依地福新抑制粟酒殖酵母细胞胞质分机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章依地福新对粟酒殖酵母细胞胞质分的影响
     【背景与目的】:依地福新为人工合成的抗肿瘤醚酯类药物,它能抑制肿瘤细胞分,但并不抑制核的解,导致细胞聚集在G_2/M期,形成多核细胞,随后通过凋亡促使细胞死亡。也有报告指出,依地福新处理过的细胞能经历完全的细胞周期,但不能进行分,使细胞聚集在G_0/G_1期,形成四倍体或八倍体细胞。然而,依地福新抑制肿瘤细胞的胞质分的机制仍然不清楚。人体细胞与酵母细胞在生长周期存在着相似性。许多有关人体细胞的研究成果都是首先通过研究酵母细胞发现的。癌症细胞本质上来于机体正常细胞。由于在细胞分的不同阶段受各种因素的影响,导致其出现分化和增殖的异常,从而使人们在利用癌细胞进行有关研究时带来许多困难。而以粟酒殖酵母作为研究对象,易于进行细胞学操作、具有明显的细胞周期,且生长迅速、易于培养。因此本研究以粟酒殖酵母作为实验材料,探讨依地福新(edelfosine,ET-18-OCH_3,1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine)抑制粟酒殖酵母(Schizosaccharomycespombe,S.pombe)细胞生长的作用剂量,及在此作用剂量下,依地福新对粟酒殖酵母细胞胞质分和胞核分的影响。
     【方法】:(1)、应用粟酒殖酵母细胞和Jurkat细胞的生长抑制试验,确定依地福新抑制粟酒殖酵母细胞生长的作用剂量。
     (2)、利用粟酒殖酵母细胞胞质分抑制试验,观察依地福新对粟酒殖酵母细胞胞质分的影响。
     (3)、利用粟酒殖酵母细胞胞核分试验和粟酒殖酵母DNA含量检测试验,观察依地福新对粟酒殖酵母细胞胞核分的影响。
     【结果】:(1)、在粟酒殖酵母细胞和Jurkat细胞的生长抑制试验中可见,野生型粟酒殖酵母细胞和Jurkat细胞培养6h后,其生长能被5.0μM、10.0μM和20.0μM的依地福新所抑制,与平行生长的0μM依地福新处理的细胞比较差异有统计学意义;培养8h后,其生长除能被5.0μM、10.0μM和20.0/aM的依地福新所抑制,还能被1.0μM的依地福新所抑制,与平行生长的0μM依地福新处理的细胞比较差异亦有统计学意义。
     (2)、在粟酒殖酵母细胞胞质分抑制试验中可见,对照组(edelfosine 0μM)粟酒殖酵母细胞形态正常,隔膜位于细胞中央,厚度正常,两侧对称。低剂量观察组(edelfosine 1.0μM)粟酒殖酵母细胞出现多个隔膜或出现超长而没有隔膜的细胞;细胞隔膜增厚;细胞大小不一,透光性下降,且出现少量粒状细胞。高剂量观察组(edelfosine 5.0μM)粟酒殖酵母细胞形态不规则,出现较多奇异形细胞,细胞透光性差;细胞隔膜增厚;出现较多粒状细胞。粟酒殖酵母细胞隔膜计数结果显示,对照组(edelfosine 0μM)和低剂量观察组(edelfosine 1.0μM)比较,两组之间差异有统计学意义(X~2=16.089,P<0.01)。
     (3)、在粟酒殖酵母细胞胞核分试验中可见,对照组(edelfosine0μM组)细胞核大小和数目均正常,在殖细胞可见双核,未见异常核型;处理组(edelfosine 1.5μM组)粟酒殖酵母核染色较弱,可见子细胞尚未与母细胞分离,但母细胞已开始进入到下一个有M期的细胞。
     (4)、在粟酒殖酵母DNA含量检测试验中可见,对照组(edelfosine 0μM组)大部分细胞DNA含量为1C,只有极少量细胞DNA含量为2C;而edelfosine 0.5μM组、edelfosine 1.0μM组和edelfosine 1.5μM组细胞DNA含量为2 C。
     【结论】:(1)、1.0μM-5.0μM浓度的依地福新能抑制粟酒殖酵母和Jurkat细胞生长,对粟酒殖酵母具有与其抗肿瘤细胞相似作用。(2)、0.5μM-1.5μM浓度的依地福新依地福新抑制粟酒殖酵母细胞的胞质分,但不影响细胞核DNA的合成和胞核的分离。
     第二章依地福新对粟酒殖酵母胞质分突变体mid2Δ、spmlΔ和pmplΔ生长的影响
     【背景与目的】:有报道指出,依地福新在其凋亡浓度(5-25μM)时,可抑制MAPK/ERK促有途径和Akt/PKB(蛋白激酶B)生存途径。在粟酒殖酵母细胞人们已经发现了多条MAPK级联,其中Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK)细胞信号途径与细胞形态发生有关。Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK)细胞信号途径通过细胞膜上的Mid2接受细胞外信号后,经小GTP酶Rho4激活PKC_1-MPK_1细胞完整性通路,使Spm1磷酸化程度增加,最终激活Spm1;而Pmp1能抑制Spm1的磷酸化,使Spm1的磷酸化程度降低。spm1基因,也称之为pmk1,它的系统命名为SPBC119.08,编码生成的蛋白为MAP激酶Spm1/Pmk1(MAPkinase Spm1/Pmk1,MAPK~(Spm1/Pmk1);pmp1基因的系统命名为SPBC1685.01,它编码生成的蛋白为双重特异的MAPK磷酸酶Pmp1(dual-specificity MAP kinase phosphatase Pmp1),Pmp1参与MAPKKK级联反应(MAPKKK cascade),与细胞殖时的信息传递有关,具有使蛋白氨基酸脱磷酸化作用,能影响Spin1蛋白磷酸化;mid2基因的系统命名为SPAPYUG7.03c,它编码生成的蛋白为香兰素同系物Mid2(anillin homologue Mid2),Mid2影响殖酵母细胞隔膜的组装(organization)和解聚(disassembly),它参与胞质分时的细胞分离过程。
     为了验证依地福新对Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK)信号级联的影响,需要判断出依地福新抑制胞质分是否与mid2、spm1和pmp1基因有关。其方法是利用这些细胞的突变体。这些突变体由于基因突变,而被封阻在细胞周期的某一特定阶段,从而使我们得知此突变的基因是与该特定阶段的调控有关的基因。本实验以胞质分突变体mid2Δ、spm1Δ和pmp1Δ为实验材料,探讨依地福新对MAPK级联信号相关基因的影响,从而阐明依地福新抑制胞质分的机制。
     【方法】:应用粟酒殖酵母细胞突变体生长抑制试验,观察依地福新对野生型粟酒殖酵母细胞和mid2突变体(mid2Δ)、spm1突变体(spm1Δ)、pmp1突变体(pmp1A)生长率的影响。
     【结果】:应用0μM、0.156μM、0.312μM、0.625μM、1.25μM、2.5μM、5μM、10μM依地福新处理野生型粟酒殖酵母及mid2突变体、spm1突变体、pmp1突变体,在培养20h后,spm1突变体在5μM和10μM浓度依地福新处理时的生长率均高于同样浓度处理的野生型粟酒殖酵母的生长率(5μM依地福新处理时,spm1A组vsWT组为88.3±7.6 vs 15.9±1.7;10μM依地福新处理时,spm1Δ组vsWT组为85.3±6.7 vs 15.7±1.6;t值分别为16.10,18.25;P<0.01)。mid2A和pmp1A在5μM浓度时,它们的生长率均高于野生型粟酒殖酵母的生长率(mid2Δvs WT组为76.4±6.2 vs 15.9±1.7;pmp1ΔvsWT组为76.9±5.8 vs 15.9±1.7;t值分别为16.29,17.48;P<0.01);结果说明,培养20h后,spm1Δ对5μM和10μM依地福新都具有抵抗性,而mid2Δ和pmp1Δ则对5μM依地福新具有抵抗性。
     【结论】:spm1、mid2和pmp1基因突变后对依地福新的抗性增强。因此,依地福新抑制粟酒殖酵母胞质分可能与MAPK级联相关的mid2、pmp1、spm1基因有关。
     第三章spm1、pmp1和mid2基因在相应粟酒殖酵母突变体中的再表达
     【背景与目的】:利用酵母突变体及其同基因再表达的功能互补实验,是目前遗传学和分子生物学研究的一种重要实验方法,并使酵母成为筛查药物作用机制的工具。通过使用药物对特定的酵母基因突变株进行干预,筛选出对药物敏感或抵抗的突变株,然后利用酵母基因重组技术,使突变株再表达同的基因,从而获得再表达同一基因的克隆。如果构建的同克隆酵母可以挽救此突变株对药物的敏感性或抵抗性,那么就说明药物可能影响此基因。这将成为一种筛选抗癌和抗病毒药物的分析系统。因此,将spm1、pmp1和mid2基因在相应粟酒殖酵母突变株中进行再表达,观察其是否能恢复对依地福新的敏感性,可确定依地福新对这些基因是否产生影响。本实验的目的是,将粟酒殖酵母细胞胞质分相关基因spm1、pmp1和mid2在相应突变株中进行再表达,并筛选出有表达活性的重组子。
     【方法】:(1)、应用TRIZOL试剂法抽提粟酒殖酵母细胞的RNA;(2)、反转录PCR(RT-PCR)制备粟酒殖酵母细胞的cDNA;(3)、应用PCR扩增spm1、pmp1和mid2基因;(4)、将spm1、pmp1和mid2基因克隆到pREP3X-HA质粒中;(5)、将pREP3X-HA-spm1、pREP3X-HA-pmp1和pREP3X-HA-mid2电转化到粟酒殖酵母突变体spm1Δ、pmp1Δ和mid2Δ细胞中;(6)、应用硫胺素抑制试验筛选活性的pREP3X-HA-spm1、pREP3X-HA-pmp1和pREP3X-HA-mid2重组酵母。
     【结果】:在35个酵母转化单菌落中,筛选到一个有表达活性的pREP3X-HA-spm1重组子。在43个酵母转化单菌落中,筛选到一个有表达活性的pREP3X-HA-pmp1重组子。在41个酵母转化单菌落中,筛选到一个有表达活性的pREP3X-HA-mid2重组子。
     【结论】:pREP3X-HA-spm1穿梭载体、pREP3X-HA-pmp1穿梭载体和pREP3X-HA-mid2穿梭载体成功转入到相应的突变体细胞中,且转化子具有表达活性。
     第四章依地福新影响粟酒殖酵母MAP激酶Spm1的磷酸化
     【背景与目的】:蛋白激酶级联调节胞质和胞核对细胞外刺激的应答。MAPK(mitogen-activated protein kinase,丝裂激活的蛋白激酶)级联是在单细胞和多细胞真核生物中发现的古老而保守的蛋白激酶级联。在粟酒殖酵母(S.pombe)细胞人们目前也已经发现了多条MAPK级联,其中Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK)细胞信号途径与细胞形态发生有关。在粟酒殖酵母细胞中,细胞胞膜上的Mid2接受细胞外信号后,经GTPase Rho4激活PKC_1-MPK_1细胞完整性通路,信号经Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK)途径传递,最终影响细胞形态的发生。而Pmp1在体外能直接去除Spm1/Pmk1酪氨酸残基上的磷酸,导致Spm1/Pmk1去磷酸化;Pmp1在体内也能影响Spm1/Pmk1中酪氨酸的磷酸化。因此,本实验的目的是探讨依地福新对经Mid2介导的,Pmp1抑制的MAPK Spm1信号通路的影响,以阐明依地福新抑制粟酒殖酵母细胞胞质分的作用机制。
     【方法】:(1)、通过野生型粟酒殖酵母和胞质分突变体spm1Δ、pmp1Δ、mid2Δ及其再转化株对依地福新的平行生长抵抗试验,进一步确定依地福新对spm1、pmp1、mid2基因的影响;(2)、应用依地福新对Spm1磷酸化的影响试验,阐明依地福新是否通过影响Mid2蛋白和Pmp1蛋白的表达而影响Spm1蛋白的磷酸化。
     【结果】:(1)、在spm1、pmp1和mid2突变株及其再转染株对依地福新的平行生长抵抗试验中,spm1Δ组细胞培养24h后,在含有终浓度为5.0μM和10.0μM依地福新的培养液中仍生长良好;其生长率与在含有终浓度为5.0μM和10.0μM依地福新的培养液中培养的WT组细胞比较,差异有统计学意义(5.0μM依地福新处理时,spm1Δ组vs WT组细胞生长率为101.1±6.6 vs 5.3±0.7;10.0μM依地福新处理时,spm1Δ组vs WT组细胞生长率为105.5±9.8 vs 5.6±0.9;t值分别为25.00,17.58;P<0.01)。依地福新对spm1Δ组细胞的IC_(50)(半数抑制浓度)为(50.12±4.31)μM,而对WT细胞的IC_(50)为(3.75±0.34)μM,两者比较有统计学意义(t值为18.58,P<0.01)。mid2Δ组细胞和pmp1Δ组细胞培养24h后,在含有终浓度为5.0μM依地福新的培养液中生长良好;其生长率与在含有终浓度为5.0μM依地福新的培养液中培养的WT组细胞比较,其差异有统计学意义(mid2A组vs WT组细胞生长率为77.3±4.5 vs 5.3±0.7,t=27.38,P<0.01,pmp1Δ组vsWT组细胞生长率为81.3±4.7 vs 5.3±0.7,t=27.70,P<0.01)。依地福新对mid2Δ组细胞和pmp1Δ组细胞的IC_(50)分别为(7.12±0.63)μM和(7.25±0.65)μM,与WT细胞的IC_(50)[(3.75±0.34)μM]比较有统计学意义(t值分别为8.15和8.26,P<0.01)。
     (2)、在依地福新对Spm1磷酸化的影响试验中,依地福新处理组只有pREP3X-HA-mid2重组酵母、pREP3X-HA-pmp1重组酵母和pREP3X-HA-spm1重组酵母能检测到磷酸化的活性MAPK,而WT细胞、mid2Δ细胞、pmp1Δ细胞和spm1Δ细胞未检测到磷酸化的活性MAPK;而在依地福新未处理组,所有细胞均未检测到磷酸化的活性MAPK;结果说明,磷酸化活性MAPK Spm1的产生是由于依地福新诱导了Mid2的表达和/或依地福新抑制了Pmp1活性的缘故。
     【结论】:(1)、依地福新通过影响粟酒殖酵母细胞mid2、spm1和pmp1基因而抑制粟酒殖酵母细胞的胞质分。(2)、细胞外依地福新诱导Mid2蛋白的表达,从而促进的Spm1磷酸化;细胞内依地福新通过抑制Pmp1蛋白的表达,取消Pmp1蛋白对Spm1的抑制作用,使Spm1的磷酸化程度增加,最终导致粟酒殖酵母细胞胞质分障碍。
Chapter 1 The Effect of Edelfosine on Cytokinesis of S. pombe
     【Background and Objects】: Edelfosine is a synthetical alkyl-lysophospholipid analog, also known as antitumor ether lipids. It can inhibit cell division without concurrent inhibition of nuclear division, leading to accumulation of cells in G2/M, multinucleate cell formation, and subsequent cell death through apoptosis. It also reported that cells treated with edelfosine came through the whole cell cycle without nuclei cleavage, and cells were blocked in G_0/G_1 and subsequent formation of quadplex or octploid nuclei. However, the mechanism still is unknown that edelfosine inhibits cytokinesis. Cells in human are similar to yeast in cell cycle, and a lot of studies of human cells base on yeast research. Cancer cells derive from normal human cells affected by various factor. Differentiation and proliferation are abnormal in cancer cells, leading to a lot of difficulty when people to study it. However, the fission yeast S. pombe has become a powerful model organism with which to study the process of cytokinesis. Some of its key attributes and advantages in this regard include the ease with which cytological manipulations can be performed, a well-characterized mitotic cell cycle, and fast growth and culture easily. In this study, we utilized the S. pombe to explore the effect of dosage-dependent of edelfosine inhibiting the growth, cell division and nucleus division of S. pombe.
     【Methods】: (1)、We performed the experiment that edelfosine inhibited the growth of S. pombe and Jurkat cell, and confirmed the best effective dosage of edelfosine inhibiting the growth of the S. pombe.
     (2)、We performed the experiment that edelfosine inhibiting the cytokinesis of S. pombe, and analyzed the effect of edelfosine on the cytokinesis of S. pombe.
     (3)、We carried out the experiment that edelfosine acted on the nucleus division and detected the DNA content of S. pombe, and analyzed the effect of edelfosine on nucleus division of S. pombe.
     【Results】: (1)、Treated with 5.0μM, 10.0μM and 20.0μM edelfosine for 6 h, the growth of S. pombe wild-type and Jurkat cell had been inhibited by edelfosine in the S. pombe's growth inhibition experiment. The difference has statistic significance (P<0.01) between these cell treated with 5.0μM, 10.0μM and 20.0μM edelfosine for 6 h and those cell treated with 0μM edelfosine for 6 h. Treated with 1.0μM, 5.0μM, 10.0μM and 20.0μM edelfosine for 8 h, the growth of S. pombe wild-type and Jurkat cell had been inhibited not only by 5.0μM, 10.0μM and 20.0μM edelfosine, but also by 1.0μM edelfosine. The difference has statistic significance (P<0.01) between these cell treated with 1.0μM, 5.0μM, 10.0μM and 20.0μM edelfosine for 8 h and those cell treated with 0μM edelfosine for 8 h.
     (2)、In the inhibition experiment of cytokinesis of S. pombe, the S. pombe cells presented normal symmetrical shape with medium septum if they had not been treated by edelfosine (0μM); Meanwhile, the cells possessed cell wall with natural thickness. For the cells treated with 1.0μM edelfosine, they showed multiply septum or without septum, and also showed different size with decreased refraction.; In addition, the cells' septa were much thicker than the cells' untreated with edelfosine. A few granular cells were found. The number of the abnormal shape cells with decreased refraction become more and more, their septa become thicker and their shape become more asymmetrical, and the granule cell become more and more when the cells were treated with 5.0μM edelfosine for 6 h. The counted results of S. pombe septum showed a statistic significance between the cells treated with 0μM and 1.0μM edelfosine (χ~2=16.089, P<0.01).
     (3)、In the inhibition experiment of nucleus division of S. pombe, the size and number of the cells nucleus were in nature status, the cells with two nucleuses can be found, and the cells with abnormal nucleus had not existed in the cells if it had not been treated with edelfosine (0μM edelfosine); The fluorescence was generally weaker in the nucleus of the cells treated by 1.5μM edelfosine than untreated. A fissiparous cell shown that the mother cell had already started next mitosis while the young cell still had not split from the mother cell in the cells treated by 1.5μM edelfosine.
     (4)、DNA amount detected by FACS showed that most cells has 1C DNA content and a few cells has 2C DNA content in the cells untreated with edelfosine (0μM); However, most cells has 2C DNA content in the cells treated by 0.5μM、1.0μM、1.5μM edelfosine.
     【Conclusions】: (1)、1.0μM-5.0μM edelfosine has a similar effect on S. pombe and cancer cell to inhibit cell growth. (2)、0.5μM-1.5μM edelfosine inhibit cell division without inhibiting nucleus division.
     Chapter 2 The Growth Effect of Edelfosine on mid2 Mutants, spm1 Mutants and pmp1 Mutants of S. pombe
     【Background and Objects】: The concentration of apoptosis of 5-25μM edelfosine inhibits the MAPK/ERK and Akt/PKB pathway. Several MAPK cascades have been found in S. pombe. The Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK) pathway has a relation with morphogenesis in S. pombe. Mid2 activates the PKC_1-MPK_1 cell integrity pathway via the small GTPase Rho4 resulting from exposure to extracellular signals and activate Spm1 finally, meanwhile, Pmp1 affect the photophosphorylation of Spm1. The system name of spm1 gene is SPBC119.08, and the coding protein of spm1 gene is MAP kinase Spm1/Pmk1. The system name of pmp1 gene is SPBC1685.01, and the coding protein of pmp1 gene is dual-specificity MAP kinase phosphatase Pmp1. Pmp1 is concerned with the MAPKKK cascade, and transfer information in cell division by affecting the photophosphorylation of Spm1. The system name of mid2 gene is SPAPYUG7.03c, and the coding protein of mid2 gene is anillin homologue Mid2. Mid2 affect the organization and disassembly of septum, and it is concerned with cell separation in cell division.
     In order to confirm the effect of edelfosine on Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK) signaling cascade, we need to judge whether the inhibition of cytokinesis have a correlation with mid2, spm1 and pmp1 genes. We designed the mutants of mid2, spm1 and pmp1, which have been blocked in a given stage of cell cycle. In this study, we explored the effect of edelfosine on mid2、spm1 and pmp1 mutants relating to MAPK cascade and elucidate the inhibition mechanism of cytokinesis.
     【Methods】: The effect of edelfosine on the growth ratio of S. pombe wild-type, mid2 mutants, spm1 mutants and pmp1 mutants were observed via the inhibition experiment of growth of S. pombe mutants.
     【Results】: The S. pombe wild-type cells, mid2 mutants, spm1 mutants and pmp1 mutants were treated with a series of edelfosine (0μM、0.15μM、0.312μM、0.625μM、1.25μM、2.5μM、5μM、10μM) for 20 h. The growth ratios of spm1 mutants were higher than of wild-type cells treated with the same concentration of edelfosine (treated with 5μM edelfosine, the growth ratio of spm1 mutants vs of WT was 88.3±7.6 vs 15.9±1.7; treated with 10μM edelfosine, the growth ratio of spm1 mutants vs of WT was 85.3±6.7 vs 15.7±1.6; t value was 16.10, 18.25, respectively; P<0.01). The growth ratio of mid2 mutants and pmp1 mutants treated with 5μM edelfosine were higher than of S. pombe wild-type cells (the growth ratio of mid2 mutants vs of WT was 76.4±6.2 vs 15.9±1.7; the growth ratio of pmp1 mutants vs of WT was 76.9±5.8 vs 15.9±1.7; the t value was 16.29, 17.48, respectively; P<0.01). The results showed that the spm1 mutants were hyper resistant to 5μM and 10μM edelfosine; Meanwhile, the mid2 and pmp1 mutants were hyper resistant to 5μM edelfosine.
     【Conclusions】: Edelfosine maybe have an effect on the mid2, pmp1 and spm1 gene relating to MAPK cascade in S. pombe cells. Chapter 3 The Re-Expression of spm1, pmp1 and mid2 Genes in Relevant Mutants of S. pombe
     【Background and Objects】: Yeast is a model organism for studying eukaryote, especially in the research of humam genomics. Yeast also is an important research material and provides a detectable experimental system in genetics and molecular biology. The functional complementation assay of homeotic gene re-expression in yeast mutant has become a screen tool in mechanism research of drug. To screen the sensitive and resistant yeast mutant when they treated with drug, the recombine technology of yeast gene should be applied to obtain the clone expressing the homeotic gene. If the yeast with homeotic gene can retrieve the sensitivity or resistance, it could show that the drug affect the gene. The method is useful as an analysis system in screening anti-cancer and anti-virus drug research. Thus, if we re-express the spm1, pmp1 and mid2 genes in relevant yeast mutants, and observe whether they retrieve the sensitivity, we will judge whether edelfosine have an effect on these genes. In this study, we observed the retransfected mutants whether retrieved the sensitive to edelfosine, and confirmed the effect of edelfosine on the S. pombe cells that re-expressed the spm1, pmp1 and mid2 genes in relevant mutants.
     【Methods】: (1)、Total RNA of S. pombe cells was extracted by TRIZOL reagent; (2)、First-strand cDNA of S. pombe cells was synthesized by RT-PCR; (3)、he spm1, pmp1 and mid2 genes were amplified by PCR; (4)、The spm1, pmp1 and mid2 genes were cloned into plasmid and formed a relevant shuttle carrier; (5)、The pREP3X-HA-spm1, pREP3X-HA-pmp1 and pREP3X-HA-mid2 shuttle carriers were transformed into spm1, pmp1 and mid2 mutants by Electroporation, respectively; (6)、The active recombination was identified by the inhibition experiment of thiamine.
     【Results】: An active recombination of pREP3X-HA-spm1 was identified from 35 single clones of relevant transformed S. pombe. An active recombination of pREP3X-HA-pmp1 was identified from 43 single clones of relevant transformed S. pombe. An active recombination of pREP3X-HA-mid2 was identified from 41 single clones of relevant transformed S. pombe.
     【Conclusion】: The pREP3X-HA-spm1, pREP3X-HA-pmp1 and pREP3X-HA-mid2 shuttle carriers have successfully been transformed into relevant S. pombe mutants; and the recombination of pREP3X-HA-spm1, pREP3X-HA-pmp1 and pREP3 X-HA-mid2 possesses an expressed activity. Chapter 4 Edelfosine Affect the Phosphatization of MAPK Spm1 of S. pombe
     【Background and Objects】: Protein kinase cascade regulates the response of extracellular stimulation in cytoplast and cell nuclei. The MAPK signal cascade is an ancestral and conservative protein kinase in eukaryote. In present, several MAPK cascades have been found in S. pombe. The Mkh1(MEKK)-Skh1/Pek1(MEK)-Spm1/Pmk1(MAPK) pathway has a relation with morphogenesis in S. pombe. Mid2p activates the PKC_1-MPK_1 cell integrity pathway via the small GTPase Rho4 resulting from exposure to extracellular signals and activate Spm1 finally, meanwhile, Pmp1 affect the photophosphorylation of Spm1/Pmk1 in vivo and in vitro. In this study, we explored the function mechanism of edelfosine inhibiting the cytokinesis of S. pombe and the effect of edelfosine on MAPK Spm1 pathway induced by Mid2 and inhibited by Pmp1.
     【Methods】: Firstly, the parallel growth inhibition experiment of S. pombe wild-type cells, spm1△, pmp1△, mid2△and relevant retransform strains were carried out in order to farther confirmed the effect of edelfosine on spm1, pmp1 and mid2 genes. Then, the experiment that edelfosine inhibited the phosphatization of Spm1 was carried out in order to elucidate whether edelfosine affect on the phosphatization of Spm1 induced via Mid2 and inhibited via Pmp1.
     【Results】: (1)、On the inhibition experiment of parallel growth of S. pombe wild-type cells, spm1 mutants, pmp1 mutants, mid2 mutants and relevant retransform strains, the spm1 mutants grew well treated with 5.0μM and 10.0μM edelfosine for 24 h; the growth ratio of spm1 mutants had a statistic significance in between the cells previously mentioned and the S. pombe wild-type cells treated with 5.0μM and 10.0μM edelfosine (treated with 5.0μM edelfosine, the growth ratio of spm1 mutants vs wild-type cells was 101.1±6.6 vs 5.34±0.7; treated with 10.0μM edelfosine, the growth ratio of spm1 mutants vs wild-type cells was 105.5±9.8 vs 5.6±0.9; the t values were 25.00, 17.58, respectively; P<0.01). The IC_(50) of spm1 mutants and wild-type cells treated with edelfosine was (50.12±4.31)μM and (3.75±0.34)μM, respectively. The IC_(50) difference between spm1 mutants and wild-type cells had statistic significance (t=18.58, P<0.01). The mid2 mutants and pmp1 mutants also grew well treated with 5.0μM edelfosine for 24 h. The growth ratio of mid2 mutants and pmp1 mutants had a statistic significance in between the cells previously mentioned and the S. pombe wild-type cells treated with 5.0μM edelfosine (treated with 5.0μM edelfosine, the growth ratio of mid2 mutants vs wild-type cells was 77.3±4.5 vs 5.3±0.7, t=27.38, P<0.01; the growth ratio of pmp1 mutants vs wild-type cells was 81.3±4.7 vs 5.3±0.7, t=27.70, P<0.01). The IC_(50) of mid2 and pmp1 mutants treated with edelfosine were (7.12±0.63)μM and (7.25±0.65)μM, respectively. Compared with wild-type cells treated with edelfosine, the difference of IC_(50) had statistic significance (the t value was 8.15 and 8.26, respectively, P<0.01).
     (2)、On the experiment of edelfosine inhibiting the phosphatization of Spm1, the active MAPK were detected in the cells contained pREP3 X-HA-mid2, pREP3 X-HA-pmp1 and pREP3 X-HA-spm1 plasmid when they treated with edelfosine, but the active MAPK were not detected in S. pombe wild-type cells, mid2 mutants, pmp1 mutants and spm1 mutants when they treated with edelfosine. Meanwhile, the active MAPK were not detected in all tested cells when they untreated with edelfosine. The results showed that the active MAPK Spm1 was produced via edelfosine inducing the expression of Mid2 and/or edelfosine inhibiting the expression of Pmp1.
     【Conclusions】: (1)、Edelfosine inhibited cytokinesis of S. pombe cells via acting on the mid2, spm1 and pmp1 genes. (2)、The extracellular edelfosine promoted the phosphatization of Spmlvia inducing the expression of Mid2; The intracellular edelfosine increased the phosphatization of Spmlvia inhibiting the expression of Pmp1, and leading the holdback of cytokinesis.
引文
[1]. Boggs KP, Rock CO, Jackowski S. Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. J Biol Chem. 1995; 270: 11612-11618.
    [2]. Pushkareva MY, Janoff AS, Mayhew E. Inhibition of cell division but not nuclear division by 1-O-octadecyl-2-O-methyl-Sn-glycero-3-phosphocholine. Cell Biol Int. 1999; 23: 817-828.
    [3]. Na HK, Chang CC, Trosko JE. Growth suppression of a tumorigenic rat liver cell line by the anticancer agent, ET-18-O-CH(3), is mediated by inhibition of cytokinesis. Cancer Chemother Pharmacol. 2003; 51: 209-215.
    [4]. Kipreos ET. C.elegans cell cycles: invariance and stem cell divisions. Nat Rev Mol Cell Biol. 2005; 6: 766-776.
    [5]. Burgess DR. Cytokinesis: new roles for myosin. Curr Biol. 2005; 15: 310-311.
    [6]. Wang YL. The mechanism of cytokinesis: reconsideration and reconciliation. Cell Struct Funct. 2001; 26: 633-638.
    [7]. Weber I. On the mechanism of cleavage furrow ingression in Dictyostelium. Cell Struct Funct. 2001; 26: 577-584.
    [8]. Wolfe BA, Gould KL. Split decisions: coordinating cytokinesis in yeast. Trends Cell Biol. 2005; 15: 10-18.
    [9]. Mulvihill DP, Win TZ, Pack TP, et al. Cytokinesis in fission yeast: a myosin pas de deux. Microsc Res Tech. 2000; 49: 152-160.
    [10]. WU Zhao xia, ZHENG Wen ling, MA Wen li. Fission Yeast as a Foreign Gene Expression System. Life Science Research. 2004; S1: 110-115.
    [11]. Zaremberg V, Gajate C, Cacharro LM, et al. Cytotoxicity of an anti-cancer lysophospholipid through selective modification of lipid raft composition. J Biol Chem. 2005; 280: 38047-38058.
    [12]. Sharer SH, Williams CL. Non-small and small cell lung carcinoma cell lines exhibit cell type-specific sensitivity to edelfosine-induced cell death and different cell line-specific responses to edelfosine treatment. Int J Oncol. 2003; 23: 389-400.
    [13].黄玲玲.抗癌药Edelfosine.药学进展.2000;24:312.
    [14]. Torrecillas A, Aroca-Aguilar JD, Aranda FJ, et al. Effects of the anti-neoplastic agent ET-18-OCH(3) and some analogs on the biophysical properties of model membranes. Int J Pharm. 2006; 318: 28-40.
    [15]. Nieto-Miguel T, Gajate C, Mollinedo F. Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic versus solid tumor cells. J Biol Chem. 2006; 281: 14833-14840.
    [16]. Mollinedo F, Gajate C, Martin-Santamaria S, et al. ET-18-OCH_3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem. 2004; 11: 3163-3184.
    [17].Hoch HC, Galvani CD, Szarowski DH, et al. Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia. 2005; 97: 580-588.
    
    [18].Gajate C, Mollinedo F. Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH(3) (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab. 2002; 3: 491-525.
    
    [19]. Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis. 2003; 8: 413-450.
    
    [20]. Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotech Histochem. 1995; 70: 220-233.
    
    [21].Modolell M, Andreesen R, Pahlke W, et al. Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res. 1979; 39: 4681-4686.
    
    [22]. Herrmann DB, Neumann HA. Cytotoxic ether phospholipids. Different affinities to lysophosphocholine acyltransferases in sensitive and resistant cells. J Biol Chem. 1986; 261:7742-7747.
    
    [23].Boggs K, Rock CO, Jackowski S. The antiproliferative effect of hexadecylphosphocholine toward HL60 cells is prevented by exogenous lysophosphatidylcholine. Biochim Biophys Acta. 1998; 1389: 1-12.
    
    [24].Baburina I, Jackowski S. Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1998; 273: 2169-2173.
    
    [25]. Zhou X, Arthur G. Effect of 1-O-octadecyl-2-O-methyl-glycerophosphocholine on phosphatidylcholine and phosphatidylethanolamine synthesis in MCF-7 and A549 cells and its relationship to inhibition of cell proliferation. Eur J Biochem. 1995; 232:881-888.
    
    [1]. Coulomb S, Bauer M, Bernard D, et al. Gene essentiality and the topology of protein interaction networks. Proc Biol Sci. 2005; 272: 1721-1725.
    
    [2]. Eisenstein M. Uncovering hidden relationships. Nat Methods. 2005; 2: 806.
    [3]. Petersen J, Hagan IM. Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature. 2005; 435: 507-512.
    [4]. Niccoli T, Nurse P. Different mechanisms of cell polarisation in vegetative and shmooing growth in fission yeast. J Cell Sci. 2002; 115: 1651-1662.
    [5]. Sohrmann M, Fankhauser C, Brodbeck C, et al. The dmfl/midl gene is essential for correct positioning of the division septum in fission yeast. Genes Dev. 1996; 10: 2707-2719.
    [6]. Tasto JJ, Morrell JL, Gould KL. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J Cell Biol. 2003; 160: 1093-1103.
    [7]. Chang F, Woollard A, Nurse P. Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J Cell Sci. 1996; 109: 131-142.
    [8]. Mulvihill DP, Hyams JS. Role of the two type II myosins, Myo2 and Myp2, in cytokinetic actomyosin ring formation and function in fission yeast. Cell Motil Cytoskeleton. 2003; 54: 208-216.
    [9]. Pelham RJ, Chang F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature. 2002; 419: 82-86.
    [10]. Balasubramanian MK, Feoktistova A, McCollum D, et al. Fission yeast Sop2p: a novel and evolutionarily conserved protein that interacts with Arp3p and modulates profilin function. EMBO J. 1996; 15: 6426-6437.
    [11]. Schmidt S, Sohrmann M, Hofmann K, et al. The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev. 1997; 11: 1519-1534.
    [12].Krapp A, Schmidt S, Cano E, et al. S. pombe cdcllp, together with sid4p, provides an anchor for septation initiation network proteins on the spindle pole body. CurrBiol. 2001; 11: 1559-1568.
    [13].Tajadura V, Garcia B, Garcia I, et al. Schizosaccharomyces pombe Rgf3p is a specific Rho1 GEF that regulates cell wall beta-glucan biosynthesis through the GTPase Rho1p. J Cell Sci. 2004; 117: 6163-6174.
    [14].Nakano K, Mutoh T, Arai R, et al. The small GTPase Rho4 is involved in controlling cell morphology and septation in fission yeast. Genes Cells. 2003; 8: 357-370.
    [15]. Cortes JC, Ishiguro J, Duran A, et al. Localization of the (1,3)beta-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J Cell Sci. 2002; 115: 4081-4096.
    [16].Furge KA, Wong K, Armstrong J, et al. Byr4 and Cdc16 form a two-component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast. Curr Biol. 1998; 8: 947-954.
    [17].Demeter J, Sazer S. imp2, a new component of the actin ring in the fission yeast Schizosaccharomyces pombe. J Cell Biol. 1998; 143: 415-427.
    [18].Didmon M, Davis K, Watson P, et al. Identifying regulators of pheromone signalling in the fission yeast Schizosaccharomyces pombe. Curr Genet. 2002; 41:241-253.
    [19]. Toda T, Dhut S, Superti-Furga G, et al. The fission yeast pmk1~+ gene encodes a novel mitogen-activated protein kinase homolog which regulates cell integrity and functions coordinately with the protein kinase C pathway. Mol Cell Biol. 1996; 16: 6752-6764.
    [20].Ruiter GA, Zerp SF, Bartelink H, et al. Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase- Akt/PKB survival pathway. Anticancer Drugs. 2003: 14: 167-173.
    [21].Samadder P, Richards C. Bittman R, et al. The antitumor ether lipid 1 -O-octadecyl-2-O-methyl-rac-glycerophosphocholine (ET-18-OCH3) inhibits the association between Ras and Raf-1. Anticancer Res. 2003; 23: 2291-2295.
    [22]. Gajate C, Santos-Beneit A, Modolell M, et al. Involvement of c-Jun NH2-terminal kinase activation and c-Jun in the induction of apoptosis by the ether phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Mol Pharmacol. 1998; 53: 602-612.
    [23]. Nieto-Miguel T, Gajate C, Mollinedo F. Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic versus solid tumor cells. J Biol Chem. 2006; 281: 14833-14840.
    [24]. Ruiter GA, Verheij M, Zerp SF, et al. Submicromolar doses of alkyl-lysophospholipids induce rapid internalization, but not activation, of epidermal growth factor receptor and concomitant MAPK/ERK activation in A431 cells. Int J Cancer. 2002; 102: 343-350.
    [25]. Sugiura R, Toda T, Dhut S, et al. The MAPK kinase Pek1 acts as a phosphorylation-dependent molecular switch. Nature. 1999; 399: 479-483.
    [26]. Reiko S, Takashi T, Hisato S, et al. pmp1~+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast. The EMBO Journal. 1998; 17: 140~148.
    [27]. Reiko S, Susie OS, Hisato S, et al. Calcineurin phosphatase in signal transduction: lessons from fission yeast. Genes to Cells. 2002; 7:619-627.
    [28]. Bimbo A, Jia Y, Poh SL, et al. Systematic deletion analysis of fission yeast protein kinases. Eukaryot Cell. 2005; 4: 799-813.
    [29]. Sugiura R, Toda T, Shuntoh H, et al. pmp1~+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast. EMBO J. 1998; 17: 140-148.
    [30]. Decottignies A, Sanchez-Perez I, Nurse P. Schizosaccharomyces pombe essential genes: a pilot study. Genome Res. 2003; 13: 399-406.
    [31]. Berlin A, Paoletti A, Chang F. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J Cell Biol. 2003; 160: 1083-1092.
    [1]. YUE Qiang, ZHOU Hui. Schizosaccharomyces Pombe-A Favourable Model Organism for Studying Eukaryote. Journal of Shaoguan University(Social Science). 2003; 26: 100-103.
    [2].胡晓露,马文丽,郑文岭.酵母全基因组芯片的应用.生命的化学 2005;25:52-54.
    [3]. Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques. 2006; 40: 625-644.
    [4]. Ma D. Applications of yeast in drug discovery. Prog Drug Res. 2001; 57: 117-162.
    [5]. Barbaric D, Dalla-Pozza L, Byrne JA. A reliable method for total RNA extraction from frozen human bone marrow samples taken at diagnosis of acute leukaemia. J Clin Pathol. 2002; 55: 865-867.
    [6]. Kong WJ, Wang Y, Wang Q, et al. Comparison of three methods for isolation of nucleic acids from membranate inner ear tissue of rats. Chin Med J (Engl). 2006; 119: 986-990.
    [7].于寒松,彭帅,谢远红,等.一种RNA提取试剂盒-TRIZOL的使用方法初探.食品科学.2005;26:19-22.
    [8]. Wacker MJ, Godard MR Analysis of one-step and two-step real-time RT-PCR using SuperScript Ⅲ. J Biomol Tech. 2005; 16: 266-271.
    [9].郝福英,朱玉贤,朱圣庚,等.分子生物学实验技术,第一版,人民卫生出版社,北京,1998.121-132.
    [10].T.曼尼阿蒂斯,E.弗里奇,J.萨姆布鲁克,等.金冬雁,黎孟枫 等译.分子克隆-实验指南.第二版,科学出版社,1986.
    [11]. Suga M, Hatakeyama T. High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast. 2001; 18: 1015-1021.
    [12]. ZHANG Wu-kui, FAN Qing-lin, SONG Li-hua. The Advances and Application in the Expression of Heterologous Gene in Pichia pastoris. China Biotechnology. 2006; 26: 92-96.
    [1]. Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 1995; 20: 117-122.
    [2]. Martin-Blanco E. p38 MAPK signalling cascades: ancient roles and new functions. Bioessays. 2000; 22: 637-645.
    [3]. Gacto M, Soto T, Vicente-Soler J, et al. Learning from yeasts: intracellular sensing of stress conditions. Int Microbiol. 2003; 6: 211-219.
    [4]. Ikner A, Shiozaki K. Yeast signaling pathways in the oxidative stress response. Mutat Res. 2005; 569: 13-27.
    [5].陈娅斐,冯斌,赵小明,等.MAPK级联途径在植物信号转导中的研究进展.植物学通报.2005;22:357-365.
    [6]. Huang LS, Doherty HK, Herskowitz I. The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-beta-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2005; 102: 12431-12436.
    [7]. Sprague GF Jr. Control of MAP kinase signaling specificity or how not to go HOG wild. Genes Dev. 1998; 12: 2817-2820.
    [8]. Prick T, Thumm M, Haussinger D, et al. Deletion of HOG1 Leads to Osmosensitivity in Starvation-Induced, but Not Rapamycin-Dependent Atg8 Degradation and Proteolysis: Further Evidence for Different Regulatory Mechanisms in Yeast Autophagy. Autophagy. 2006; 2: 241-243.
    [9]. Lee KS, Irie K, Gotoh Y, et al. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol. 1993; 13: 3067-3075.
    [10]. Krysan DJ, Ting EL, Abeijon C, et al. Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell. 2005; 4: 1364-1374.
    [11]. Bardwell L, Cook JG, Chang EC, et al. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol Cell Biol. 1996; 16: 3637-3650.
    [12]. Chou S, Lane S, Liu H. Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol. 2006; 26: 4794-4805.
    [13]. Neiman AM, Stevenson BJ, Xu HP, et al. Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell. 1993; 4: 107-120.
    [14]. Yamamoto TG, Chikashige Y, Ozoe F, et al. Activation of the pheromone-responsive MAP kinase drives haploid cells to undergo ectopic meiosis with normal telomere clustering and sister chromatid segregation in fission yeast. J Cell Sci. 2004; 117: 3875-3886.
    [15]. Degols G, Shiozaki K, Russell P. Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cell Biol. 1996; 16: 2870-2877.
    [16]. Shiozaki K, PR. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature. 1995; 378: 739-743.
    [17]. Takatsume Y, Izawa S, Inoue Y. Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. J Biol Chem. 2006; 281: 9086-9092.
    [18]. Dunand-Sauthier I, Walker CA, Narasimhan J, et al. Stress-activated protein kinase pathway functions to support protein synthesis and translational adaptation in response to environmental stress in fission yeast. Eukaryot Cell. 2005; 4: 1785-1793.
    [19]. Sugiura R, Toda T, Dhut S, et al. The MAPK kinase Pek1 acts as a phosphorylation-dependent molecular switch. Nature. 1999; 399: 479-483.
    [20]. Madrid M, Soto T, Khong HK, et al. Stress-induced response, localization, and regulation of the Pmk1 cell integrity pathway in Schizosaccharomyces pombe. J Biol Chem. 2006; 281: 2033-2043.
    [21]. Loewith R, Hubberstey A, Young D. Skh1, the MEK component of the mkh1 signaling pathway in Schizosaccharomyces pombe. J Cell Sci. 2000; 113: 153-160.
    [22].奥斯伯(Ao SB),布伦特(Bu RT),金斯顿(Jing SD),等著,颜子颖(Yan ZY),王海林(Wang HL)译.精编分子生物学实验指南[M].北京,科学出版社,1998:1771-7721.
    [23]. Tasto JJ, Morrell JL, Gould KL. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J Cell Biol. 2003; 160: 1093-1103.
    [24]. Berlin A, Paoletti A, Chang F. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J Cell Biol. 2003; 160: 1083-1092.
    [25]. Martin-Cuadrado AB, Morrell JL, Konomi M, et al. Role of septins and the exocyst complex in the function of hydrolytic enzymes responsible for fission yeast cell separation. Mol Biol Cell. 2005; 16: 4867-4881.
    [26].Zaitsevskaya-Carter T, Cooper JA. Spm1, a stress-activated MAP kinase that regulates morphogenesis in S.pombe. EMBO J. 1997; 16: 1318-1331.
    [27]. Toda T, Dhut S, Superti-Furga G, et al. The fission yeast pmk1~+ gene encodes a novel mitogen-activated protein kinase homolog which regulates cell integrity and functions coordinately with the protein kinase C pathway. Mol Cell Biol. 1996; 16: 6752-6764.
    [28].Didmon M, Davis K, Watson P, et al. Identifying regulators of pheromone signalling in the fission yeast Schizosaccharomyces pombe. Curr Genet. 2002; 41:241-253.
    [29]. Sugiura R, Toda T, Shuntoh H, et al. pmp1~+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast. EMBO J. 1998; 17: 140-148.
    [30]. Schwartz MA, Madhani HD. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet. 2004; 38: 725-748.
    [31].Nakano K, Mutoh T, Arai R, et al. The small GTPase Rho4 is involved in controlling cell morphology and septation in fission yeast. Genes Cells. 2003; 8: 357-370.
    
    [1] Gajate C, and Mollinedo F. Biological activities,mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH3 (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab, 2002, 3: 491.
    [2] Herrmann DB, Bicker U, and Pahlke W. BM 41.440: a new antineoplastic, antimetastatic, and immune-stimulating drug. Cancer Detect Prev, 1987, Suppl 1: 361-371.
    [3] Herrmann DB, Pahlke W, Opitz HG, et al. In vivo antitumor activity of ilmofosine. Cancer Treat Rev, 1990,17: 247-252.
    [4] Herrmann DB, Besenfelder E, Bicker U, et al. Pharmacokinetics of the thioether phospholipid analogue BM 41.440 in rats. Lipids, 1987, 22: 952-954.
    [5] Herrmann DB, Neumann HA, Berdel WE, et al. Phase I trial of the thioether phospholipid analogue BM 41.440 in cancer patients. Lipids, 1988, 23: 76.
    [6] Houlihan WJ, Lohmeyer M, Workman P, et al. Phospholipid antitumor agents. Med Res Rev, 1995, 75: 157-223.
    [7] Crul M, Rosing H, de Klerk GJ, et al. Phase 1 and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer, 2002, 38: 1615-1621.
    [8] Patel V, Lahusen T, Sy T, et al. Perifosine, a novel alkylphospholipid, induces p21(WAFl) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res, 2002, 62: 1401-1409.
     [9] Ruiter GA, Zerp SF, Bartelink H, et al. Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs, 2003,14: 167-173.
    [10] Jendrossek V, and Handrick R. Membrane targeted anticancer drugs: potent inducers of apoptosis and putative radiosensitisers. Curr Med Chem Anti-Canc Agents, 2003, 3: 343-353.
    [11] Jendrossek V, Erdlenbruch B, Hunold A, et al. Erucylphosphocholine, a novel antineoplastic ether lipid, blocks growth and induces apoptosis in brain tumor cell lines in vitro. Int J Oncol, 1999,14: 15-22.
    
    [12] Jendrossek V, Kugler W, Erdlenbruch B, et al. Erucylphosphocholine-induced apoptosis in chemoresistant glioblastoma cell lines: involvement of caspase activation and mitochondrial alterations. Anticancer Res, 2001, 21: 3389-3396.
    [13] Jendrossek V, Muller I, Eibl H, et al. Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene, 2003, 22: 2621-2631.
    [14] Munder PG, and Westphal O. Antitumoral and other biomedical activities of synthetic ether lysophospholipids. Chem Immunol, 1990, 49: 206-235.
     [15] Mollinedo F, Fernandez-Luna JL, Gajate C, et al. Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(1). Cancer Res, 1997, 57: 1320-1328.
    [16] Boehm I. Apoptosis in physiological and pathological skin: implications for therapy.Curr Mol Med, 2006, 6: 375-394.
    [17] Kuwano K, Yoshimi M, Maeyama T, et al. Apoptosis signaling pathways in lung diseases. Med Chem, 2005, 7:49-56.
    [18] Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407: 770-776.
    
    [19] Ashkenazi A, and Dixit VM. Death receptors: signaling and modulation. Science, 1998,257: 1305-1308.
    [20] Dorner T, Lipsky PE. Signalling pathways in B cells: implications for autoimmunity. Curr Top Microbiol Immunol, 2006, 305:213-240.
    [21] Galluzzi L, Larochette N, Zamzami N, et al. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene, 2006,25:4812-4830.
    [22] Igney FH, and Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer, 2002, 2: 277-288.
    [23] Kaufmann SH, and Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res, 2000, 256: 42-49.
    [24] Favaudon V, Noel G. Biological basis for concomitant chemoradiotherapy in carcinomas. Bull Cancer, 2005, 92:1027-1031.
    [25] Cappello P, Novelli F, Forni G, et al. Death receptor ligands in tumors. J Immunother, 2002, 25: 1-15.
    [26] Lowe SW, and Lin AW. Apoptosis in cancer. Carcinogenesis, 2000, 21: 485-495.
    [27] Herr I, and Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood, 2001, 98: 2603-2614.
    [28] Johnstone RW, Ruefli AA, and Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 2002,108: 153-164.
    [29] Solary E, Droin N, Bettaieb A, et al. Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies. Leukemia, 2000,14: 1833-1849.
    [30] Gajate C, and Mollinedo F. The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood, 2001, 98: 3860-3863.
    [31] Gajate C, Fonteriz RI, Cabaner C, et al. Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int J Cancer, 2000, 85: 674-682.
    [32] van der Luit AH, Budde M, Ruurs P, et al. Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem, 2002, 277: 39541-39547.
    [33] Burdzy K, Munder PG, Fischer H, et al. Increase in the phagocytosis of peritoneal macrophages by lysolecithin. Z Naturforsch B, 1964, 19: 1118-1120.
    [34] Munder PG, Modolell M, Ferber E, et al. Phospholipids in quartz-damaged macrophages. Biochem Z, 1966, 344: 310~313.
    [35] Munder PG, Ferber E, Modolell M, et al. The influence of various adjuvants on the metabolism of phospholipids in macrophages. Int Arch Allergy Appl Immunol, 1969, 36: 117~128.
    [36] Andreesen R, Modolell M, Weltzien HU, et al. Selective destruction of human leukemic cells by alkyl-lysophospholipids. Cancer Res, 1978, 38: 3894~3899.
    [37] Andreesen R, Modolell M, and Munder PG. Selective sensitivity of chronic myelogenous leukemia cell populations to alkyl-lysophospholipids. Blood, 1979, 54: 519~523.
    [38] Modolell M, Andreesen R, Pahlke W, et al. Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res, 1979, 39: 4681~4686.
    [39] Kny G. Chemical Diploma Thesis, University of Freiburg. 1969.
    [40] Pascher I, and Sundell S. Interactions and space requirements of the phosphate head group in membrane lipids. The crystal structure of disodium lysophosphatidate dihydrate. Chem Phys Lipids, 1986, 37: 241~250.
    [41] Kerr JF, Wyllie AH, and Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26: 239~257.
    [42] Hewitson TD, Bisucci T, Darby IA. Histochemical localization of apoptosis with in situ labeling of fragmented DNA. Methods Mol Biol, 2006, 326: 227~234.
    [43] Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology, 2002, 181-182: 471~474.
    [44] Diomede L, Colotta F, Piovani B, et al. Induction of apoptosis in human leukemic cells by the ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. A possible basis for its selective action. Int J Cancer, 1993, 53: 124~130.
    [45] Mollinedo F, Gajate C, Martin-Santamaria S, et al. ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem, 2004, 11:3163~3184.
    [46] Diomede L, Piovani B, Re F, et al. The induction of apoptosis is a common feature of the cytotoxic action of ether-linked glycerophospholipids in human leukemic cells. Int J Cancer, 1994,57: 645-649.
    [47] Gajate C, Santos-Beneit A, Modolell M, et al. Involvement of c-Jun NH2-terminal kinase activation and c-Jun in the induction of apoptosis by the ether phospholipid 1 -O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Mol Pharmacol, 1998, 55: 602-612.
    [48] Matsumoto Y, Iwamoto Y, Matsushita T, et al. Novel mechanism of hybrid liposomes-induced apoptosis in human tumor cells, Int J Cancer, 2005, 115: 377-382.
    [49] Castillo SS, Brognard J, Petukhov PA, et al. Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. Cancer Res. 2004, 64: 2782-2792.
    [50] Kelley EE, Modest EJ, Burns CP. Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem Pharmacol, 1993, 45: 2435-2439.
    [51] Petersen ES, Kelley EE, Modest EJ, et al. Membrane lipid modification and sensitivity of leukemic cells to the thioether lipid analogue BM 41.440. Cancer Res, 1992, 52: 6263-6269.
    [52] Heesbeen EC, Rijksen G, van Heugten HG, et al. Influence of serum levels on leukemic cell destruction by the ether lipid ET-18-OCH3. Leuk Res, 1995, 79:417-425.
    [53] Noseda A, Godwin PL, and Modest EJ. Effects of antineoplastic ether lipids on model and biological membranes. Biochim Biophys Acta, 1988, 945: 92-100.
    [54] Lai CS, Joseph J, and Shih CC. Molecular dynamics of antitumor ether-linked phospholipids in model membranes: a spin-label study. Biochem Biophys Res Commun, 1989, 160: 1189-1195.
    [55] Anliker B, Chun J. Cell surface receptors in lysophospholipid signaling. Semin Cell Dev Biol, 2004, 75: 457-465.
    [56] Brachwitz H, and Vollgraf C. Analogs of alkyllysophospholipids: chemistry, effects on the molecular level and their consequences for normal and malignant cells. Pharmacol Ther, 1995, 66: 39-82.
    [57] Wieder T, Reutter W, Orfanos CE, et al. Mechanisms of action of phospholipid analogs as anticancer compounds. Prog Lipid Res, 1999, 38: 249~259.
    [58] Arthur G, and Bittman R. The inhibition of cell signaling pathways by antitumor ether lipids. Biochim Biophys Acta, 1998, 1390: 85~102.
    [59] Nieto-Miguel T, Gajate C, Mollinedo F. Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic versus solid tumor cells. J Biol Chem. 2006, 281: 14833~14840.
    [60] Ruiter GA, Zerp SF, Bartelink H, et al. Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res, 1999, 59: 2457~2463.
    [61] Soto J, Soto P. Miltefosine: oral treatment of leishmaniasis. Expert Rev Anti Infect Ther, 2006, 4: 177~185.
    [62] Fleer EA, Berkovic D, Unger C, et al. Cellular uptake and metabolic fate of hexadecylphosphocholine. Prog Exp Tumor Res, 1992, 34: 33~46.
    [63] Fleer EA, Kim DJ, Nagel GA, et al. Cytotoxic activity of lysophosphatidylcholine analogues on human lymphoma Raji cells. Onkologie, 1990, 13: 295~300.
    [64] Danhauser S, Berdel WE, Schick HD, et al. Structure-cytotoxicity studies on alkyl lysophospholipids and some analogs in leukemic blasts of human origin in vitro. Lipids, 1987, 22: 911~915.
    [65] van Blitterswijk WJ, van der Bend RL, Kramer IM, et al. A metabolite of an antineoplastic ether phospholipid may inhibit transmembrane signalling via protein kinase C. Lipids, 1987, 22: 842~846.
    [66] Fleer EA, Unger C, Kim DJ, et al. Metabolism of ether phospholipids and analogs in neoplastic cells. Lipids, 1987, 22: 856~861.
    [67] Vallari DS, Smith ZL, and Snyder F. HL-60 cells become resistant towards antitumor ether-linked phospholipids following differentiation into a granulocytic form. Biochem Biophys Res Commun, 1988, 156: 1~8.
    [68] Guivisdalsky PN, Bittman R, Smith Z, et al. Synthesis and antineoplastic properties of ether-linked thioglycolipids. J Med Chem, 1990, 33: 2614~2621.
    [69] Hoffman DR, Hoffman LH, and Snyder F. Cytotoxicity and metabolism of alkyl phospholipid analogues in neoplastic cells. Cancer Res, 1986, 46: 5803~5809.
    [70] Conesa-Zamora P, Mollinedo F, Corbalan-Garcia S, et al. A comparative study of the effect of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine and some homologous compounds on PKC alpha and PKC epsilon. Biochim Biophys Acta, 2005, 1687: 110~119.
    [71] Karidis NP, Kouraklis G, Theocharis SE. Platelet-activating factor in liver injury: a relational scope. World J Gastroenterol, 2006, 12: 3695~3706.
    [72] Liu LR, Xia SH. Role of platelet-activating factor in the pathogenesis of acute pancreatitis. World J Gastroenterol, 2006, 12: 539~545.
    [73] O,Neill C. The role of paf in embryo physiology. Hum Reprod Update, 2005, 11: 215~228.
    [74] Snyder F. Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem J, 1995, 305(Pt 3): 689~705.
    [75] Demopoulos CA, Pinckard RN, and Hanahan DJ. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem, 1979, 254: 9355~9358.
    [76] Hanahan DJ, Demopoulos CA, Liehr J, et al. Identification of platelet activating factor isolated from rabbit basophils as acetyl glyceryl ether phosphorylcholine. J Biol Chem, 1980, 255: 5514~5516.
    [77] Honda Z, Nakamura M, Miki I, et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature, 1991, 349: 342~346.
    [78] Nakamura M, Honda Z, Izumi T, et al. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem, 1991, 266: 20400~20405.
    [79] Kunz D, Gerard NP, and Gerard C. The human leukocyte platelet-activating factor receptor. cDNA cloning, cell surface expression, and construction of a novel epitope-bearing analog. J Biol Chem, 1992, 267: 9101~9106.
    [80] Salari H. Dryden P, Howard S, et al. Two different sites of action for platelet activating factor and 1-O-alkyl-2-O-methyl-sn-glycero-3-phosphocholine on platelets and leukemic cells. Biochem Cell Biol, 1992, 70: 129~135.
    [81] Alonso MT, Gajate C, Mollinedo F, et al. Dissociation of the effects of the antitumour ether lipid ET-18-OCH3 on cytosolic calcium and on apoptosis. Br J Pharmacol, 1997,121: 1364-1368.
    [82] Heesbeen EC, Verdonck LF, Haagmans M, et al. Adsorption and uptake of the alkyllysophospholipid ET-18-OCH3 by HL-60 cells during induction of differentiation by dimethylsulfoxide. Leuk Res, 1993,77: 143-148.
    [83] Vallari DS, Austinhirst R, and Snyder F. Development of specific functionally active receptors for platelet-activating factor in HL-60 cells following granulocytic differentiation. J Biol Chem, 1990, 265: 4261-4265.
    [84] Muller E, Dupuis G, Turcotte S, et al. Human PAF receptor gene expression: induction during HL-60 cell differentiation. Biochem Biophys Res Commun, 1991,757:1580-1586.
    [85] Workman P, Donaldson J, and Lohmeyer M. Platelet-activating factor (PAF) antagonist WEB 2086 does not modulate the cytotoxicity of PAF or antitumour alkyl lysophospholipids ET-18-O-methyl and SRI 62-834 in HL-60 promyelocytic leukaemia cells. Biochem Pharmacol, 1991, 41: 319-322.
    [86] Jan CR, Wu SN, and Tseng CJ. The ether lipid ET-18-OCH3 increases cytosolic Ca2+ concentrations in Madin Darby canine kidney cells. Br J Pharmacol, 1999, 727: 1502-1510.
    [87] van Blitterswijk WJ, Hilkmann H, and Storme GA. Accumulation of an alkyl lysophospholipid in tumor cell membranes affects membrane fluidity and tumor cell invasion. Lipids, 1987, 22: 820-823.
    [88] May GL, Wright LC, Dyne M, et al. Plasma membrane lipid composition of vinblastine sensitive and resistant human leukaemic lymphoblasts. Int J Cancer, 1988, 42: 728-733.
    [89] Geilen CC, Wieder T, Haase A, et al. Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells. Biochim Biophys Acta, 1994, 7277: 14-22.
    [90] Storch J, and Munder PG. Increased membrane permeability for an antitumoral alkyl lysophospholipid in sensitive tumor cells. Lipids, 1987, 22: 813-819.
    [91] Fujiwara K, Daniel LW, Modest EJ, et al. Relationship of cell survival, drug dose, and drug uptake after 1 -O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine treatment. Cancer Chemother Pharmacol, 1994, 34: 472-476.
    [92] Zoeller RA, Layne MD, and Modest EJ. Animal cell mutants unable to take up biologically active glycerophospholipids. J Lipid Res, 1995, 36: 1866-1875.
    [93] Mollinedo F, Santos-Beneit A M, and gajate C. Animal cell culture techniques (Heidelberg: Springer-Verlag). 1998.
    [94] Vallari DS, Record M, Smith ZL, et al. O-alkyl-O-methylglycerophosphocholine, an antineoplastic lipid, undergoes spontaneous redistribution between biological membranes prepared from HL-60 cells. Biochim Biophys Acta, 1989,1006: 250-254.
    [95] Tokumura A, Tsutsumi T, Nishioka Y, et al. Exogenously added alkylmethylglycerophosphocholine and alkylmethylcarbamylglycerophosphocholine accumulate in plasma membranes more than in intracellular membranes of rabbit platelets. Chem Phys Lipids, 1997, 86: 75-83.
    [96] Mohandas N, Wyatt J, Mel SF, et al. Lipid translocation across the human erythrocyte membrane. Regulatory factors. J Biol Chem, 1982, 257: 6537-6543.
    [97] Switzer S, and Eder HA. Transport of lysolecithin by albumin in human and rat plasma. J Lipid Res, 1965, 6: 506-511.
    [98] Fortes PA, Ellory JC, and Lew VL. Suramin: a potent ATPase inhibitor which acts on the inside surface of the sodium pump. Biochim Biophys Acta, 1973, 318: 262-272.
    [99] Garic-Stankovic A, Hernandez MR, Chiang PJ, et al. Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin-sensitive G protein and a phospholipase Cbeta-dependent Ca2+ transient. Alcohol Clin Exp Res, 2005, 29: 1237-1246.
    [100] Betsholtz C, Johnsson A, Heldin CH, et al. Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sci U S A, 1986, 83: 6440-6444.
    [101] Bellinzona M, Roser F, Matthies C, et al. Biopolymer-mediated suramin chemotherapy in the treatment of experimental brain tumours. Acta Oncol, 2004, 43: 259-263.
    [102] Yayon A, and Klagsbrun M. Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: reversal by suramin. Proc Natl Acad Sci U S A, 1990, 87: 5346-5350.
    [103] van der Bend RL, Brunner J, Jalink K, et al. Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J, 1992,11: 2495-2501.
    
    [104] Li G, Samadder P, Arthur G, et al. Tetrahedron, 2001,57: 8925.
    [105] Van der Veer E, Van der Weide D, Heijmans HS, et al. Translocation of fluorescent ether phospholipid, but not its diacyl counterpart, after insertion in plasma membranes of control and plasmalogen-deficient fibroblasts. Biochim Biophys Acta, 1993,1146: 294-300.
    [106] Hanson PK, Malone L, Birchmore JL, et al. Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem, 2003, 278: 36041-36050.
    [107] Perez-Victoria FJ, Gamarro F, Ouellette M, et al. Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem, 2003, 278: 49965-49971.
    [108] Andreesen R, Modolell M, Oepke GH, et al. Studies on various parameters influencing leukemic cell destruction by alkyl-lysophospholipids. Anticancer Res, 1982,2:95-100.
    [109] Bazill GW, and Dexter TM. Role of endocytosis in the action of ether lipids on WEHI-3B, HL60, and FDCP-mix A4 cells. Cancer Res, 1990, 50: 7505-7512.
    
    [110] Small GW, Strum JC, and Daniel LW. Characterization of an HL-60 cell variant resistant to the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Lipids, 1997, 32: 715-723.
    [111] Van Der Luit AH, Budde M, Verheij M, et al. Different modes of internalization of apoptotic alkyl-lysophospholipid and cell-rescuing lysophosphatidylcholine. Biochem J, 2003, 374(Pt 3): 747-753.
    [112] Clement JM, and Kent C. CTP:phosphocholine cytidylyltransferase: insights into regulatory mechanisms and novel functions. Biochem Biophys Res Commun, 1999, 257: 643-650.
    [113] Boggs KP, Rock CO, and Jackowski S. Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem, 1995, 270: 7757~7764.
    [114] Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol, 2001, 13: 470~477.
    [115] Puri V, Watanabe R, Singh RD, et al. Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol, 2001, 154: 535~547.
    [116] Nichols BJ, and Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol, 2001, 11: 406~412.
    [117] Nichols BJ, Kenworthy AK, Polishchuk RS, et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol, 2001, 153: 529~541.
    [118] Boggs KP, Rock CO, and Jackowski S. Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3- phosphocholine. J Biol Chem, 1995, 270: 11612~11618.
    [119] Roos G, B. W. Sensitivity of human hematopoietic cell lines to an alkyl-lysophospholipid-derivative. Leuk Res, 1986, 10: 195~202.
    [120] Engebraaten O, Bjerkvig R, and Berens ME. Effect of alkyl-lysophospholipid on glioblastoma cell invasion into fetal rat brain tissue in vitro. Cancer Res, 1991, 51: 1713~1719.
    [121] Principe P, Sidoti C, and Braquet P. Tumor cell kinetics following antineoplastic ether phospholipid treatment. Cancer Res, 1992, 52: 2509~2515.
    [122] Principe P, Sidoti C, Coulomb H, et al. Tumor cell kinetics following long-term treatment with antineoplastic ether phospholipids. Cancer Detect Prev, 1994, 18: 393~400.
    [123] Fujiwara K, Modest EJ, and Wallen CA. Cell kill and cytostasis by ET-18-OCH3 and heat. Anticancer Res, 1995, 15: 1333~1338.
    [124] Lohmeyer M, and Workman P. Growth arrest vs direct cytotoxicity and the importance of molecular structure for the in vitro anti-tumout activity of ether lipids. Br J Cancer, 1995, 72: 277~286.
    [125] Pushkareva MY, Janoff AS, and Mayhew E. Inhibition of cell division but not nuclear division by 1-O-octadecyl-2-O-methyl-Sn-glycero-3-phosphocholine. Cell Biol Int, 1999, 23: 817~828.
    [126] Na HK, Chang CC, and Trosko JE. Growth suppression of a tumorigenic rat liver cell line by the anticancer agent, ET-18-O-CH(3), is mediated by inhibition of cytokinesis. Cancer Chemother Pharmacol, 2003, 51: 209~215.
    [127] Storme GA, Berdel WE, van Blitterswijk WJ, et al. Antiinvasive effect of racemic 1-O-octadecyl-2-O-methylglycero-3-phosphocholine on MO4 mouse fibrosarcoma cells in vitro. Cancer Res, 1985, 45: 351~357.
    [128] Pushkareva MY, Janoff AS, and Mayhew E. Inhibition of cell division but not nuclear division by 1-O-octadecyl-2-O-methyl-Sn-glycero-3-phosphocholine. Cell Biol Int, 1999, 23: 817~828.
    [129] Shafer SH, and Williams CL. Non-small and small cell lung carcinoma cell lines exhibit cell type-specific sensitivity to edelfosine-induced cell death and different cell line-specific responses to edelfosine treatment. Int J Oncol, 2003, 23: 389~400.
    [130] Strassheim D, Shafer SH, Phelps SH, et al. Small cell lung carcinoma exhibits greater phospholipase C-beta1 expression and edelfosine resistance compared with non-small cell lung carcinoma. Cancer Res, 2000, 60: 2730~2736.
    [131] Donovan RJ, Carter OB, Byrne MJ. People's perceptions of cancer survivability: implications for oncologists. Lancet Oncol. 2006, 7: 668~675.
    [132] Yoder LH. Lung cancer epidemiology. Medsurg Nurs, 2006, 15: 171~174.
    [133] Sugimura H, Yang P. Long-term survivorship in lung cancer: a review. Chest, 2006, 129: 1088~1097.
    [134] Mollinedo F, and Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis, 2003, 8: 413~450.
    [135] Herrmann DB, and Neumann HA. Cytotoxic ether phospholipids. Different affinities to lysophosphocholine acyltransferases in sensitive and resistant cells. J Biol Chem, 1986, 261: 7742~7747.
    [136] Kent C. Regulation of phosphatidylcholine biosynthesis. Prog Lipid Res, 1990, 29: 87~105.
    [137] Tronchere H, Record M, Terce F, et al. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochim Biophys Acta, 1994,1212: 137-151.
    [138] Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem, 1995, 64: 315-343.
    [139] Baburina I, and Jackowski S. Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem, 1998, 273: 2169-2173.
    [140] Northwood IC, Tong AH, Crawford B, et al. Shuttling of CTP:Phosphocholine cytidylyltransferase between the nucleus and endoplasmic reticulum accompanies the wave of phosphatidylcholine synthesis during the G(0) → G(1) transition. J Biol Chem, 1999, 274: 26240-26248.
    [141] Cornell RB, and Northwood IC. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem Sci, 2000, 25: 441-447.
    
     [142] Lykidis A, Jackson P, and Jackowski S. Lipid activation of CTP: phosphocholine cytidylyltransferase alpha: characterization and identification of a second activation domain. Biochemistry, 2001, 40: 494-503.
    [143] Johnson JE, Xie M, Singh LM, et al. Both acidic and basic amino acids in an amphitropic enzyme, CTP:phosphocholine cytidylyltransferase, dictate its selectivity for anionic membranes. J Biol Chem, 2003, 278: 514-522.
    [144] Vance JE, and Vance DE. Does rat liver Golgi have the capacity to synthesize phospholipids for lipoprotein secretion? J Biol Chem, 1988, 263: 5898-5909.
    [145] Slomiany A, Grzelinska E, Kasinathan C, et al. Biogenesis of endoplasmic reticulum transport vesicles transferring gastric apomucin from ER to Golgi. Exp Cell Res, 1992, 201: 321-329.
    [146] Lykidis A, Murti KG, and Jackowski S. Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. J Biol Chem, 1998, 273: 14022-14029.
    [147] Lu X, and Arthur G. The differential susceptibility of A427 and A549 cell lines to the growth-inhibitory effects of ET-18-OCH3 does not correlate with the relative effects of the alkyl-lysophospholipid on the incorporation of fatty acids into cellular phospholipids. Cancer Res, 1992, 52: 2813~2817.
    [148] Lu X, and Arthur G. Perturbations of cellular acylation processes by the synthetic alkyl-lysophospholipid 1-O-octadecyl-2-O-methylglycero-3-phosphocholine do not correlate with inhibition of proliferation of MCF7 and T84 cell lines. Cancer Res, 1992, 52: 2806~2812.
    [149] Zhou X, and Arthur G. Effect of 1-O-octadecyl-2-O-methyl-glycerophosphocholine on phosphatidylcholine and phosphatidylethanolamine synthesis in MCF-7 and A549 cells and its relationship to inhibition of cell proliferation. Eur J Biochem, 1995, 232: 881~888.
    [150] Cuvillier O, Mayhew E, Janoff AS, et al. Liposomal ET-18-OCH(3) induces cytochrome c-mediated apoptosis independently of CD95 (APO-1/Fas) signaling. Blood, 1999, 94: 3583~3592.
    [151] Gajate C, Santos-Beneit AM, Macho A, et al. Involvement of mitochondria and caspase-3 in ET-18-OCH(3)-induced apoptosis of human leukemic cells. Int J Cancer, 2000, 86: 208~218.
    [152] Vrablic AS, Albright CD, Craciunescu CN, et al. Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes. FASEB J, 2001, 15: 1739~1744.
    [153] Ruiter GA, Verheij M, Zerp SF, et al. Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int J Radiat Oncol Biol Phys, 2001, 49: 415~419.
    [154] Zhou X, Lu X, Richard C, et al. 1-O-octadecyl-2-O-methyl-glycerophosphocholine inhibits the transduction of growth signals via the MAPK cascade in cultured MCF-7 cells. J Clin Invest, 1996, 98: 937~944.
    [155] Cosulich S, and Clarke P. Apoptosis: does stress kill? Curr Biol, 1996, 6: 1586~1588.
    [156] Canman CE, and Kastan MB. Signal transduction. Three paths to stress relief. Nature, 1996, 384: 213~214.
    [157] Ruiter GA, Verheij M, Zerp SF, et al. Submicromolar doses of alkyl-lysophospholipids induce rapid internalization, but not activation, of epidermal growth factor receptor and concomitant MAPK/ERK activation in A431 cells. Int J Cancer, 2002, 702: 343-350.
    [158] Haigler H, Ash JF, Singer SJ, et al. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cellsA-431.ProcNatlAcad Sci U S A, 1978, 75:3317-3321.
    [159] Kosano H, and Takatani O. Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res, 1988, 48: 6033-6036.
    [160] Reilly RM, Kiarash R, Cameron RG, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med, 2000,47:429-438.
    [161] Powis G, Seewald MJ, Gratas C, et al. Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res, 1992, 52: 2835-2840.
    [162] Kiss Z, and Crilly KS. Alkyl lysophospholipids inhibit phorbol ester-stimulated phospholipase D activity and DNA synthesis in fibroblasts. FEBS Lett, 1997, 412: 313-317.
    [163] Berggren MI, Gallegos A, Dressier LA, et al. Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Cancer Res, 1993, 53: 4297-4302.
    [164] Berkovic D, Berkovic K, Fleer EA, et al. Inhibition of calcium-dependent protein kinase C by hexadecylphosphocholine and l-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine do not correlate with inhibition of proliferation of HL60 and K562 cell lines. Eur J Cancer, 1994,304:509-515.
    [165] Pauig SB, and Daniel LW. Protein kinase C inhibition by ET-18-OCH3 and related analogs. A target for cancer chemotherapy. Adv Exp Med Biol, 1996, 416: 173-180.
    [166] Heesbeen EC, Verdonck LF, Hermans SW, et al. Alkyllysophospholipid ET-18-OCH3 acts as an activator of protein kinase C in HL-60 cells. FEBS Lett, 1991,290:231-234.
    [167] Heesbeen EC, Verdonck LF, Staal GE, et al. Protein kinase C is not involved in the cytotoxic action of 1-octadecy1-2-O-methyl-sn-glycerol-3-phosphocholine in HL-60 and K562 cells. Biochem Pharmacol, 1994, 47: 1481~1418.
    [168] Zhou X, and Arthur G. 1-O-Octadecyl-2-O-methylglycerophosphocholine inhibits protein kinase C-dependent phosphorylation of endogenous proteins in MCF-7 cells. Biochem J, 1997, 324 (Pt 3): 897~902.
    [169] Civoli F, and Daniel LW. Quaternary ammonium analogs of ether lipids inhibit the activation of protein kinase C and the growth of human leukemia cell lines. Cancer Chemother Pharmacol, 1998, 42: 319~326.
    [170] Spiegel S, Olah Z, Cuvillier O, et al. Differential effects of free and liposome-associated 1-O-octadecyl-2-O-methylglycerophosphocholine on protein kinase C. FEBS Lett, 1999, 454: 137~141.
    [171] Aroca JD, Sanchez-Pinera P, Corbalan-Garcia S, et al. Correlation between the effect of the anti-neoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine on the membrane and the activity of protein kinase Calpha. Eur J Biochem, 2001,268: 6369~6378.
    [172] Berkovic D, Berkovic K, Binder C, et al. Hexadecylphosphocholine does not influence phospholipase D and sphingomyelinase activity in human leukemia cells. J Exp Ther Oncol, 2002, 2: 213~218.
    [173] Mollinedo F, Gajate C, and Modolell M. The ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochem J, 1994, 302 (Pt 2): 325~329.
    [174] Askew DS, Ashmun RA, Simmons BC, et al. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene, 1991, 6:1915~1922.
    [175] Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell, 1992, 69: 119~128.
    [176] Shi Y, Glynn JM, Guilbert LJ, et al. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science, 1992,257:212~214.
    [177] Evan G, Harrington E, Fanidi A, et al. Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci, 1994, 345: 269~275.
    [178] Bissonnette RP, McGahon A, Mahboubi A, et al. Functional Myc-Max heterodimer is required for activation-induced apoptosis in T cell hybridomas. J Exp Med, 1994,180: 2413-2418.
    [179] Hueber AO, Zornig M, Lyon D, et al. Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis. Science, 1997, 278: 305-1309.
    [180] Collins S, and Groudine M. Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature, 1982, 298: 679-681.
    [181] Bissonnette RP, Echeverri F, Mahboubi A, et al. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature, 1992, 359: 552-554.
    [182] Fanidi A, Harrington EA, and Evan GI. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature, 1992, 359: 554-556.
    [183] Dell' Albani P, Condorelli DF, Mudo G, et al. Platelet-activating factor and its methoxy-analogue ET-18-OCH3 stimulate immediate early gene expression in rat astroglial cultures. Neurochem Int, 1993, 22: 567-574.
    [184] Gajate C, Alonso MT, Schimmang T, et al. C-Fos is not essential for apoptosis. Biochem Biophys Res Commun, 1996, 218: 267-272.
    [185] Wolf D, and Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A, 1985,52:790-794.
    [186] Daniel LW, Civoli F, Rogers MA, et al. ET-18-OCH3 inhibits nuclear factor-kappa B activation by 12-O-tetradecanoylphorbol-13-acetate but not by tumor necrosis factor-alpha or interleukin 1 alpha. Cancer Res, 1995, 55: 4844-4849.
    [187] Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 1991, 66, 233-243.
    [188] Itoh N, and Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem, 1993, 268: 10932-10937.
    
    [189] Nagata S. Apoptosis by death factor. Cell, 1997, 88: 355-365.
    [190] Siegel RM, Chan FK, Chun HJ, et al. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol, 2000, 1: 469-474.
    [191] Chan FK, Chun HJ, Zheng L, et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science, 2000, 288: 2351-2354.
    [192] Papoff G, Hausler P, Eramo A, et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem, 1999,274: 38241-38250.
    [193] Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science, 2000, 288: 2354-2357.
    [194] Chinnaiyan AM, O'Rourke K, Tewari M, et al. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 1995, 81: 505-512.
    [195] Boldin MP, Goncharov TM, Goltsev YV, et al. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell, 1996, 85: 803-815.
    [196] Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J, 1995,14: 5579-5588.
    [197] Matzke A, Massing U, and Krug HF. Killing tumour cells by alkylphosphocholines: evidence for involvement of CD95. Eur J Cell Biol, 2001,50: 1-10.
    [198] Mollinedo F, and Gajate C. Fas Signalling. In Landes Bioscience, (Wajant H, ed.): Georgetown, TX. 2004.
    [199] Aragane Y, Kulms D, Metze D, et al. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol, 1998,140: 171-182.
    [200] Zhuang S, and Kochevar IE. Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways. Photochem Photobiol, 2003, 78: 61-67.
    [201] Qiao L, Studer E, Leach K, et al. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol Biol Cell, 2001, 12: 2629-2645.
    [202] Simons K, and van Meer G. Lipid sorting in epithelial cells. Biochemistry, 1988, 27: 6197-6202.
    
    [203] Simons K, and Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000, 7:31-39.
    [204] Brown DA, and London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem, 2000, 275: 17221-17224.
    [205] Hueber AO, Bernard AM, Herincs Z, et al. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep, 2002, 3: 190-196.
    [206] Scheel-Toellner D, Wang K, Singh R, et al. The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun, 2002, 297: 876-879.
     [207] Andreesen R, Modolell M, Oepke GH, et al. Temperature dependence of leukemic cell destruction by alkyl-lysophospholipids (NSC 324368). Exp Hematol, 1983,11: 564-570.
    [208] Fujiwara K, Modest EJ, Welander CE, et al. Cytotoxic interactions of heat and an ether lipid analogue in human ovarian carcinoma cells. Cancer Res, 1989, 49: 6285-6289.
    
    [209] Sato T, Irie S, Kitada S, et al. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science, 1995, 268: 411-415.
    [210] Li Y, Kanki H, Hachiya T, et al. Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells. Int J Cancer, 2000, 87: 473-479.
    [211] Ivanov VN, Lopez Bergami P, Maulit G, et al. FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol, 2003, 23: 3623-3635.
     [212] Gabb HA, Jackson RM, and Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol, 1997,272: 106-120.
    [213] Banner DW, D'Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993, 73: 431-445.
    [214] Huang B, Eberstadt M, Olejniczak ET, et al. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature, 1996, 384: 638-641.
    [215] Liang H, and Fesik SW. Three-dimensional structures of proteins involved in programmed cell death. J Mol Biol, 1997, 274: 291-302.
    [216] Gallivan JP, and Dougherty DA. Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A, 1999, 96: 9459-9464.
    [217] Koenigsmann MP, Notter M, Knauf WU, et al. Chemopurging of peripheral blood-derived progenitor cells by alkyl-lysophospholipid and its effect on haematopoietic rescue after high-dose therapy. Bone Marrow Transplant, 1996, 18:549-557.
    [218] Baker D, O'Neill JK, Amor S, et al. Inhibition of chronic relapsing experimental allergic encephalomyelitis in the mouse by the alkyl-lysophospholipid ET-18-OCH3. Int J Immunopharmacol, 1991, 13: 385-392.
    [219] Kovarik J, Chabannes D, and Borel JF. Immunoregulation and drug treatment in chronic relapsing experimental allergic encephalomyelitis in the Lewis rat. Int J Immunopharmacol, 1995,17: 255-263.
    [220] Klein-Franke A, and Munder PG. Alkyllysophospholipid prevents induction of experimental allergic encephalomyelitis. J Autoimmun, 1992, 5: 83-91.
    [221] Chabannes D, Ryffel B, and Borel JF. SRI 62-834, a cyclic ether analogue of the phospholipid ET-18-OCH3, displays long-lasting beneficial effect in chronic relapsing experimental allergic encephalomyelitis in the Lewis rat. Comparison with cyclosporin and (Val2)-dihydrocyclosporin effects in clinical, functional and histological studies. J Autoimmun, 1992, 5: 199-211.
    [222] Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al. Lethal effect of the anti-Fas antibody in mice. Nature, 1993, 364: 806-809.
    [223] McCormick F. Small-molecule inhibitors of cell signaling. Curr Opin Biotechnol, 2000,11: 593-597.
    [224] Packham G. Mechanisms of cell death and disease: advances in therapeutic intervention. Apoptosis, 2003, 8: 307-309.
    [225] Patel SR. Recent advances in systemic therapy of soft tissue sarcomas. Expert Rev Anticancer Ther, 2003, 3: 179-184.
    [226] Lansiaux A, and Bailly C. Perspectives on the oncologist pharmacopoeia. Bull Cancer, 2003, 90: 25-30.
    
    [227] Bittman R, Perkins WR, and Swenson CE. Drugs of the Future, 2001, 26: 1052.
    [1]. Madeo F, Frohlich E, and Frohlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol, 1997,139: 729-734.
    [2]. Levine A, Belenghi B, Damari-Weisler H, et al. Vesicle associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem, 2001,276: 46284-46289.
    [3]. Shirogane T, Fukada T, Muller JM, et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity, 1999, 11:709-719.
    [4]. Wu D, Chen P-J, Chen S, et al. C. elegans MAC-1, an essential member of the AAA family of ATPases, can bind CED-4 and prevent cell death. Development, 1999,126:2021-2031.
    [5]. Higashiyama H, Hirose F, Yamaguchi M, et al. Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ, 2002, 9: 264-273.
    [6]. Manon S, Priault M, and Camougrand N. Mitochondrial AAA type protease Ymelp is involved in Bax effects on cytochrome c oxidase. Biochem Biophys Res Commun, 2001, 289: 1314-1319.
    [7]. Yamaki M, Umehara T, Chimura T, et al. Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells, 2001, 6: 1043-1054.
    [8]. Madeo F, Herker E, Maldener C, et al. A caspase-related protease regulates apoptosis in yeast. Mol Cel, 2002,19: 911-917.
    [9]. Uren GA, O'Rourke K, Aravind L, et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins,one of which plays a key role in MALT lymphoma. Mol Cell, 2000, 6: 961-967.
    [10]. Jong AJ de, Yakimova ET, Kapchina VM, et al. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta, 2002, 214: 537-545.
    [11]. Das M, Mukherjee SB, and Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci, 2001, 114:2461-2469.
    [12]. Komatsu K, Hopkins KM, Lieberman HB, et al. Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2. FEBS Lett, 2000, 481: 122-126.
    [13].Kishikawa K, Chalfant CE, Perry DK, et al. Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses. J BiolChem, 1999, 274: 21335-21341.
    [14]. Nickels JT, and Broach JR. A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae. Genes Dev, 1996, 10: 382-394.
    [15]. Madeo F, Frohlich E, Ligr M, et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol, 1999, 145: 757-767.
    [16]. Ludovico P, Sousa MJ, Silva MT, et al. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 2001, 147:2409-2415.
    [17].Balzan R, Sapienza K, Galea DR, et al. Aspirin commits yeast cells to apoptosis depending on carbon source. Microbiology, 2004, 150: 109-115.
    [18].Narasimhan ML, Damsz B, Coca MA, et al. A plant defense response effector induces microbial apoptosis. Mol Cell, 2001, 8: 921-930.
    [19]. Huh GH, Damsz B, Matsumoto TK, et al. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J, 2002,29:649-659.
    [20].Wadskog I, Maldener C, Proksch A, et al. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell, 2004,15:1436-1444.
    [21]. Butcher RA, and Schreiber SL. A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae. Chem Biol, 2003, 10: 521-531.
    [22]. King DA, Hannum DM, and Qi JS, H.J. HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys, 2004, 423: 170-181.
    [23]. Granot D, Levine A, and Dor-Hefetz E. Sugar-induced apoptosis in yeast cells. FEMS Yeast Res, 2003,4: 7-13.
    [24]. Greenhalf W, Stephan C, and B, C. Role of mitochondria and C-terminalmembrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett, 1996, 380: 169-175.
    [25].Kang JJ, Schaber MD, Srinivasula S, et al. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J BiolChem, 1999, 274: 3189-3198.
    [26]. James C, Gschmeissner S, Fraser A, et al. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physicalassociation with CED-9. Curr Bio, 1997,17: 246-252.
    [27]. Ligr M, Madeo F, Frohlich E, et al. Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett, 1998, 438: 61-65.
    [28]. Ink B, Zornig M, Baum B, et al. Human bak induces cell death in Schizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells. Mol Cell Biol, 1997, 17: 2468-2474.
    [29]. Minn AJ, Kettlun CS, Liang H, et al. Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms. EMBO J, 1999, 18: 632-643.
    [30].Tao W, Kurschner C, and Morgan JI. Modulation of cell death in yeast by the Bcl-2 family of proteins. J Biol Chem, 1997, 272: 15547-15552.
    [31]. Pavlov E, Priault M, Pietkiewicz D, et al. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol, 2001, 155: 725-731.
    [32]. Manon S, Chaudhuri B, and Guerin M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett, 1997, 415: 29-32.
    [33]. Roucou X, Prescott M, Devenish RJ, et al. A cytochrome c-GFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeastcells. FEBS Lett, 2000,471: 235-239.
    [34].Greenhalf W, Stephan C, and Chaudhuri B. Role of mitochondria and C-terminalmembrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett, 1996, 380: 169-175.
    [35].Matsuyama S, Xu Q, Velours J, et al. The mitochondrial FOF1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell, 1998, 1: 327-336.
    [36]. Xu Q, and Reed JC. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functionalscreening in yeast. Mol Cell, 1998,11: 337-346.
    [37]. James C, Gschmeissner S, Fraser A, et al. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physicalassociation with CED-9. Curr Bio, 1997,17: 246-252.
    [38].Schulz JB, Weller M, and Klockgether T. Potassium deprivationinduced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci, 1996, 16: 4696-4706.
    [39].Abudugupur A, Mitsui K, Yokota S, et al. An ARL1 mutation affected autophagic cell death in yeast, causing a defect in central vacuole formation. Cell Death Differ, 2002, 9: 158-168.
    [40].Kornitzer D, Sharf R, and Kleinberger T. Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol, 2001, 154: 331-344.
    [41].Blanchard F, Rusiniak ME, Sharma K, et al. Targeted destruction of the DNA replication protein Cdc6 by cell death pathways in mammals and yeast. Mol Biol Cell, 2002, 13: 1536-1549.
    [42].Guo M, and Hay BA. Cell proliferation and apoptosis. Curr Opin Cell Biol, 1999,11:745-752.
    [43].Carratore RD, Delia Croce C, Simili M, et al. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat Res, 2002, 513: 183-191.
    [44].Laun P, Pichova A, Madeo F, et al. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol, 2001,39: 1166-1173.
    [45].Herker E, Jungwirth H, Lehmann KA, et al. Chronological aging leads to apoptosis in yeast. J Cell Biol, 2004, 164: 501-507.
    [46]. Gourlay CW, Carpp LN, Timpson P, et al. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol, 2004, 164: 803-809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700