Pyridoxine对血小板源性一氧化氮生物合成的影响及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化(Atherosclerosis, AS)是一种以内皮细胞受损、平滑肌细胞侵入血管内膜、血管平滑肌细胞增殖为主的血管重塑的病理过程,其发病过程十分复杂,其确切病因尚未完全阐明。大量的研究证实血小板的激活和聚集在AS的发生发展中发挥了重要作用。
     一氧化氮(nitric oxide, NO)是内皮产生的最主要的舒张因子,其参与了体内多种生理性活动,例如舒张血管、抑制血管平滑肌细胞的增殖、降低血管的渗透性。同时越来越多的研究证实NO除以上作用外,还能够抑制血小板的聚集,维持血管内环境的平衡,从而预防多种心血管疾病的发生与发展。NO是L-精氨酸在一氧化氮合酶(NOS)催化下的产物,NOS有三种亚型:内皮型(eNOS)、神经型(nNOS)、诱导型(iNOS)。目前认为,血小板上主要存在eNOS和iNOS,其中发挥主要作用的是eNOS。已知PI3K/Akt途径是影响eNOS活性的经典的信号转导通路,但是目前对于血小板上eNOS的活性调控研究并不多。
     Pyridoxine是维生素B6的有效的生物成分,参与人体多种代谢过程并发挥了重要的作用,尤其是已经有研究报道,维生素B6能够增加内皮NO的生物合成,并在心血管疾病中发挥治疗作用。现阶段对Pyridoxine的研究发现,其具有降低血液中高同型半胱氨酸浓度的作用,以及抑制血小板聚集等多种功效,对于其机制的研究最初认为Pyridoxine在体内作为一种辅酶参与多种代谢活动,但其在血小板上的作用机制目前尚未有报道。
     本研究的目的首先是检测维生素B6在体外是否能增加血小板NO的合成,其次研究其发挥这一作用的机制。提取正常人的血小板,观察Pyridoxine是否能抑制聚诱剂诱导的血小板的聚集,及其对血小板上cGMP(NO生物活性检测指标)的水平的影响。用Western blot检测eNOS Ser1177磷酸化水平和蛋白激酶Akt磷酸化水平。HTRF分析血小板上磷脂酰肌醇-3-激酶的活性。研究结果显示,Pyridoxine呈浓度依赖性的抑制由ADP或者凝血酶引起的血小板聚集,当浓度达到2mmol/L时,其抑制血小板聚集的能力不再随着浓度的增加而增加。放射免疫法试验结果显示Pyridoxine能增加NO的生物活性。我们进一步研究发现,Pyridoxine能增加eNOS Ser1177位磷酸化,增加Akt丝氨酸磷酸化,增加PI3K的活性,并且这一作用能够被PI3K的抑制剂LY294002抑制。本研究结果表明,Pyridoxine能够有效抑制ADP或凝血酶诱导的血小板的激活,并增加血小板上NO的生物合成。该作用是通过改善PI3K的活性,增加下游Akt磷酸化,进一步增加eNOS Ser 1177位点磷酸化来实现的。本研究为pyridoxine对于血栓性疾病相关的疾病的治疗和/或预防提供了理论基础。
Atherosclerosis(AS) is a kind of damaged endothelial cells, smooth muscle cells lining blood vessel invasion, vascular smooth muscle cell proliferation mainly of the pathological process of vascular remodelling,and its incidence is complex and exact cause has not been fully clarified. Numerous studies confirm that platelet activation and aggregation in the occurrence and development of AS has played an important role.
     Nitric oxide (NO), the primary endothelium-derived relaxing factor, participates in variety of biological activities in vivo, such as vasorelaxation , inhibition of vascular smooth muscle cell proliferation, and inhibition of vascular permeability.
     At the same time a growing number of studies confirmed the role of NO addition to the above, but also can inhibit platelet aggregation to maintain a balanced environment within the blood vessels, thus preventing the development of cardiovascular diseases. NO is synthesized from the amino acid L-arginine by a family of enzymes called the NO synthases(NOS). Among of the three isoforms(eNOS, iNOS, nNOS), it is reported that the isoform present in platelet is eNOS. While much less is known about the mechanisms determining its activity in platelet.There is a classical signaling transduction that the serine/threonine protein kinase Akt/PKB mediates the activation of eNOS, leading to increasing NO production.
     Pyridoxine, a major component of vitamin B6, palys vital roles in numerous metabolic processes in the human body. Nowadays, it has been associated with some benefits in non-randomised studies, such as lowing blood homocyserine concentration, reducing platelet aggregation. And the feasible mechanism may be attributable to the role of pyridoxine as a cofactor in several enzymatic reactions in atherosclerosis. But the mechanism on platelets is still unclear.
     The purpose of this study was firstly to determine whether pydidoxine can increase the platelet NO synthesis in vitro, followed by studing its mechanism of this role. The platelets were extracted from the healthy human to observe whether pydidoxine can inhibit their aggregation induced by ADP or Thrombin,and cGMP(an index of bioactive NO) was measured by radioimmunoassay. eNOS Ser-1177-specific phosphorylation and phosphorylation of protein kinase Akt were determined in platelets by western blot .The activity of phosphatidylinositol-3-kinase was analysed by HTRF.
     Firstly, we detected a marked concentration-dependent effect of pyridoxine on the platelet aggregation induced by ADP or Thrombin. When the concentration of pyridoxine was 2mmol/L, its ability to inhibit platelet aggregation is no longer increased as the concentration increases. RIA results showed that pyridoxine can increase the biological activity of NO. We further found that , pyridoxine can increase eNOS Ser-1177 phosphorylation and Akt serine phosphorylation, it can also increase PI3K activity and this effect can be inhibited by PI3K inhibitor LY294002. The results of this study show that, pyridoxine can effectively inhibit the ADP or Thrombin-induced platelet activation and increased the biosynthesis of NO on platelet. Pyridoxine play this role by improving the activity of PI3K, thereby increasing the downstream Akt phosphorylation, further increase in eNOS Ser-1177 phosphorylation site. This has important potential therapeutic implications for the use of pyridoxine in the prevention and/or treatment of Thrombosis-related disease.
引文
1. Davis NE. Atheroscleosis—an inlflammatory process. J Insur Med.2005;37(1): 72-5.
    2. Jorgensen L. ADP-induced platelet aggregation in the microcirculation of pig myocardium and rabbit kidneys. J Thromb Haemost. 2005 Jun;3(6):1119-24
    3. Jorgensen L. The role of platelets in the initial stages of atherosclerosis. J Thromb Haemost 2006 Jul;4(7):1443-9.
    3. Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2003 Dec;23(12):2131-7.
    4. Gawaz M, Neumann F J, Dickfeld T, Reininger A, Adelsberger H, Gebhardt A, Sebhardt A, Schoming A. Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. Circulation.1997 Sep 16;96(6):1809-18.
    5. Anderson T J. Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail Rev. 2003 Jan;8(1):71-86.
    6. Rainhart JF, Greenberg LD. Pathogenesis of experimental arteriosclerosis in pyridoxine deficiency with notes on similarities arteriosclerosis. AMA Arch Pathol. 1951 Jan; 51(1):12-8.
    7. Cengel A, Sahinarslan A. Nitric oxide and cardiovascular system. Anadolu Kardiyol Derg. 2006 Dec;6(4):364-8
    8. Levy RM, Prince JM, Billiar TR. Nitric oxide: a clinical primer. Crit Care Med. 2005 Dec;33(12 Suppl):S492-5.
    9. Raij L. Nitric oxide in the pathogenesis of cardiac disease. J Clin Hypertens (Greenwich). 2006 Dec;8(12 Suppl 4):30-9.
    10.郭国庆,查采香.一氧化氮合动脉粥样硬化的关系.心血管病学进展. 2001,22(3):178-80
    11. Raij L. Nitric oxide in the pathogenesis of cardiac disease. J Clin Hypertens (Greenwich). 2006 Dec;8(12 Suppl 4):30-9.
    12. Rainhart JF, Greenberg LD. Pathogenesis of experimental arteriosclerosis in pyridoxine deficiency with notes on similarities arteriosclerosis. AMA Arch Pathol. 1951 Jan; 51(1):12-8.
    13.刁建新,韩艺,黄艳,Ferro A,季勇.左旋精氨酸与维生素B6对于低密脂蛋白抑制兔胸主动脉内皮舒张功能的影响.南京医科大学学报, 2004; 24 (3):203-7,
    14. Hanasaki K, Nakano T, Arita H. Receptor-mediated mitogenic effect of thromboxane A2 in vascular smooth muscle cells. Biochem Pharmacol.1990 Dec 1;40(11):2535-42.
    15. Kishi Y, Numano F. In vitro study of vascular endothelial injury by activated platelets and its prevention. Atheroselerosis.1989 Apr; 76(2-3):95-101.
    16. Shiokoshi T, Ohsaki Y, Kawabe J, Fujino T, Kikuchi K. Downregulation of nitrie oxide accumulation by cyclooxygenase-2 induction and thromboxane A2 production in interleukin-1 beta-stimulated rat aortic smooth muscle cells.J Hyertens. 2002 Mar;20(3):455-61.
    17. Suzuki H, Ikenaga H, Hishikawa K, Nakaki T, Kato R, Saruta T. Increase in NO2-/NO3- excretion in the urine as an indicator of the release of endothelium-derived relaxing factor during elevation of blood pressure. Cli Sci.1992 Jun;82(6): 631-4.
    18. Johansson JS, Haynes DH. Cyclic GMP increases the rate of the calcium extrusion pump in intact human platelets but has no direct effect on the dense tubular calcium accumulation system. Biochim Biophys Acta. 1992 Mar 23; 1105(1): 40-50.
    19. Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling andregulation. Circ Res. 2007 Sep 28; 101(7): 654-62.
    20. Fuhlman B, Brook GJ, AviramM. Proteins derived from platelet alpha granules modulate the up take of oxidized low density lipoprotein by macrophages. Biochim Biophys Acta. 1992 Jul 9; 1127(1): 15-21.
    21. Koyama H, Maeno T, Fukumoto S, Shoji T, Yamane T, Yokoyama H, Emoto M, Shoji T, Tahara H, Inaba M, Hino M, Shioi A, Miki T, Nishizawa Y. Platelet p-selectin expression associated with atheroselerotic wall thickness in carotid artery in humans. Circulation. 2003 Aug 5; 108(5): 524-9.
    22 . Bron GV. Aggregation of blood platelets by adenosine diphosphateand its reversal. Nature. 1962 Jun 9; 194:927-9.
    23. Yu XJ, Li YJ, Xiong Y. Increase of an endogenous inhibitor of nitric oxide synthesis in serum of high cholesterol fed rabbits. Life Sci. 1994;54(12):753-8.
    24. Sowers JR, Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update. Hypertension. 1995 Dec;26(6 Pt 1):869-79.
    25. Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001 May 25;276(21):17625-8.
    26. Go YM, Boo YC, Park H, Maland MC, Patel R, Pritchard KA Jr, Fujio Y, Walsh K, Darley-Usmar V, Jo H. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. J Appl Physiol. 2001 Oct;91(4):1574-81.
    27. Ingrid Fleming, Beate Fisslthaler, Stefanie Dimmeler, Bruce E. Kemp, Rudi Busse. Phosphorylation of Thr495 Regulates Ca2+/Calmodulin-Dependent Endothelial Nitric Oxide Synthase Activity. Circ Res, 2001, 88: 68-75.
    28. Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE,Venema RC. Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem. 2001 May 11;276(19):16587-91.
    29. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep. 1999 Apr;19(2):51-71.
    30. Morrell CN, Matsushita K, Chiles K, Scharpf RB, Yamakuchi M, Mason RJ, Bergmeier W, Mankowski JL, Baldwin WM 3rd, Faraday N, Lowenstein CJ. Regulation of platelet granule exocytosis by S-nitrosylation. Proc Natl Acad Sci USA. 2005 Mar 8; 102(10): 3782-7.
    31. Zhou J, Moller J, Riskes-Hoitinga M, Larsen ML, Austin RC, Falk E. Effect of vitamin supplement and hyperhomocysteinemia on atherosclerosis in apoE-deficient mice. Atherosclerosis.2003 Jun;168(2):255-62.
    32. Ji Y, Han Y, Diao J, Huang Y, Chen Q, Fan L, Ferro A. Rabbit aotic endothelial dysfunction by low-density lipoprotein is attenuated by L-arginine, L-ascorbate and pyridoxine. Br J Pharmacol. 2003 Dec;140(7):1272-82.
    33.Ji Y, Diao JX, Han Y, Huang Y, Bai H, Chen Q, Fan L, Ferro A. Pyridoxine prevernts dysfunction of endothelial cell nitric oxide production in response to low-density liprotein.Atherosclerosis.2006 Sep;188(1): 84-94.
    34.Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulatesaggregation. Proc Natl Acad Sci USA 1990 Jul;87(13):5193–7.
    35. Matsuoka I, Nakahata N, Nakanishi H. Inhibitory effect of 8-bromo cyclic GMP on an extracellular Ca2+-dependent arachidonic acid liberation in collagen- stimulated rabbit platelets. Biochem Pharmacol. 1989 Jun1;38(11):1841-7.
    36. Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F. Purification and characterization of particulate endothelium-derivedrelaxing factor synthase from cultured and native bovine aortic endothelial-cells. Proc Natl Acad Sci USA, 1991 Dec 1; 88(23):10480-4.
    37. Freedman JE,SauterR, BattinelliEM, AultK, KnowlesC, HuangPL, Losealzo J. Deficient Platelet-derived nitricoxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ Res.1999 Jun 25;84(12):1416-21.
    38. Lane P, Gross SS.Disabling a C-terminal autoinhibitory control elementin endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J Biol Chem. 2002 May 24; 277(21): 19087-94.
    39. Mccabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain“calcium-independent”eNOS activation by phosphorylation. J Biol Chem, 2000 Mar 3: 275(9):6123-8.
    40. Gresele P, Pignatelli P, Guglielmini G, Carnevale R, Mezzasoma AM, Ghiselli A, Momi S, Violi F. Resveratrol, at Concentrations Attainable with Moderate Wine Consumption, Stimulates Human Platelet Nitric Oxide Production.J Nutr. 2008 Sep;138(9): 1602-8
    41. Franekova J, Koliba P, Jabor A, Pohlidal A, Holub Z.Cardiovascular risk and estrogens. Ceska Gynekol. 2006 Dec;71(6): 483-9.
    42. Akbri CM, Saouaf R, Barnhill DF, Newman PA, LoGerfo FW, Veves A. Endothelium-dependent vasodilation is impaired in both microculation and macrocirculation during acute hyperglycemia. J Vasc Surg. 1998 Oct; 28(4):687-94.
    43. Spydidopoulos L, Sulllivan AB, KearneryM, Lsner JM, Lonsordo DW. Estrogen-receptor-mediated inhibition of human endothelial cell apotosis.Estradiol as a survival factor. Circulation. 1997 Mar 18;95(6): 95(6):1505-14.
    44. Mukhopadhyay S, Mukherjee TK. Bridging advanced glycation end product, receptor for advanced glycation end product and nitric oxide with hormonal replacement/estrogen therapy in healthy versus diabetic postmenppausal women: a perspective. Biochim Biophys Acta. 2005 Sep 10;1745(2):145-155.
    45. Forbes JM, Yee LT, Thallas V, Lassila M, Candido R, Jandeleit-Dahm TA, Thomas MC, Deemer EK,Thorp SR, Cooper ME, Allen TJ. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2004 Jul;53(7):1813-23.
    46. Ferrara A, Karter AJ, Ackerson LM, Liu JY, Selby JV, Northern California Kaiser Permanente Diabetes Registry. Hormone replacement therapy is associated with better glycemic control in women with type 2 diabetes: The Northern California Kaiser Permanente Diabetes Registry. Diabetes Care. 2001 Jul;24(7): 1144-50.
    47. RossouwJE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg c, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J; Writing Group for the Women’s Health Intiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’sHealth Intivative randomized controlled trail. JMAM. 2002 Jul 17; 288(3):321-33.
    48. Queen LR, Xu B, Horinouchi K, Fisher I, Ferro A. beta(2)-adrenoceptors activate nitric oxide synthase in human platelets. Circ Res. 2000 Jul 7;87(1):39-44.
    49. Fleming I, Schulz C, Fichtlscherer B, Kemp BE, Fisslthaler B, Busse R. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of thenitric oxide synthase in human platelets. Thromb Haemost. 2003 Nov; 90(5): 863-71.
    1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27; 288(5789):373-6.
    2. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11-17;327(6122):524-6
    3.赵宝路,陈惟昌. NO·自由基的性质及其生理功能.生物化学与生物物理进展, 1993,20(6):409-412.
    4. Beckman J S. The physiological and pathological chemistry of nitric oxide. In Lancaster J, ed. Nitric Oxide-Principles and Actions. New York: Academic Press, 1996: 83.
    5. Wojtaszek P. Nitric oxide in plants. To NO or not to NO. Phytochemistry. 2000 May;54(1):1-4.
    6. Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993 Jun 15;268(17):12231-4
    7. Cengel A, Sahinarslan A. Nitric oxide and cardiovascular system. Anadolu Kardiyol Derg. 2006 Dec;6(4):364-8
    8. Levy RM, Prince JM, Billiar TR. Nitric oxide: a clinical primer. Crit Care Med. 2005 Dec;33(12 Suppl):S492-5.
    9. Raij L. Nitric oxide in the pathogenesis of cardiac disease. J Clin Hypertens (Greenwich). 2006 Dec;8(12 Suppl 4):30-9.
    10.郭国庆,查采香.一氧化氮合动脉粥样硬化的关系.心血管病学进展. 2001,22(3):178-80
    11. Hayden MR, Tyagi SC. Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. Cardiovasc Diabetol. 2003 Feb 12;2:2.
    12. Yetik-Anacak G, Catravas JD. Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vascul Pharmacol. 2006 Nov;45(5):268-76.
    13. Moncada S, Radomski MW, Palmer RM. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol. 1988 Jul 1;37(13):2495-501.
    14. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006 Apr 18;113(15):1888-904.
    15. Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS. Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta. 1982 Sep 17;718(1):49-59.
    16. Ignarro LJ, Wood KS, Ballot B, Wolin MS. Guanylate cyclase from bovine lung. Evidence that enzyme activation by phenylhydrazine is mediated by iron-phenyl hemoprotein complexes. J Biol Chem. 1984 May 10;259(9):5923-31.
    17. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep. 1999 Apr;19(2):51-71.
    18. Murad F. Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006 Nov 9;355(19):2003-11.
    19. Raij L. Nitric oxide in the pathogenesis of cardiac disease. J Clin Hypertens (Greenwich). 2006 Dec;8(12 Suppl 4):30-9.
    20. Busse R, Fleming I. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci. 2003 Jan;24(1):24-9.
    21. SzabóC, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L, Soriano FG, Van Duzer JH, Williams W, Salzman AL, Groves JT. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med. 2002 Oct;8(10):571-80.
    22. van Etten RW, de Koning EJ, Verhaar MC, Gaillard CA, Rabelink TJ. Impaired NO-dependent vasodilation in patients with Type II (non-insulin-dependent) diabetes mellitus is restored by acute administration of folate. Diabetologia. 2002 Jul;45(7):1004-10.
    23. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999 Jun 10;399(6736):601-5.
    24. Lane P, Gross SS. Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J Biol Chem. 2002 May 24;277(21):19087-94.
    25. McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J Biol Chem. 2000 Mar 3;275(9):6123-8.
    26. Thomas SR, Chen K, Keaney JF Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem. 2002 Feb 22;277(8):6017-24.
    27. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR, Kemp BE. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999 Jan29;443(3):285-9.
    28. Toyoshima H, Nasa Y, Hashizume Y, Koseki Y, Isayama Y, Kohsaka Y, Yamada T, Takeo S. Modulation of cAMP-mediated vasorelaxation by endothelial nitric oxide and basal cGMP in vascular smooth muscle. J Cardiovasc Pharmacol. 1998 Oct;32(4):543-51.
    29. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem. 2002 Feb 1;277(5):3388-96.
    30. Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001 May 25;276(21):17625-8.
    31. Go YM, Boo YC, Park H, Maland MC, Patel R, Pritchard KA Jr, Fujio Y, Walsh K, Darley-Usmar V, Jo H. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. J Appl Physiol. 2001 Oct;91(4):1574-81.
    32. Ingrid Fleming, Beate Fisslthaler, Stefanie Dimmeler, Bruce E. Kemp, Rudi Busse. Phosphorylation of Thr495 Regulates Ca2+/Calmodulin-Dependent Endothelial Nitric Oxide Synthase Activity. Circ Res, 2001, 88: 68-75.
    33. Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC. Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem. 2001 May 11;276(19):16587-91.
    34. Brouet A, Sonveaux P, Dessy C, Balligand JL, Feron O. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependentactivation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem. 2001 Aug 31;276(35):32663-9.
    35. Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation. 1996 Dec 15;94(12):3341-7.
    36. M. Page Haynes, Diviya Sinha, Kerry Strong Russell, Mark Collinge, David Fulton, Manuel Morales-Ruiz, William C. Sessa, Jeffrey R. Bender. Membrane Estrogen Receptor Engagement Activates Endothelial Nitric Oxide Synthase via the PI3-Kinase–Akt Pathway in Human Endothelial Cells. Circ Res, 2000,87:677-82.
    37. Harris MB, Ju H, Venema VJ, Blackstone M, Venema RC. Role of heat shock protein 90 in bradykinin-stimulated endothelial nitric oxide release. Gen Pharmacol. 2000 Sep;35(3):165-70.
    38. García-Carde?a G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998 Apr 23;392(6678):821-4.
    39. Takahashi S, Mendelsohn ME. Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex. J Biol Chem. 2003 Aug 15;278(33):30821-7.
    40. Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10832-7.
    41. Pritchard KA Jr, Ackerman AW, Gross ER, Stepp DW, Shi Y, Fontana JT, Baker JE, Sessa WC. Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J Biol Chem. 2001 May 25;276(21):17621-4. Epub 2001 Mar 16.
    42. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. Diabetes Care. 2003 May;26(5):1589-96.
    43. Busse R, Fleming I. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci. 2003 Jan;24(1):24-9.
    44. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science. 2002 Apr 19;296(5567):539-41.
    45. Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5193-7.
    46. Alheid U, Fr?lich JC, F?rstermann U. Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res. 1987 Sep 1;47(5):561-71.
    47. de Belder AJ, MacAllister R, Radomski MW, Moncada S, Vallance PJ. Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation.
    48. Moro MA, Russel RJ, Cellek S, Lizasoain I, Su Y, Darley-Usmar VM, Radomski MW, Moncada S. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1480-5.
    49. Murad F. Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006 Nov 9;355(19):2003-11.
    50. Xiang GD, Xu L, Zhao LS, Yue L, Hou J. The relationship between plasma osteoprotegerin and endothelium-dependent arterial dilation in type 2 diabetes. Diabetes. 2006 Jul;55(7):2126-31.
    51.向光大,戴晓婧,王平.早期2型糖尿病患者内皮依赖性血管舒张功能的改变的研究.临床内科杂志, 2004,21:264-66.
    52. Hartge MM, Kintscher U, Unger T. Endothelial dysfunction and its role in diabetic vascular disease. Endocrinol Metab Clin North Am. 2006 Sep;35(3):551-60, viii-ix.
    53. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999 Mar 19;84(5):489-97.
    54.徐雅琴,张均华,唐朝枢.氧化型低密度脂蛋白与血管内皮细胞损伤.心血管病学进展, 2000,21:26-29.
    55. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998 Jun 9;97(22):2222-9.
    56. Yu XJ, Li YJ, Xiong Y. Increase of an endogenous inhibitor of nitric oxide synthesis in serum of high cholesterol fed rabbits. Life Sci. 1994;54(12):753-8.
    57. Sowers JR, Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update. Hypertension. 1995 Dec;26(6 Pt 1):869-79.
    58. de Jongh S, Lilien MR, Bakker HD, Hutten BA, Kastelein JJ, Stroes ES. Family history of cardiovascular events and endothelial dysfunction in children with familial hypercholesterolemia. Atherosclerosis. 2002 Jul;163(1):193-7.
    59.黄雌友,文格波,曹仁贤,等.糖尿病诱导人血管内皮细胞凋亡及其对表达的影响.中国糖尿病杂志,2003,11(1):37-41.
    60. Preik M, Kelm M, R?sen P, Tsch?pe D, Strauer BE. Additive effect of coexistent type 2 diabetes and arterial hypertension on endothelial dysfunction in resistance arteries of human forearm vasculature. Angiology. 2000 Jul;51(7):545-54.
    61. Okada E, Oida K, Tada H, Asazuma K, Eguchi K, Tohda G, Kosaka S, Takahashi S, Miyamori I. Hyperhomocysteinemia is a risk factor for coronaryarteriosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 1999 Mar;22(3):484-90.
    62. Ghiadoni L, Taddei S, Virdis A, Sudano I, Di Legge V, Meola M, Di Venanzio L, Salvetti A. Endothelial function and common carotid artery wall thickening in patients with essential hypertension. Hypertension. 1998 Jul;32(1):25-32.
    63. Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. Metabolism. 2000 Feb;49(2):147-50.
    64. Hofmann MA, Kohl B, Zumbach MS, Borcea V, Bierhaus A, Henkels M, Amiral J, Schmidt AM, Fiehn W, Ziegler R, Wahl P, Nawroth PP. Hyperhomocyst(e)inemia and endothelial dysfunction in IDDM. Diabetes Care. 1998 May;21(5):841-8.
    65. Sydow K, Schwedhelm E, Arakawa N, Bode-B?ger SM, Tsikas D, Hornig B, Fr?lich JC, B?ger RH. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc Res. 2003 Jan;57(1):244-52.
    66. Xiang GD, Sun HL, Zhao LS. Changes of osteoprotegerin before and after insulin therapy in type 1 diabetic patients. Diabetes Res Clin Pract. 2007 May;76(2):199-206.
    67. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, Andrews JW, Hayes JR. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Aug;35(8):771-6.
    68. Milstien S, Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun. 1999 Oct 5;263(3):681-4.
    69. Bierhaus A, Illmer T, Kasper M, Luther T, Quehenberger P, Tritschler H, Wahl P,Ziegler R, Müller M, Nawroth PP. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation. 1997 Oct 7;96(7):2262-71.
    70. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000 Apr 13;404(6779):787-90.
    71. Chakravarthy U, Hayes RG, Stitt AW, McAuley E, Archer DB. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes. 1998 Jun;47(6): 945-52.
    72. Inkster ME, Cotter MA, Cameron NE. Effects of trientine, a metal chelator, on defective endothelium-dependent relaxation in the mesenteric vasculature of diabetic rats. Free Radic Res. 2002 Oct;36(10):1091-9.
    73. Pieper GM, Siebeneich W, Moore-Hilton G, Roza AM. Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diabetic BB rat. Diabetologia. 1997 Aug;40(8):910-5.
    74. Kanie N, Kamata K. Effects of chronic administration of the novel endothelin antagonist J-104132 on endothelial dysfunction in streptozotocin-induced diabetic rat. Br J Pharmacol. 2002 Apr;135(8):1935-42.
    75. Gilbert RE, Krum H, Wilkinson-Berka J, Kelly DJ. The renin-angiotensin system and the long-term complications of diabetes: pathophysiological and therapeutic considerations. Diabet Med. 2003 Aug;20(8):607-21.
    76. Mollnau H, Wendt M, Sz?cs K, Lassègue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, F?rstermann U, Meinertz T, Griendling K, Münzel T. Effects of angiotensin IIinfusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002 Mar 8;90(4):E58-65.
    77.陈国荣,毛孙忠,李剑敏.糖尿病大鼠心肌病理变化及脂质过氧化和一氧化氮的改变,临床与实验病理学杂志, 2001,17,146-8.
    78. Pinkney JH, Stehouwer CD, Coppack SW, Yudkin JS. Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes. 1997 Sep;46 Suppl 2:S9-13.
    79. McGrowder D, Ragoobirsingh D, Dasgupta T. Decreased insulin binding to mononuclear leucocytes and erythrocytes from dogs after S-nitroso- N- acetypenicillamine administration. BMC Biochem. 2002;3:1.
    80. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis. 2005 Mar;179(1):43-9.
    81. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006 Apr 12;295(14): 1681-7.
    82. Avogaro A, Pagnin E, CalòL. Monocyte NADPH oxidase subunit p22(phox) and inducible hemeoxygenase-1 gene expressions are increased in type II diabetic patients: relationship with oxidative stress. J Clin Endocrinol Metab. 2003 Apr;88(4):1753-9.
    83. Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007 Feb;17(2):48-54.
    84. Devangelio E, Santilli F, Formoso G, Ferroni P, Bucciarelli L, Michetti N, Clissa C, Ciabattoni G, Consoli A, DavìG. Soluble RAGE in type 2 diabetes:association with oxidative stress. Free Radic Biol Med. 2007 Aug 15;43(4):511-8.
    85. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, Jacobs JR, Clermont AC, Ueki K, Ohshiro Y, Zhang J, Goldfine AB, King GL. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006 Mar;55(3):691-8
    86. Feener EP, King GL. Endothelial dysfunction in diabetes mellitus: role in cardiovascular disease. Heart Fail Monit. 2001;1(3):74-82.
    87. Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol. 2005 Dec 6;46(11):1978-85. Epub 2005 Nov 9.
    88. Vladimirova O, Lu FM, Shawver L, Kalman B. The activation of protein kinase C induces higher production of reactive oxygen species by mononuclear cells in patients with multiple sclerosis than in controls. Inflamm Res. 1999 Jul;48(7):412-6.
    89. Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the 'recoupling hypothesis'. QJM. 2004 Aug;97(8):537-48.
    90.王国宏,霍申元,边延涛,糖尿病大鼠心肌血管紧张素II和一氧化氮的动态变化.微循环学杂志. 2001,11:3-6.
    91.徐一甄,方京冲,沈稚舟.一氧化氮与糖尿病大鼠心脏病学的改变.复旦学报(医学科学版),2001,28:331-2.
    92. Ding H, Triggle CR. Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch. 2010 Mar 18.
    93. Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179).J Biol Chem. 2001 Aug 10;276(32):30392-8.
    94. Cotter MA, Ekberg K, Wahren J, Cameron NE. Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes. 2003 Jul;52(7):1812-7.
    95. Cellek S, Anderson PN, Foxwell NA. Nitrergic neurodegeneration in cerebral arteries of streptozotocin-induced diabetic rats: a new insight into diabetic stroke. Diabetes. 2005 Jan;54(1):212-9.
    96. Cellek S, Qu W, Schmidt AM, Moncada S. Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia. 2004 Feb;47(2):331-9.
    97. Ii M, Nishimura H, Kusano KF, Qin G, Yoon YS, Wecker A, Asahara T, Losordo DW. Neuronal nitric oxide synthase mediates statin-induced restoration of vasa nervorum and reversal of diabetic neuropathy. Circulation. 2005 Jul 5;112(1):93-102.
    98. Zochodne DW, Verge VM, Cheng C, H?ke A, Jolley C, Thomsen K, Rubin I, Lauritzen M. Nitric oxide synthase activity and expression in experimental diabetic neuropathy. J Neuropathol Exp Neurol. 2000 Sep;59(9):798-807.
    99. Kuvin JT, Patel AR, Sliney KA, Pandian NG, Rand WM, Udelson JE, Karas RH. Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease. J Am Coll Cardiol. 2001 Dec;38(7):1843-9.
    100. Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest. 1995 Aug;96(2):786-92
    101. Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, Isles C, LorimerAR, Macfarlane PW, McKillop JH, Packard CJ, Shepherd J, Gaw A. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001 Jan 23;103(3):357-62.
    102. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342: 145-53.
    103. Luft FC. Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases. Curr Opin Nephrol Hypertens. 2002 Jan;11(1):59-66.
    104. Quyyumi AA, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO 3rd. Coronary vascular nitric oxide activity in hypertension and hypercholesterolemia. Comparison of acetylcholine and substance P. Circulation. 1997 Jan 7;95(1):104-10.
    105. Stump CS, Clark SE, Sowers JR. Oxidative stress in insulin-resistant conditions: cardiovascular implications. Treat Endocrinol. 2005;4(6):343-51.
    106.Xiang GD, Wang YL. Regular aerobic exercise training improves endothelium-dependent arterial dilation in patients with impaired fasting glucose. Diabetes Care. 2004 Mar;27(3):801-2.
    107. Paolisso G, Tagliamonte MR, Barbieri M, Zito GA, Gambardella A, Varricchio G, Ragno E, Varricchio M. Chronic vitamin E administration improves brachial reactivity and increases intracellular magnesium concentration in type II diabetic patients. J Clin Endocrinol Metab. 2000 Jan;85(1):109-15.
    108. Evans M, Anderson RA, Graham J, Ellis GR, Morris K, Davies S, Jackson SK, Lewis MJ, Frenneaux MP, Rees A. Ciprofibrate therapy improves endothelialfunction and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus. Circulation. 2000 Apr 18;101(15):1773-9.
    109. Heitzer T, Finckh B, Albers S, Krohn K, Kohlschütter A, Meinertz T. Beneficial effects of alpha-lipoic acid and ascorbic acid on endothelium-dependent, nitric oxide-mediated vasodilation in diabetic patients: relation to parameters of oxidative stress. Free Radic Biol Med. 2001 Jul 1;31(1):53-61.
    110. Napoli R, Cozzolino D, Guardasole V, Angelini V, Zarra E, Matarazzo M, Cittadini A, SaccàL, Torella R. Red wine consumption improves insulin resistance but not endothelial function in type 2 diabetic patients. Metabolism. 2005 Mar;54(3):306-13.
    111. Regensteiner JG, Popylisen S, Bauer TA, Lindenfeld J, Gill E, Smith S, Oliver-Pickett CK, Reusch JE, Weil JV. Oral L-arginine and vitamins E and C improve endothelial function in women with type 2 diabetes. Vasc Med. 2003;8(3):169-75.
    112. Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia. 2000 Nov;43(11):1435-8.
    113. Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, Leeson P, Neubauer S, Ratnatunga C, Pillai R, Refsum H, Channon KM. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation. 2006 Sep 12;114(11):1193-201.
    114. Davies JI, Band M, Morris A, Struthers AD. Spironolactone impairs endothelial function and heart rate variability in patients with type 2 diabetes. Diabetologia. 2004 Oct;47(10):1687-94.
    115. Wilson SH, Herrmann J, Lerman LO, Holmes DR Jr, Napoli C, Ritman EL, Lerman A. Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation. 2002 Jan 29;105(4):415-8.
    116. Huynh NT, Tayek JA. Oral arginine reduces systemic blood pressure in type 2 diabetes: its potential role in nitric oxide generation. J Am Coll Nutr. 2002 Oct;21(5):422-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700