Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood-brain barrier hyperpermeability, Diabetes Obes Metab, (2009).
    [23]C.A Wolkow, W,B. Iser, Uncoupling protein homologs may provide a link between mitochondria, metabolism and lifespan, Ageing Res Rev,5 (2006) 196-208.
    [24]L. Alan, K Smolkova, E. Kronusova, J. Santorova, P. Jezek, Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues, J Bioenerg Biomembr, (2009).
    [25]G. Patane, M. Anello, S. Piro, R. Vigneri, F. Purrello, AM. Rabuazzo, Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-gamma inhibition, Diabetes,51 (2002) 2749-2756.
    [26]J.P. Silva, I.G. Shabalina, E. Dufour, N. Petrovic, E.C. Backlund, K. Hultenby, R. Wibom, J. Nedergaard, B. Cannon, N.G. Larsson, SOD2 overexpression:enhanced mitochondrial tolerance but absence of effect on UCP activity, Embo J,24 (2005) 4061-4070.
    [27]J.D. Huber, Diabetes, cognitive function, and the blood-brain barrier, Curr Pharm Des,14 (2008) 1594-1600.
    [28]T. Nishikawa, D. Edelstein, X.L. Du, S. Yamagishi, T. Matsumura, Y Kaneda, M.A. Yorek, D. Beebe, P.J. Oates, H.P. Hammes, I. Giardino, M. Brownlee, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature,404 (2000) 787-790.
    [29]P. Newsholme, E.P. Haber, S.M. Hirabara, E.L. Rebelato, J. Procopio, D. Morgan, H.C. Oliveira-Emilio, A.R. Carpinelli, R. Curi, Diabetes associated cell stress and dysfunction:role of mitochondrial and non-mitochondrial ROS production and activity, J Physiol,583 (2007) 9-24.
    [30]P.A Barry-Lane, C. Patterson, M. van der Merwe, Z. Hu, S.M. Holland, E.T. Yeh, M.S. Runge, p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice, J Clin Invest,108 (2001) 1513-1522.
    [31]S.M. Nam, M.Y Lee, J.H. Koh, J.H. Park, J.Y Shin, YG. Shin, S.B. Koh, E.Y Lee, C.H. Chung, Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats:the role of reducing oxidative stress in its protective property, Diabetes Res Clin Pract,83 (2009) 176-182.
    [32]V Cucciolla, A. Borriello, A. Oliva, P. Galletti, V Zappia, F. Della Ragione, Resveratrol:from basic science to the clinic, Cell Cycle,6 (2007) 2495-2510.
    [33]G. Spanier, H. Xu, N. Xia, S. Tobias, S. Deng, L. Wojnowski, U. Forstermann, H. Li, Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPxl) and NADPH oxidase subunit (Nox4), J Physiol Pharmacol, 60 Suppl4 (2009) 111-116.
    [34]D.W. Park, K Baek, J.R. Kim, J.J. Lee, S.H. Ryu, B.R. Chin, S.H. Baek, Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1, Exp Mol Med,41 (2009) 171-179.
    [35]S.E. Chow, YC. Hshu, J.S. Wang, J.K Chen, Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages, J Appl Physiol,102 (2007) 1520-1527.
    [36]The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group, N Engl J Med,329 (1993) 977-986.
    [37]Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group, Lancet,352 (1998) 837-853.
    [38]AM. Calderoni, V Biaggio, M. Acosta, L. Oliveros, F. Mohamed, M.S. Gimenez, Cadmium exposure modifies lactotrophs activity associated to genomic and morphological changes in rat pituitary anterior lobe, Biometals, (2009).
    [39]D. Meng, D.D. Lv, J. Fang, Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Racl in vascular smooth muscle cells, Cardiovasc Res,80 (2008) 299-308.
    [40]H. Ding, M. Aljofan, C.R. Triggle, Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells, J Cell Physiol,212 (2007) 682-689.
    [41]S. Chrissobolis, F.M. Faraci, The role of oxidative stress and NADPH oxidase in cerebrovascular disease, Trends Mol Med,14 (2008) 495-502.
    [42]M.A Carluccio, M.A Ancora, M. Massaro, M. Carluccio, E. Scoditti, A. Distante, C. Storelli, R. De Caterina, Homocysteine induces VCAM-1 gene expression through NF-kappaB and NAD(P)H oxidase activation:protective role of Mediterranean diet polyphenolic antiox idants, Am J Physiol Heart Circ Physiol,293 (2007) H2344-2354.
    [43]E. Crimi, L.J. Ignarro, C. Napoli, Microcirculation and oxidative stress, Free Radic Res,41 (2007) 1364-1375.
    [44]K Bedard, K.H. Krause, The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology, Physiol Rev,87 (2007) 245-313.
    [45]M.A Askar, N.Z. Baquer, Changes in the activity of NADH-oxidase in rat tissues during experimental diabetes, Biochem Mol Biol Int,34 (1994) 909-914.
    [46]C. Cheret, A. Gervais, A. Lelli, C. Colin, L. Amar, P. Ravassard, J. Mallet, A. Cumano, KH. Krause, M. Mallat, Neurotoxic activation of microglia is promoted by a noxl-dependent NADPH oxidase, J Neurosci,28 (2008) 12039-12051.
    [47]K.A Jackman, AA Miller, G.R. Drummond, C.G. Sobey, Importance of NOX 1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke, Brain Res,1286 (2009) 215-220.
    [48]D. Closhen, B. Bender, H.J. Luhmann, C.R. Kuhlmann, CRP-induced levels of oxidative stress are higher in brain than aortic endothelial cells, Cytokine, (2010).
    [49]A Coyoy, A. Valencia, A Guemez-Gamboa, J. Moran, Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons, Free Radic Biol Med,45 (2008) 1056-1064.
    [50]O. Ates, S.R. Cayli, N. Yucel, E. Altinoz, A Kocak, M.A Durak, Y Turkoz, S. Yologlu, Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats, J Clin Neurosci,14 (2007) 256-260.
    [51]M.A Carluccio, M.A Ancora, M. Massaro, M. Carluccio, E. Scoditti, A Distante, C. Storelli, R. De Caterina, Homocysteine induces VCAM-1 gene expression through NF-kappa B and NAD(P)H oxidase activation:protective role of Mediterranean diet polyphenolic antioxidants, Am J Physiol-Heart C,293 (2007) H2344-H2354.
    [52]I. Granic, AM. Dolga, I.M. Nijholt, G. van Dijk, U.L. Eisel, Inflammation and NF-kappaB in Alzheimer's disease and diabetes, J Alzheimers Dis,16(2009) 809-821.
    [53]S. Ohga, K Shikata, K Yozai, S. Okada, D. Ogawa, H. Usui, J. Wada, Y Shikata, H. Makino, Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation, Am J Physiol Renal Physiol,292 (2007) F1141-1150.
    [34]A Aljada, J. Friedman, H. Ghanim, P. Mohanty, D. Hofmeyer, A Chaudhuri, P. Dandona, Glucose ingestion induces an increase in intranuclear nuclear factor kappaB, a fall in cellular inhibitor kappaB, and an increase in tumor necrosis factor alpha messenger RNA by mononuclear cells in healthy human subjects, Metabolism,55 (2006) 1177-1185.
    [55]K.V Ramana, B. Friedrich, S. Srivastava, A Bhatnagar, S.K Srivastava, Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase, Diabetes,53(2004)2910-2920.
    [56]A.J. Krentz, G. Clough, C.D. Byrne, Interactions between microvascular and macrovascular disease in diabetes:pathophysiology and therapeutic implications, Diabetes Obes Metab,9 (2007) 781-791.
    [57]T.Y Wong, R. McIntosh, Systemic associations of retinal microvascular signs:a review of recent population-based studies, Ophthalmic Physiol Opt,25 (2005) 195-204.
    [58]N. Patton, T. Aslam, T. MacGillivray, A. Pattie, I.J. Deary, B. Dhillon, Retinal vascular image analysis as a potential screening tool for cerebrovascular disease:a rationale based on homology between cerebral and retinal microvasculatures, J Anat,206 (2005) 319-348.
    [59]C. Qiu, M.F. Cotch, S. Sigurdsson, M. Garcia, R. Klein, F. Jonasson, B.E. Klein, G. Eiriksdottir, T.B. Harris, M.A. van Buchem, V Gudnason, L.J. Launer, Retinal and cerebral microvascular signs and diabetes:the age, gene/environment susceptibility-Reykjavik study, Diabetes,57 (2008) 1645-1650.
    [60]D.R. Tomlinson, N.J. Gardiner, Glucose neurotoxicity, Nat Rev Neurosci,9 (2008) 36-45.
    [61]G.E. Mann, D.L. Yudilevich, L. Sobrevia, Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells, Physiol Rev,83 (2003) 183-252.
    [62]J.Z. Zhang, L. Gao, M. Widness, X. Xi, T.S. Kern, Captopril inhibits glucose accumulation in retinal cells in diabetes, Invest Ophthalmol Vis Sci,44 (2003) 4001-4005.
    [63]R. Fernandes, K Suzuki, AK. Kumagai, Inner blood-retinal barrier GLUT1 in long-term diabetic rats:an immunogold electron microscopic study, Invest Ophthalmol Vis Sci,44 (2003) 3150-3154.
    [64]AK Kumagai, S.A. Vinores, W.M. Pardridge, Pathological upregulation of inner blood-retinal barrier Glutl glucose transporter expression in diabetes mellitus, Brain Res,706 (1996) 313-317.
    [65]J.F. Pouliot, R. Beliveau, Palmitoylation of the glucose transporter in blood-brain barrier capillaries, Biochim Biophys Acta,1234 (1995) 191-196.
    [66]Y Omidi, L. Campbell, J. Barar, D. Connell, S. Akhtar, M. Gumbleton, Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies, Brain Res,990 (2003) 95-112.
    [67]R. Fernandes, A.L. Carvalho, A Kumagai, R. Seica, K Hosoya, T. Terasaki, J. Murta, P. Pereira, C. Faro, Downregulation of retinal GLUT1 in diabetes by ubiquitinylation, Mol Vis,10 (2004) 618-628.
    [68]E. Tolia, I.P. Fouyas, PAT. Kelly, I.R. Whittle, The blood-brain barrier in diabetes mellitus:A critical review of clinical and experimental findings, Int Congr Ser,1277 (2005) 244-256 268.
    [69]G.K. Gandhi, K.K. Ball, N.F. Cruz, G.A Dienel, Hyperglycaemia and diabetes impair gap junctional communication among astrocytes, ASN Neuro,2 (2010) e00030.
    [70]O. Heikkila, N. Lundbom, M. Timonen, P.H. Groop, S. Heikkinen, S. Makimattila, Evidence for abnormal glucose uptake or metabolism in thalamus during acute hyperglycaemia in type 1 diabetes-a (1)H MRS study, Metab Brain Dis, (2010).
    [71]O. Heikkila, S. Makimattila, M. Timonen, P.H. Groop, S. Heikkinen, N. Lundbom, Cerebellar Glucose During Fasting and Acute Hyperglycemia in Nondiabetic Men and in Men with Type 1 Diabetes, Cerebellum, (2010).
    [72]P.A. Gaudieri, R. Chen, T.F. Greer, C.S. Holmes, Cognitive function in children with type 1 diabetes:a meta-analysis, Diabetes Care,31 (2008) 1892-1897.
    [73]E.R. Seaquist, The final frontier:how does diabetes affect the brain?, Diabetes,59 (2010) 4-5.
    [74]E. van Duinkerken, M. Klein, N.S. Schoonenboom, RP. Hoogma, AC. Moll, F.J. Snoek, C.J. Stam, M. Diamant, Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications:a magnetoencephalography study, Diabetes,58 (2009) 2335-2343.
    [75]L. Quagliaro, L. Piconi, R. Assaloni, L. Martinelli, E. Motz, A. Ceriello, Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role of protein kinase C and NAD(P)H-oxidase activation, Diabetes,52 (2003) 2795-2804.
    [76]E.S.C. de Lima, C.P. Arnoni, N. Schor, M.A. Boim, Effects of glucose deprivation or glucose instability on mesangial cells in culture, Am J Nephrol,29 (2009) 222-229.
    [77]J. Sun, Y Xu, H. Deng, S. Sun, Z. Dai, Y Sun, Intermittent high glucose exacerbates the aberrant production of adiponectin and resistin through mitochondrial superoxide overproduction in adipocytes, J Mol Endocrinol,44 (2010) 179-185.
    78] L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes, JAMA,295 (2006) 1681-1687.
    [79]J.A. Gimeno-Orna, F.J. Castro-Alonso, B. Boned-Juliani, L.M. Lou-Arnal, Fasting plasma glucose variability as a risk factor of retinopathy in Type 2 diabetic patients, J Diabetes Complications,17 (2003) 78-81.
    [80]E.S. Kilpatrick, A.S. Rigby, S.L. Atkin, A1C variability and the risk of microvascular complications in type 1 diabetes:data from the Diabetes Control and Complications Trial, Diabetes Care,31 (2008)2198-2202.
    [81]A Major-Pedersen, N. Ihlemann, T.S. Hermann, B. Christiansen, H. Dominguez, B. Kveiborg, D.B. Nielsen, O.L. Svendsen, L. Kober, C. Torp-Pedersen, Effects of oral glucose load on endothelial function and on insulin and glucose fluctuations in healthy individuals, Exp Diabetes Res,2008 (2008) 672021.
    [82]I.M. Wentholt, W. Kulik, R.P. Michels, J.B. Hoekstra, J.H. DeVries, Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes, Diabetologia,51 (2008) 183-190.
    [83]S.E. Siegelaar, W. Kulik, H. van Lenthe, R. Mukherjee, J.B. Hoekstra, J.H. Devries, Arandomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress, Diabetes Obes Metab, (2009).
    [84]E.S. Kilpatrick, AS. Rigby, S.L. Atkin, The effect of glucose variability on the risk of microvascular complications in type 1 diabetes, Diabetes Care,29(2006) 1486-1490.
    [85]G. Zoppini, G.Verlato, G. Targher, S. Casati, E. Gusson, V Biasi, F. Perrone, E. Bonora, M. Muggeo, Is fasting glucose variability a risk factor for retinopathy in people with type 2 diabetes?, Nutr Metab Cardiovasc Dis, (2008).
    [86]F. Zaccardi, D. Pitocco, G. Ghirlanda, Glycemic risk factors of diabetic vascular complications:the role of glycemic variability, Diabetes Metab Res Rev,25 (2009) 199-207.
    [87]Z. Laron, Insulin and the brain, Arch Physiol Biochem,115 (2009) 112-116.
    [88]O.P. Romanko, M.I. Ali, J.D. Mintz, D.W. Stepp, Insulin resistance impairs endothelial function but not adrenergic reactivity or vascular structure in fructose-fed rats, Microcirculation,16 (2009) 414-423.
    [89]J.M. Newman, R.M. Dwyer, P. St-Pierre, S.M. Richards, M.G. Clark, S. Rattigan, Decreased microvascular vasomotion and myogenic response in rat skeletal muscle in association with acute insulin resistance, J Physiol,587 (2009) 2579-2588.
    [90]P. Zunker, A. Schick, H.C. Buschmann, D. Georgiadis, D.G. Nabavi, M. Edelmann, E.B. Ringelstein, Hyper insulin ism and cerebral microangiopathy, Stroke,27(1996) 219-223.
    [91]M.A Yorek, M.R. Stefani, S.A. Moore, Acute and Chronic Exposure of Mouse Cerebral Microvessel Endothelial-Cells to Increased Concentrations of Glucose and Galactose-Effect on Myoinositol Metabolism, Pge2 Synthesis, and Na+/K+-Atpase Transport Activity, Metabolism-Clinical and Experimental,40 (1991) 347-358.
    [92]J.I. Malone, S. Hanna, S. Saporta, R.F. Mervis, C.R. Park, L. Chong, D.M. Diamond, Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory, Pediatric Diabetes,9(2008)531-539.
    [93]G. Orasanu, J. Plutzky, The Pathologic Continuum of Diabetic Vascular Disease, Journal of the American College of Cardiology,53 (2009) S35-S42.
    [94]Y Niiya, T. Abumiya, H. Shichinohe, S. Kuroda, S. Kikuchi, M. Ieko, S.I. Yamagishi, M. Takeuchi, T. Sato, Y Iwasaki, Susceptibility of brain microvascular endothelial cells to advanced glycation end products-induced tissue factor upregulation is associated with intracellular reactive oxygen species, Brain Research,1108 (2006) 179-187.
    [95]P. Perez-Matute, M.A Zulet, J.A Martinez, Reactive species and diabetes:counteracting oxidative stress to improve health, Current Opinion in Pharmacology,9 (2009) 771-779.
    [96]YJ. Liao, A Ueno, T. Nakagawa, C. Huang, K. Kanenishi, M. Onodera, H. Sakamoto, Oxidative damage in cerebral vessels of diabetic db/db mice, Diabetes-Metab Res,21 (2005) 554-559.
    [97]YX. Kang, M.H. Hu, Y.H. Zhu, X. Gao, M.W. Wang, Antioxidative effect of the herbal remedy Qin Huo Yi Hao and its active component tetramethylpyrazine on high glucose-treated endothelial cells, Life Sciences,84 (2009) 428-436.
    [98]M.Y El-Mir, D. Detaille, R.V G, M. Delgado-Esteban, B. Guigas, S. Attia, E. Fontaine, A. Almeida, X. Leverve, Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons, J Mol Neurosci,34 (2008) 77-87.
    [99]K.I. Alexandraki, C. Piperi, P.D. Ziakas, N.V. Apostolopoulos, K. Makrilakis, V Syriou, E. Diamanti-Kandarakis, G. Kaltsas, A. Kalofoutis, Cytokine secretion in long-standing diabetes mellitus type 1 and 2:associations with low-grade systemic inflammation, J Clin Immunol,28 (2008) 314-321.
    [100]G.L. King, The role of inflammatory cytokines in diabetes and its complications, J Periodontol,79 (2008) 1527-1534.
    [101]K. Sahakyan, B. Klein, K. Lee, M. Tsai, R. Klein, Inflammatory and endothelial dysfunction markers and proteinuria in persons with type 1 diabetes mellitus, Eur J Endocrinol, (2010).
    [102]A.D. Meleth, E. Agron, C.C. Chan, G.F. Reed, K. Arora, G. Byrnes, K.G. Csaky, F.L. Ferris, E.Y Chew, Serum inflammatory markers in diabetic retinopathy, Invest Ophth Vis Sci,46 (2005) 4295-4301.
    [103]J. Beauquis, F. Homo-Delarche, M.H. Giroix, J. Ehses, J. Coulaud, P. Roig, B. Portha, A.F. De Nicola, F. Saravia, Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats, Exp Neurol,222 (2010) 125-134.
    [104]K. Matrougui, Diabetes and microvascular pathophysiology:role of epidermal growth factor receptor tyrosine kinase, Diabetes Metab Res Rev,26 (2010) 13-16.
    [105]S. Roy, K. Trudeau, Y Behl, S. Dhar, A Chronopoulos, New insights into hyperglycemia-induced molecular changes in microvascular cells, J Dent Res,89 (2010) 116-127.
    [106]P. Piotrowski, B. Gajkowska, H. Olszewska, M. Smialek, Electron microscopy studies on experimental diabetes and cerebral ischemia in the rat brain, Folia Neuropathol,37 (1999) 256-263.
    [107]W. Bakker, E.C. Eringa, P. Sipkema, VW. van Hinsbergh, Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity, Cell Tissue Res,335 (2009) 165-189.
    [108]S. Gulturk, A. Demirkazik, I. Kosar, A. Cetin, H.S. Dokmetas, T. Demir, Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotoc in-induced diabetic rats, Bioelectromagnetics,31 (2010) 262-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700