基于核酸适配子和纳米颗粒的朊蛋白检测及活细胞标记成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朊病毒病(prion diseases)是一类致死的神经系统退行性疾病,由细胞型朊蛋白(cellular prion protein, PrPC)经构象转变形成致病型朊蛋白(scrapie prion protein, PrPSc)导致PrPc功能缺陷而引起。上世纪末,疯牛病在欧洲大范围爆发,并跨越物种屏障引起了人的新型克雅氏病,从而引起全世界更多学者对朊蛋白的强烈关注。朊病毒病的诊断尤其是早期诊断对监控该疾病的流行传播具有重大意义,但基于抗体的传统检测方法因抗体制备复杂、不易保存等缺点而难以应用于早期诊断中,因此亟待建立一种简单、快速、灵敏的朊病毒病早期诊断方法。对于已经确诊为朊病毒病的患者,目前尚无有效治疗方法,一般认为首选的治疗手段是阻止PrPc转变为PrPSc,或寻求一种使PrPC结构稳定和使PrPSc结构失稳的药物。另外,研究朊蛋白在细胞内的分布和运转途径对于朊病毒病的诊断和治疗也具有一定的指导意义,而目前在这方面的研究结果都还处于争论之中。
     核酸适配子是一类新兴的能与靶物特异性结合的小分子配体,具有抗体无法比拟的优势,因此它逐渐成为抗体替代物在各个领域得到广泛应用。纳米科学与生物科学、医学的相互交叉、深度融合催生了纳米生物医学的研究发展,纳米材料因其独特的物理化学特性在生物医学检测和标记成像领域展现出巨大的潜力。
     本文将核酸适配体和纳米材料应用于朊蛋白的构象转变、体外检测、活细胞标记成像研究中,主要内容如下:
     1.α,β,γ,δ-四(对磺苯基)卟啉与细胞型朊蛋白的体外作用研究。相关研究表明四吡咯类化合物可抑制PrPSc形成,故本文以α,β,γ,δ-四(对磺苯基)卟啉(TPPS4)作为四吡咯类化合物的代表,主要通过共振光散射光谱,结合紫外-可见光吸收光谱和荧光光谱对TPPS4与PrPC在体外的相互作用进行了表征。结果表明PrPC诱导TPPS4分子发生了J-型聚集,这种J-型聚集体能够很好地与PrPC结合,从而有效地抑制PrPC向PrPSc转变。因此,共振光散射技术可以为研究四吡咯类化合物抑制PrPC向PrPSc转变的机制提供一种新的表征方法;同时,研究结果也暗示四吡咯类化合物在朊病毒病的治疗方面具有很大潜力。
     2.基于多壁碳纳米管和荧光染料之间的能量转移检测朊蛋白。根据多壁碳纳米管可作为一种很好的荧光淬灭剂设计了一种单标记的链状分子灯标,TAMRA-aptamer通过π-π堆积作用和静电吸附作用缠绕到碳纳米管侧壁,TAMRA和碳纳米管之间发生能量转移和电子转移,导致荧光淬灭。朊蛋白与aptamer结合使TAMRA远离碳纳米管侧壁,淬灭的荧光得到一定程度的恢复。结果表明,在朊蛋白浓度为4.08-81.67 nM时,恢复的荧光强度和朊蛋白浓度之间呈现很好的线性关系。与传统的抗体检测方法相比,本文所建立的方法简单、灵敏、选择性高。
     3.基于二硫化碳锚定核酸适配子修饰的银纳米探针用于细胞内的朊蛋白标记成像。本文将银纳米粒子作为发光元件,核酸适配子作为分子识别元件,用二硫化碳的双巯基将二者牢牢地锚定在一起,制备了一种银纳米光学探针。与常见的单巯基修饰、蛋白质静电吸附相比,双巯基锚定的银纳米探针具有更好的稳定性,不易被细胞内其它巯基化合物取代,也不受pH变化的影响。实验结果表明,该探针在细胞培养中显示出良好的生物相容性、稳定性和选择性,这些优良的特性使其在未来的生物医学成像、病变组织定位等方面具有极大的应用潜力。
Prion diseases, is well known as the causative pathogenic agent of central nervous system (CNS) degenerative disorders, a group of lethal neurodegenerative diseases. In prion diseases, the endogenous form (PrPC) undergoes a conformation rearrangement and generates duplicate copies of the pathological form (PrPSc), accompanied by physiochemical and biochemical defects of prion protein (PrP). At the end of the last century, large-scale mad cow disease, crossing the species barrier, broke out in Europe and caused a new type of human Creutzfeldt-Jakob disease, which created enormous concerns from the scholars around the world. Diagnosis of prion diseases, especially the early diagnosis at the presymptomatic stage is of great significance to control the epidemic spread of the disease. However, the traditional antibody-based detection methods are cumbered for widespread use by expensive, complex preparation and difficult to save. Consequently, it is urgent to establish a simple, rapid and sensitive method for early diagnosis of prion diseases. Until recently, there is no effective treatment for the patients suffering from prion disease, and the generally recognized preferred treatment is to restrain the conformation changes from PrPC to PrPSc, or to find a therapeutic drug which can stabilize the structure of PrPc or destabilize the structure of PrPSc. In addition, it is of great significance to study the distribution and transporting ways of prion protein incellular for the diagnosis and treatment of prion diseases, while the present findings in this area are still in debate.
     Aptamers, single-stranded oligonucleotides with a length of tens of nucleotides, is capable of binding with the target molecule specificly, taking the advantages that antibodies can not compare with. It has become a substitute of antibodies, and are widely used in various fields. In recent years, the cross-cutting and the deeply integration of nano-science, biological sciences and medicine give birth to the development of biomedical nanotechnology. Because of their unique physical and chemical characteristics, nanomaterials show great potential in the fields of biomedical testing and imaging.
     In this manuscript, aptamers and nanoparticles were used in the conformational transition, in vitro testing and in vivo imaging of prion protein. The mainly points are as follows:
     1.The interaction study of PrPC andα,β,γ,δ-tetrakis(4-sulfophenyl) porphine(TPPS4) in vitro. It has been reported that tetrapyrrole compounds can inhibit the formation of PrPSc, so we considered TPPS4 as a representation of tetrapyrrole compounds, and principally studied the interaction between Prion Protein and TPPS4 in vitro, mainly through the absorbance, fluorescence and resonance light scattering. The results showed that PrPc induced the J-aggregation of TPPS4, the J-aggregation species can bind well with PrPC, and then inhibit the formation of PrPSc, which suggests that tetrapyrrole compounds may become a potential therapeutic drug for prion diseases.
     2. Detection of prion protein based on energy transfer from fluorescent dyes to multi-walled carbon nanotubes. We proposed a molecular marker beacon, with only one end labeled with a fluorophore (TAMRA) acting as the energy donor and multiwalled carbon nanotubes (MWNTs) acting as the energy acceptor. TAMRA-aptamer were adsorbed to the carbon nanotube sidewall byπ-πstacking and electrostatic interaction, then energy transfered from TAMRA to MWNTs, resulting in fluorescence quenching of fluorophore. In the presence of target-PrPc, however, the aptamer can bind with them specificly to form a duplex, leaving the sidewall of the MWCNTs, and thus, the fluorescence is turned on. The results showed that the recovery of fluorescence intensity and concentration of the prion protein showed a good linear relationship at the concentration of 4.08-81.67 nM of prion protein. Compared with the traditional antibody detection methods, the method herein is simple, sensitive and high selective.
     3. Carbon disulfide (CS2) anchor-based aptamer modified silver nanoparticles (Ag NPs) probe used for intracellular protein imaging. In this article, Ag NPs-light emitting devices, and aptamers-molecular recognition element, were combinded together by CS2 to prepare a silver nano-optical probe, the dual-thiol of which can firmly anchored to the Ag NPs, while the other end can bind with aptamer. Compared with the common single thiol modification, protein adsorption, dual-thiol anchoring silver nano probe possess better stability, can not be replaced by other cellular sulfhydryl compounds, and are not easily influnced by pH change. Experimental results showed that the probe demonstrated good biocompatibility, stability and selectivity, which make it has great potential applications in the future for biomedical imaging, diseased tissue localization, and so on.
引文
[1].尹文;张久聪;宋涛,朊病毒蛋白的研究进展.细胞与分子免疫学杂志.2005,21(1),122-124.
    [2].张子民,朊病毒的研究现状.海峡药学.2007,19(3),9-12.
    [3].刘卓宝;洪琪;何华松,Prion蛋白分子生物学机制研究进展.上海预防医学杂志.2004,16(6),295-299.
    [4].张磊;王启贵;李宁,朊病毒研究的现状.生物技术通报.2001,1(122-124).
    [5].朱国萍;徐冲,朊病毒蛋白的分子生物学研究进展.生命的化学.1998,18(4),6-8.
    [6].Choi, C. J.; Kanthasamy, A., Anantharam, V.; Kanthasamy, A. G., Interaction of metals with prion protein:Possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 2006,27,777-787.
    [7].Aguzzi, A.; Polymenidou, M., Mammalian prion biology:one century of evolving concepts. Cell 2004,116,313-327.
    [8].Harris, D. A., Trafficking, turnover and membrane topology of PrP. Br. Med. Bull.2003,66, 71-85.
    [9].Taylor, D. R.; Whitehouse, I. J.; Hooper, N. M., Glypican-1 mediates both prion protein lipid raft association and disease isoform formation. PLoS Pathog.2009,5(11), e1000666.
    [10].Mironov, A., Cytosolic prion protein in neurons. J. Neurosci.2003,23,7183-7193.
    [11].Caughey, B.; Raymond, G. J., The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipase-sensitive. J. Biol. Chem.1991,266, 18217-18223.
    [12].Jeffrey, M., Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. Neurosci. Lett.1992,147,106-109.
    [13].Arnold, J. E., The abnormal isoform of the prion protein accumulates inlate-endosome-like organelles in scrapie-infected mouse brain. J. Pathol.1995,176,403-411.
    [14].McKinley, M. P., Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab. Invest.1991,65,622-630.
    [15].于厚卿;郝亮亮,朊粒蛋白正常生理功能研究进展.生理科学进展.2006,37(4),369-372.
    [16].高永军,朊蛋白生理功能的研究进展.医学神经病学神经外科学分册.2005,32(1),61-64.
    [17].Richard, S. M.; Ermonval, M.; Chebassier, C., Signal transducfion through prion protein.. Science.2000,289,1925-1928.
    [18].何丽华;李晟阳;沈国顺,朊病毒的研究进展.现行畜牧兽医.2006,1,45-47.
    [19].Wells, G.A.; Wilesmith, J. W., The neuropathology and epidemiology of bovine spongiform encephalopathy. Brain Pathol.1995,5,91-103.
    [20].Keulen, L. J. V.; Schreuder, B. E.; Meloen, R. H.; Mooij-Harkes, G.; Vromans, M. E.; Langeveld, J. P., Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J. Clin. Microbiol.1996,34,1228-1231.
    [21].Simmons, M. M.; Spiropoulos, J.; Hawkins, S. A. C.;.Bellworthy, S. J.; Tongue, S. C., Approaches to investigating transmission of spongiform encephalopathies in domestic animals using BSE as an exemple. Vet. Res.2008,39,34.
    [22].Telling, G. C., Transgenic mouse models of prion diseases Methods. Mol. Biol.2008,459, 249-263.
    [23].Sasaki, K.; Minaki, H.; Iwaki, T., Development of oligomeric prion-protein aggregates in a mouse model of prion disease. J. Pathol.2009,219 (1),123-130.
    [24].Keulen, L. J. v.; Schreuder, B. E.; Meloen, R. H.; den, B. M. P.-v.; Mooij-Harkes, G.; Vromans, M. E.; Langeveld, J. P., Immunohistochemical detection and localization of prion protein in brain tissue of sheep with natural scrapie. Vet. Pathol.1995,32,299-308.
    [25].Stack, M.; Jeffrey, M.; Gubbins, S.; Grimmer, S.; Gonzalez, L.; Martin, S., Monitoring for bovine spongiform encephalopathy in sheep in Great Britain 1998-2004. J. Gen. Virol.2006,87, 2099-2107.
    [26].Stack, M. J.; Chaplin, M. J.; Clark, J., Differentiation of prion protein glycoforms from naturally occurring sheep scrapie, sheep-passaged scrapie strains (CH1641 and SSBP1), bovine spongiform encephalopathy (BSE) cases and Romney and Cheviot breed sheep experimentally inoculated with BSE using two monoclonal antibodies. Acta. Neuropathol. (Berl.) 2002,104, 279-286.
    [27].Bird, S. M., European Union's rapid TSE testing in adult cattle and sheep:implementation and results in 2001 and 2002. Stat. Methods Med. Res.2003,12,261-278.
    [28].Butler, D., Brussels seeks BSE diagnostic test to screen European cattle. Nature 1998,395, 205-206.
    [29].Grassi, J.; Maillet, S.; Simon, S.; Morel, N., Progress and limits of TSE diagnostic tools. Vet. Res.2008,39,33.
    [30].Heim, D.; Wilesmith, J. W., Surveillance of BSE. Arch. Virol. Suppl.2000,127-133.
    [31].Moynagh, J.; Schimmel, H., Tests for BSE evaluated.Bovine spongiform encephalopathy. Nature 1999,400,105.
    [32].Moynagh, J.; Schimmel, H. T., he evaluation of tests for the diagnosis of transmissible spongiform encephalopathy in bovines. Report from the European Commission.[online] July 8, 1999, (1999).
    [33].Schimmel, H., The evaluation of five rapid tests for the diagnosis of transmissible spongiform encephalopathy in bovines (2nd study). Report from the European Commission.[online] March 27,2002, 2002.
    [34].Curin, S., Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt-Jacob's disease-affected and normal brain tissue. J. Biol. Chem.2004,279, 3694-3698.
    [35].Paramithiotis, E., A prion protein epitope selective for the pathologically misfolded conformation. Nature Med.2003,9,893-899.
    [36].Zou, W. Q.; Zheng, J.; Gray, D. M.; Gambetti, P.; Chen, S. G., Antibody to DNA detects scrapie but not normal prion protein. Proc. Natl. Acad. Sci. USA.2004,101 (5),1380-1385.
    [37].Mercey, R.; Lantier, I.; Maurel, M.-C.; Grosclaude, J.; Lantier, F.; Marc, D., Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns. Arch. Virol.2006,51,2197-2214.
    [38].Gilch, S.; Scha'tzl, H. M., Aptamers against prion proteins and prions. Cell. Mol. Life Sci.2009, 66,2445-2455.
    [39].Proske, D.; Gilch, S.; Wopfner, F.; Sch, H. M.; Winnacker, E.-L.; Famulok, M., Prion-protein-specific aptamer reduces PrPSc formation. Chem.BioChem.2002,3,717-725.
    [40].Takemura, K.; Wang, P.; Vorberg, I.; Surewicz, W.; Priola, S. A.; Kanthasamy, A.; Pottathil, R.; Chen, S. G.; Sreevatsan, S., DNA aptamers that bind to PrPC and Not PrPScshow sequence and structure specificity. Exp. Biol. Med.2006,231,204-214.
    [41].Ogasawara, D.; Hasegawa, H.; Kaneko, K.; Sode, K.; Ikebukuro, K., Screening of DNA aptamer against mouse pprion protein by competitive selection. Prion.2007,1 (4),248-254.
    [42].Rhie, A.; Kirby, L.; Sayer, N.; Wellesley, R.; Disterer, P.; Sylvester, I.; Gill, A.; Hope, J.; James, W.; Tahiri-Alaoui, A., Characterization of 2-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and Inhibit conversion. J. Biol. Chem.2003, 278 (41),39697-39705.
    [43].Sayer, N. M.; Cubin, M.; Rhie, A.; Bullock, M.; Tahiri-Alaoui, A.; James, W., Structural determinants of conformationally selective prion-binding aptamers. J. Biol. Chem. Commun. 2004,279 (13),13102-13109.
    [44].Sekiya, S.; Noda, K.; Nishikawa, F.; Yokoyama, T.; Kumar, P. K. R.; Nishikawa, S., Characterization and application of a novel RNA aptamer against the mouse prion protein. J. Biochem.2006,139,383-390.
    [45].Gilch, S.; Kehler, C.; Schatzl, H. M., Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation. J. Mol. Biol.2007,371,362-365.
    [46].King, D. J.; Safar, J. G.; Legname, G.; Prusiner, S. B., Thioaptamer interactions with prion proteins:sequence-specific and non-specific binding sites. J. Mol. Biol.2007,369,1001-1014.
    [47].Safar, J. G.; Kellings, K.; Serban, A.; Groth, D.; Cleaver, J. E.; Prusiner, S. B.; Riesner, D., Search for a prion-specific nucleic acid. J. Virol.2005,79 (16),10796-10806.
    [48].Sekiya, S.; Nishikawa, F.; Noda, K.; Kumar, P. K. R.; Yokoyama, T.; Nishikawa, S., In vitro selection of RNA aptamers against cellular and abnormal isoform of mouse prion protein. Nucleic Acids Symp. Ser.2005,49,361-362.
    [49].Gilch, S.; Nunziante, M.; Ertmer, A.; Schatzl, H. M., Strategies for eliminating PrPc as substrate for prion conversion and for enhancing PrPSc degradation. Vet. Microbiol.2007,123 (4), 377-386.
    [50].Kouassi, G. K.; Wang, P.; Sreevatan, S.; Irudayaraj, J., Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol. Prog.2007,23,1239-1244.
    [51].Hianik, T.; Porfireva, A.; Grman, I.; Evtugyn, G., EQCM biosensors based on DNA aptamers and antibodies for rapid detection of prions. Prot. Pept. Lett.2009,16 (4),363-367.
    [52].Bibby, D. F.; Gill, A. C.;Kirby, L.; Farquhar, C. F.; Bruce, M. E.; Garson, J. A., Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J. Virol.Meth.2008,151,107-115.
    [53].Weiss, S.; Proske, D.; Neumann, M.; Groschup, M. H.; Kretzschmar, H. A.; Famulok, M.; Winnacker, E.-L., RNA aptamers specifically interact with the prion protein PrP. J. Virol.1997, 71,8790-8797.
    [54].史怀平;杨增咬;刘希成,朊病毒研究进展.动物医学进展.2004,25(5),12-14.
    [55].Caughey, W. S.; Raymond, L. D.; Horiuchi, M.; Caughey, B., Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl. Acad. Sci. U.S.A 1998, 95,12117-12122.
    [56].Priola, S. A.; Raines, A.; Caughey., W. S., Porphyrin and Phthalocyanine Antiscrapie Compounds. Science 2000,287,1503-1506.
    [57].Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H., Nanomedicine-Challenge and perspectives. Angew. Chem. Int. Ed.2009,48 (5),872-897.
    [58].McNeil, S. E., Nanotechnology for the biologist. J. Leukoc. Biol.2005,78 (3),585-594.
    [59].He, W.; Huang, C. Z.; Li, Y. F.; Xie, J. P.; Yang, R. G.; Zhou, P. F.; Wang, J., One-Step Label-Free Optical Genosensing System for Sequence-Specific DNA Related to the Human Immunodeficiency Virus Based on the Measurements of Light Scattering Signals of Gold Nanorods. Anal. Chem.2008,80 (22),8424-8430.
    [60].Tan, Y. N.; Su, X.; Liu, E. T.; Thomsen, J. S., Gold-Nanoparticle-Based Assay for Instantaneous Detection of Nuclear Hormone Receptor-Response Elements Interactions. Anal. Chem.2010, 82 (7),2759-2765.
    [61].Hu, P.; Huang, C. Z.; Li, Y. F.; Ling, J.; Liu, Y. L.; Fei, L. R.; Xie, J. P., Magnetic Particle-Based Sandwich Sensor with DNA-Modified Carbon Nanotubes as Recognition Elements for Detection of DNA Hybridization. Anal. Chem.2008,80,1819-1823.
    [62].Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J., Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem.2010.
    [63].He, B. S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C., A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater.2009,19,1-7.
    [64].Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S., A Graphene Oxide Based Immuno-biosensor for Pathogen Detection Angew. Chem. Int. Ed.2010,49,5708-5711.
    [65].Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996,271, 933-937.
    [66].W.C.Chan; D.J.Maxwell; X.Gao; R.E.Bailey; M.Han; S.Nie, Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.2002,13 (1),40-46.
    [67].Li, Z. B.; Cai, W.; Chen, X. Y., Semiconductor quantum dots for in vivo imaging. J. Nanosci. Nanotechol.2007,7(8),2567-2581.
    [68].Wu, X.; P.Bruchez, M., Labeling cellular targets with semiconductor quantum dot conjugates. Methods Cell Biol.2004,75,171-183.
    [69].Lu, Z. S.; Zhu, Z. H.; Zheng, X. T., Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging. Nanotechnology 2011,22 (15).
    [70].Yu, M.; Yang, Y.; Han, R. C., Polyvalent Lactose-Quantum Dot Conjugate for Fluorescent Labeling of Live Leukocytes. Langmuir 2010,26 (11),8534-8539.
    [71].Peng, C. W.; Liu, X. L.; Chen, C. A., Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 2011,32 (11), 2907-2917.
    [72].Won, S.; Kim, H. D.; Kim, J. Y, Movements of Individual BKCa Channels in Live Cell Membrane Monitored by Site-Specific Labeling Using Quantum Dots. Biophy. J.2010,99 (9), 2853-2862.
    [73].Sun, D. P.; Yang, K.; Zheng, G., Study on effect of peptide-conjugated near-infrared fluorescent quantum dots on the clone formation, proliferation, apoptosis, and tumorigenicity ability of human buccal squamous cell carcinoma cell line BcaCD885. Int. J. Nanomed.2010,5401-405.
    [74].Li, Y. L.; Duan, X.; Jing, L. H., Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials 2011,32 (7),1923-1931.
    [75].Xing, Y.; Smith, A. M.; Agrawal, A., Molecular profiling of single cancer cells and clinical tissue specimens with semiconductor quantum dots. Int. J. Nanomed.2006,1 (4),473-481.
    [76].Zheng, H.; Chen, G. C.; DeLouise, L. A., Detection of the Cancer Marker CD146 Expression in Melanoma Cells with Semiconductor Quantum Dot Label. J. Biomed. Nanotechnol.2010,6(4), 303-311.
    [77].Liu, J. A.; Lau, S. K.; Varma, V. A., Multiplexed Detection and Characterization of Rare Tumor Cells in Hodgkin's Lymphoma with Multicolor Quantum Dots. Anal. Chem.2010,82 (14), 6237-6243.
    [78].M.E.Akerman; W.C.W.Chan; P.Laakkonen; N.Bhatia, S.; E.Ruoslahti, Nanocrystal targeting in vivo. Proc.Natl.Acad.Sci.U.S.A.2002,99(20),12617-12621.
    [79].Sukhanova, A.; Devy, M.; Venteo, L., Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal.Biochem.2004,324 (1),60-67.
    [80]. Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotech.2003,21 (1),41-46.
    [81].Tokumasu, F.; Dvorak, J., Development and application of quantum dots for immunocytochemistry of human erythrocytes. J. Microsc.2003,211,256-261.
    [82].Lidke, D. S.; Nagy, P.; Heintzmann, R.; Amdt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotech.2004,22 (2),198-203.
    [83].GhoshMitra, S.; Diercks, D. R.; Mills, N. C., Excellent biocompatibility of semiconductor quantum dots encased in multifunctional poly(N-isopropylacrylamide) nanoreservoirs and nuclear specific labeling of growing neurons. Appl. Phys. Lett.2011,98 (10).
    [84].Hanaki, K.; Momo, A.; Oku, T., Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun.2003,302 (3), 496-501.
    [85].Hoshino, A.; K.Fujioka; Oku, T., Quantum dots targeted to the assigned organelle in living cells. Microbiol. Immunol.2004,48 (12),985-994.
    [86].Kang, W. J.; Chae, J. R.; Cho, Y. L.; Lee, J. D.; Kim, S., Multiplex Imaging of Single Tumor Cells Using Quantum-Dot-Conjugated Aptamers. Small 2009,1-4.
    [87].Feng, L.; Zhi-Ping, Z.; Jun, P.; Zong-Qiang, C.; Dai-Wen, P.; Ke, L.; Hong-Ping, W.; Ya-Feng, Z.; Ji-Kai, W.; Xian-En, Z., Imaging Viral Behavior in Mammalian Cells with Self-Assembled Capsid-Quantum-Dot Hybrid Particles. Small 2009,5 (6),718-726.
    [88].Li, F.; Li, K.; Cui, Z. Q.; Zhang, Z. P., Viral Coat Proteins as Flexible Nano-Building-Blocks for Nanoparticle Encapsulation. Small 2010,6 (20),2301-2308.
    [89].Yeh, H. Y.; Yates, M. V.; Mulchandani, A.; Chen, W., Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem. Commun. 2010,46,3914-3916.
    [90].X. Michalet; F. F. Pinaud; L. A. Bentolila; J. M. Tsay; S. Doose, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005,307,538-544.
    [91].Yong, K.-T.; Roy, I.; Hu, R.; Law, W.-C.; Zhao, W.; Ding, H.; Wu, F.; Kumar, R.; Swihart, M. T.; Paras, N., In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals Folarin Erogbogbo. ACS Nano 2011,5 (1), 413-423.
    [92].Cai, W.; Shin, D.-W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S. S.; Chen, X., Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Lett.2006,6(4),669-676.
    [93].F.Bohren, C.; Huffman, D. R., Absorption and Scattering of Light by Small Particles. Wiley: New York.1983,287-380.
    [94].Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996,12, 788-800.
    [95].Sun, S. K.; Wang, H. F.; Yan, X. P., A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem. Commun.2011,47(13),3817-3819.
    [96].Ivan H. El-Sayed; Xiaohua Huang; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:Applications in Oral Cancer. Nano Lett.2005,5 (5),829-834.
    [97].Hu, C. C.; Lin, J. C.; Tseng, W. L.; Huang, M. F.; Chiu, T. C.; Chang, H. T., Analysis of dynamic and thermodynamic adsorption of nanoparticles on solid surfaces by dark-field light scattering measurements. Journal of the Chinese Chemical Society 2007,54 (4),869-878.
    [98].Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A., Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A.2000,97 (3), 996-1001.
    [99].El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett.2005,5 (5),829-834.
    [100].Aaron, J.; Travis, K.; Harrison, N.; Sokolov, K., Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. Nano Lett.2009,9 (10), 3612-3618.
    [101].Kwangjae Cho; XuWang; Shuming Nie; Zhuo (Georgia) Chen; Shin, D., Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer. Res.2008,14 (5),1310-1316.
    [102].Xu Wang; Lily Yang; Zhuo (Georgia) Chen; Dong M. Shin, Application of Nanotechnology in Cancer Therapy and Imaging. CA-Cancer J. Clin:2008,58 (2),97-110.
    [103].Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nano.2007,2(12),751-760.
    [104].Sinha, R.; Kim, G. J.; Nie, S.; Shin, D. M., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mo. Cancer Ther.2006,5 (8),1909-1917.
    [105].Ferrari, M., Cancer nanotechnology:opportunities and challenges. Nat. Rev. Cancer 2005,5 (3),161-171.
    [106].Wu, W.; Wieckowski, S. b.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J.-P.; Gennaro, R.; Prato, M.; Bianco, A., Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angew. Chem. Int. Ed.2005,44,6358-6362.
    [107].Dhar, S.; Liu, Z.; Thomale, J. r.; Dai, H.; Lippard, S. J., Targeted Single-Wall Carbon Nanotube-Mediated Pt(Ⅳ) Prodrug Delivery Using Folate as a Homing Device. J. Am. Chem. Soc.2008,130,11467-11476.
    [108].Xiaohua Huang; Ivan H. El-Sayed; Wei Qian; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006,128,2115-2120.
    [109].Yang, B. J.; Lee, J.; Kang, J.; Oh, S. J.; Ko, H.-J.; Son, J.-H.; Lee, K.; Suh, J.-S.; Huh, Y.-M.; Haam, S., Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer. Adv. Mater.2009,21,1-4.
    [110].黄平,朊病毒分子特征与致病性.中国公共卫生.2002,18(10),1257-1259.
    [111].杨建民;郝永新;宁章勇,朊病毒致病机理研究进展.中国畜牧兽医2004,31(10),34-37.
    [112].Huang, C. Z.; Liu, Y.; Wang, Y. H., Resonance light scattering imaging detection of proteins with a,b,g,d-tetrakis(p-sulfophenyl)porphyrin. Anal. Biochem.2003,321,236-243.
    [113].王永红;李原芳;黄承志,萘铬绿与蛋白质作用的共振光散射光谱研究.西南师范大学学报(自然科学版).2004,29(3),424-428.
    [114].胡文康;李原芳;龙云飞,共振光散射光谱研究马歇尔红与牛血清白蛋白的作用及其分析应用.西南大学学报(自然科学版).2008,30(1),7-11.
    [115].Huang, C. Z.; Li, Y. F.; Li, N., Spectral characteristics of the aggregation of α,β,γ,δ δ-tetrakis(p-sulfophenyl)porphyrin in the presence of proteins. Bull. Chem. So.c Jpn.1998, 1791-1797.
    [116].Huang, C. Z.; Li, Y. F.; Feng, P., Determination of proteins with α,β,γ,δ-Tetrakis (4-sulfophenyl) porphine by measuring the enhanced resonance light scattering at the air/liquid interface. Anal. Chim. Acta.2001,443,73-80.
    [117].Li, N.; Tong, S. Y, Spectrophotometric study of the interaction of tetraphenylporphyrin tetrasulfonate (TPPS4) with proteins. Talanta 1994,41,1657-1662.
    [118].Huang, C. Z.; Zhu, J. X.; Li, K. A., Determination of albumin and globulin at nanogram levels by a resonance lightscattering technique with α,β,γ,δ-tetrakis(4-sulfophenyl) porphine. Anal. Sci.1997,13,263-268.
    [119].Caughey, W. S.; Priola, S. A.; Kocisko, D. A., Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity. Antimicrob. Agents Chemother.2007,51,3887-3894.
    [120].Yang, R.; Tang, Z.; Yan, J.; Kang, H.; Kim, Y; Zhu, Z.; Tan, W., Noncovalent Assembly of Carbon Nanotubes and Single-Stranded DNA:An Effective Sensing Platform for Probing Biomolecular Interactions. Anal. Chem.2008,80,7408-7413.
    [121].Tsourkas, A.; Behlke, M. A.; Rose, S. D., Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res.2003,31 (4),1319-1330.
    [122].Roy, S.; Kabir, M.; Mondal, D., Real-time-PCR assay for diagnosis of Entamoeba histolytica infection. J. Clin. Microbiol.2005,43 (5),2168-2172.
    [123].Orru, G.; Ferrando, M. L.; Meloni, M., Rapid detection and quantitation of Bluetongue virus (BTV) using a Molecular Beacon fluorescent probe assay. J.Virol.Methods 2006,137 (1), 34-42.
    [124].Mhlanga, M. M.; Vargas, D. Y.; Fung, C. W., tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Res.2005,33 (6),1902-1912.
    [125].Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W., Carbon Nanotube-Quenched Fluorescent Oligonucleotides:Probes that Fluoresce upon Hybridization. J. Am. Chem. Soc.2008,130 (26),8351-8358.
    [126].Lu, Q.; Freedman, K. O.; Rao, R., Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. J. Appl. Phys.2004,96(11),6772-6775.
    [127].Zheng, M.; Jagota, A.; Semke, E. D., DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater.2003,2(5),338-342.
    [128].He, P.; Bayachou, M., Layer-by-Layer Fabrication and Characterization of DNA-Wrapped Single-Walled Carbon Nanotube Particles. Langmuir 2005,21 (13),6086-6092.
    [129].Zhang, L.; Huang, C. Z.; Li, Y. F.; Xiao, S. J.; Xie, J. P., Label-Free Detection of Sequence-Specific DNA with Multiwalled Carbon Nanotubes and Their Light Scattering Signals. J. Phys. Chem. B.2008,112,7120-7122.
    [130].Hardman, R., A toxicologic review of quantum dots:Toxicity depends on physicochemical and environmental factors. Environ. Health. Perspect.2006,114 (2),165-172.
    [131].Leroueil, P. R.; Hong, S. Y.; Mecke, A.; Baker, J. R.; Orr, B. G.; Holl, M. M. B., Nanoparticle interaction with biological membranes:Does nanotechnology present a janus face? Acc. Chem. Res.2007,40 (5),335-342.
    [132].Nallathamby, P. D.; Lee, K. J.; Xu, X.-H. N., Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. Acs Nano 2008,2 (7),1371-1380.
    [133].Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X.-H. N., In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. Acs Nano 2007,1(2),33-143.
    [134]Johnson, S.; Evans, D.; Laurenson, S.; Paul, D.; Davies, A. G.; KoFerrigno, P.; Walti, C., Surface-immobilized peptide aptamers as probe molecules for protein detection. Anal. Chem. 2008,80,978-983.
    [135].Li, Z.; Jin, R. C.; Mirkin, C. A., Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res.2002,30 (7),1558-1562.
    [136].Lee, J. S.; Lytton-Jean, A. K. R.; Hurst, S. J., Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett.2007,7 (7),2112-2115.
    [137].Lee, P. C.; Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem.1982,86 (17),3391-3395.
    [138].Sharma, J.; Chhabra, R.; Yan, H.; Liu, Y, A facile in situ generation of dithiocarbamate ligands for stable gold nanoparticle-oligonucleotide conjugates. Chem. Commun.2008,2140-2142.
    [139].Tokareva, I.; Hutter, E., Hybridization of Oligonucleotide-Modified Silver and Gold Nanoparticles in Aqueous Dispersions and on Gold Films. J. Am. Chem. Soc.2004,126, 15784-15789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700