PKCα对肝癌药物敏感性作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     肝细胞癌(hepatocellular carcinoma,HCC)是我国常见恶性肿瘤。诱发肝癌的因素很多,其中病毒性肝炎、肝硬化是重要病因。化疗是肝癌主要治疗手段,肝癌细胞对抗癌药物产生耐药现象是导致化疗失败的主要原因,是肝癌临床治疗中的一大难题。肿瘤的多药耐药性(multidrug resistance,MDR)由多种机制调控,研究认为, MDR表型的出现与P-糖蛋白(P-glycoprotein,P-gp)的过表达相关,P-gp发挥着药物泵功能,将药物泵出细胞膜外。蛋白激酶C ( protein kinaseC,PKC)的同工酶,特别是PKCα,对肿瘤细胞MDR表型的出现或维持可能起着决定性作用。因此研究PKCα对肝癌细胞的抗癌药物敏感性的影响,有助于我们了解肝癌耐药的发生机制,为克服肝癌临床治疗中的MDR提供实验依据。
     【方法】
     1.将体外合成的载有目的片段的DNA链整合进反转录病毒载体。
     2.将反转录病毒载体热转化入大肠杆菌中培养,药物筛选阳性克隆后,提取无内毒素质粒。
     3.按一定比例将无内毒素质粒与病毒包装细胞混合后,在电转仪下,将反转录病毒载体电转入病毒包装细胞。
     4.药物筛选2星期后,将阳性克隆扩大培养。
     5.用病毒上清液感染人HepG2细胞。
     6.药物筛选后,挑选阳性克隆细胞扩大培养,并将其与PMA处理的HepG2细胞及未受干预的HepG2细胞做药物敏感性及生长速度比较。
     【结果】
     1.Westernblot显示:与对照组(未受干预的HepG2细胞)相比,感染siRNA片段者PKCα的表达显著减少;而感染空载体者无显著变化; PMA可以刺激细胞内PKCα的表达。
     2.siRNA和PMA对HepG2细胞生长速度的影响实验表明,与对照组相比,转染siRNA的HepG2细胞生长速度明显减慢;PMA处理组速度略快;空载体组无显著变化。
     3.药物杀伤结果:经过6次反复MTT后,计算各组对表阿霉素的IC50值。对照组为10.2200±0.7805;转染siRNA组6.4450±0.8549;转染空载体组10.1500±0.9343,PMA处理组11.5400±1.3647。LSD-t检验结果显示,与对照组相比,siRNA处理组、PMA处理组对表阿霉素的药物敏感性变化均有统计学意义上的差异(P<0.05),而空载体组与HepG2组比较无统计学意义上的差异。
     【结论】
     1.实验中所采用的siRNA片段对细胞内PKCα的表达有明显的干扰作用,极大地降低了HepG2细胞中PKCα的表达。
     2.细胞内PKCα表达升高时,肝癌细胞对药物的敏感性减弱,耐药性增强;当细胞内PKCα降低时,肝癌细胞对药物的敏感性增强,耐药性减弱。提示抑制肝癌细胞中PKCα表达,可以降低肝癌细胞对药物的耐受性,增强化疗效果。
【objective】
     HCC(hepatocellular carcinoma)is one of the important malignant tumor. There are many factors inducing hepatoma. The most common reason is virus hepatitis and liver cirrhosis. Generalized chems is one of the important therapy of the hepotoma. The generalized chems often failed in clinic because the hepatocellular carcinoma resisted to the multi-antitumor-drug. So the treat of hepatoma is still a hang-up. Many factors cause MDR. Many researchers thought that MDR appearance related to P-gp hyper-expression. People think that the P-gp educing the medicine pumping function is the most important reason. The P-gp can pump the medicine out of cells. PKC isozymes, especially PKCα, can influence the occurrence of the tumoer cell MDR. So it is helpful to find out the mechanisms of hepatoma multidrug resistant that the hepatoma’drug sensitivity changs when we chang the PKCαexpression. The research gave the clinical therapy of hepatoma-drug-resistant experiment basement.
     【Methods】
     1. Extraorgan synthetic DNA chain which including the aim frag integrated into retrovirus vector.
     2. The retrovirus vector which including the aim DNA integrated into colibacillus. After the drug screening ,we got out the non-endotoxin plasmid.
     3. Mingled the non-endotoxin plasmid and virus-incasing cells together, using the electricity transfer instrument made the retrovirus vector integrating into the virus-incasing cells.
     4. After two weeks drug screening, we macroculltured the masccline cells.
     5. Using the virus supernate infected the HepG2.
     6. After two weeks drug screening, we macroculltures the live cells. Compared the drug sensitivity and growth velocity of the PMA treated HepG2 and siRNA treated HepG2 to the no-interfereing HepG2.
     【Results】
     1. Westernlot: The PKCαexpression was very little in siRNA interference’s. It was no difference in idling interference’s. The PMA could stimulate the expression of PKCα.
     2. The growth velocity of the siRNA interference’s HepG2 was obviously stepping down ,whereas the gowth velocity of the PMA interference’s HepG2 was faster than the no-interference HepG2. The growth velocity of the idling interference’s HepG2 was no change.
     3. MTT result: Doing the experiment six times, we caculated the IC50 of every group to the EPI. Conteol group 10.2200±0.7805; siRNA interference group 6.4450±0.8549; idling interference group 10.1500±0.9343, PMA interference group 11.5400±1.3647. LSD-t analysis: compared to the control group, the siRNA interference group’s and the PMA interference group’s drug sensitivity to the EPI were all changing and had the satistical significance(p<0.05), while the idling interference had no difference.【Conclusion】
     1. The siRNA frag used in this experiment was obviously cutting down the expression of PKCαof the HepG2.
     2. When the expression of PKCαstepped up, the drug sensitivity of the HCC was weakened; when the expression of PKCαcut down, the drug sensitivity of the HCC was strengthened and the tolerance to the drug was down regulated. To hint, suppressing the expression of the PKCαmaybe depress the toleration of HCC to antitumor drug and strengthen the Chems effect.
引文
1.叶任高、陆再英等,内科学第六版人民卫生出版社2004年5月,450-457
    2. Tamaoki T, Nakano H. Poten and specific inhibitors of protein kinase C of microbial origin. Bio Technology, 1990, 8:732-741
    3. Johannes FJ, Prestle J, Eis S, et, al. PK Cμis a navel, Atypical Member of the Protein Kinase C Family. The Journal of Biological Chemistry, 1994, 269(8):6140-6148
    4. Selbie LA, Carsten SP, Sheng YH, et al. Molecular cloning and characterization of PKC, an atypical isoform of protein kinase C derived from insulin-secreting cells. J Bio Chem, 1993, 269(32):24296-2420
    5. Mischak H, Pierce J H, Goodnight J. et al. Phorbol Ester-induced myeloid differentiation is mediated by protein kinase C-αand -δand not by protein kinaseC-βⅡ, -ε, -ζ, and -η. J Biol Chem, 1993, 268∶20110-20115.
    6. Rossi F, McNagny KM, Smith G, et al. Lineage commitment of transformed haematopoietic pro-genitors is determined by the level of PKC activity. EMBO J, 1996, 15∶1894-1901
    7. Shubeita HE, Martinson EA, Bilsen MV, et al. Transcriptional activation of the cardiac myosinlight chain 2 and atrial natriuretic factor myocytes. Proc Natl Acad Sci USA, 1992, 89∶1305-1309.
    8. Efanov AM, Zaitsev SV, Berggren PO. Inositol hexakisphosphate stimulates non-Ca2+-mediatedand primes Ca2+-mediated exocytosis of insulin by activation of protein kinase C. Proc Natl Acad SciUSA, 1997, 84∶4435-4441.
    9. Suzuki A, Goto Y, Iguchi T. Progression of PDMT is accompanied by lack of Fas and intense expression of Bcl-2 and PKC-ε. Carinogenesis, 1997, 18∶883-887.
    10. Cirone M, Angelori A, Barile L, et al. EpsteinBarr internalization and infectivity are blocked by selective protein kinase C inhibitors. Int J Cancer, 1990, 45∶490-493.
    11. La-Porta CAM, Tossitore L, Comolli R. Changes in protein kinase Cα,δand in nuclearβisoform expression in tumor and lung metasta-tic nodules induced by diethylnitrosamine in the rat. Carcinogenesis, 1997, 18∶715-719.
    12. Delphin C, Huang KP, Scotto C. et al. The invitro phosphorylation of p53 by calcium-dependent protein kinase C characterization of a protein- kinase- C - binding site on p53. FEBS Letter, 1997, 245∶684-692.
    13. Yang JM, Chin KV, Hait WN. Interaction of P-Glycoprotein with protein kinase C in human multidrug resistant carcinoma cells. Cancer Research, 1996, 56∶3490-3494.
    14. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro : cross resistance, radioautographic, and cytogenetic studies. Cancer Res, 1970, 30 (4) :1174-1184
    15. Lage H, Dietel M. Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells[J ]. J Cancer Res Clin Oncol, 2002, 128 (7) :349 - 357.
    16. Gariboldi MB, Ravizza R, Riganti L, et al. Molecular determinants of intrinsic resistance to doxorubicin in human cancer cell lines[J ]. Int J Oncol, 2003, 22 (5) :1057 - 1064.
    17. Bodo A, Bakos E, Szeri F, et al. The role of multidrug transporters in drugavailability, metabolism and toxicity[J ]. Toxicol ett, 2003, 11 :140- 141 ;133 - 143.
    18. Ling V, Thompson L. Reduced permeability in CHO ce11s as a mechanism of resistance to colchicine [ J ]. J Cell Physiol, 1974, 83 :103-106.
    19. Katner N, Riodan J K, Ling V. Detection of polycoprotein in multidrug resistant cell lines by monoclonal antibodies[J ]. Nature, 1983, 211: 1285-1270.
    20.秦凤展,陈振东,樊青霞.等.肿瘤内科治疗学:新理论新观点新技术[M].北京.人民军医出版社, 2004 :2-10.
    21. Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated multidrug resistance in cancerchemotherapy[J ] . Curr Pharm Des, 2006, 12 (3) :273-280.
    22. Krishnamachary N, Center M S. The MRP gene associated with a non- pglycoprotein multidrug resistance encodes a 190 kD membrane bound gly-coprotein [J ] . Cancer Res, 1993, 53(16) :3658 - 3661.
    23. Eid H, Mingfang L, Institoris E, et al . MRP expression of testicularcancers and its clinical relevance [J ] . Anticancer Res, 2000, 20 (5C) :4019– 4022
    24. Marquardt D, Center MS. Involvement of vacuolar H ( +)-a-denosinet riphosphatase activity in multidrug resistance in HL60 cells[J ] . J Natl Cancer Inst, 1991, 83 :1098-1105.
    25.李续建,王椿,乔振华,等.急性髓性白血病细胞MRP基因表达[J ] .中华肿瘤杂志, 1998, 20 :l1-15.
    26.靳英,周庚寅,张廷国.植物多酚类化合物逆转肿瘤多药耐药的筛选[J ] .山东大学学报(医学版), 2002, 6 :497-452.
    27. Scheffer GL, Wi jngaard P L J, Flens MJ, et al . The drug resistance relatedprotein LRP is a major vault protein [J ] . Nat Med, 1995, 1(6) :578- 582.
    28. Izquierdo M A, Shoemaker R H, Flens MJ, et al . Overlapping pheno-types of multidrug resistance among panels human cancer cell lines [J ] . Int J Cancer, 1996, 65 (2) :230– 237.
    29. Johnson W. P-glycoprotein mediated efflux as a major factor in the variance of absorption and distribution of drugs : modulation of chemotherapy resistance[J ] . Methods Find Exp Clin Pharmacol, 2002, 24 (8) :501- 514.
    30. Liu B, Staren E D, Iwamura T, et al . Mechanisms of toxotere-related drug resistance in pancreatic carcinoma [J ] . J Surg Res, 2001, 99 (2) :179 - 186.
    31. Goto S, Kamada K, Soh Y, et al . Significance of nuclear glutathione S-transferase pi in resistance to anti-cancer drugs[J ] . Jpn J Cancer Res, 2002, 93 (9) :1047 - 1056.
    32. Satoh T, Nishida M, Tsunoda H, et al . Expression of glutathione Stransferase pi ( GST2Pi) in human malignant Dvanian tumors[J ] . Eur J Obstet Gynecol Reprod Biol, 2001, 96 (2) :202 - 208.
    33. Cabelguenne A, Loriot M A, Slucker I, et al . Glutathione-associated enzymes in head and neck squamous cell carcinoma and response to cisplatin-based neoadjuvant chemotherapy[J ] . Int J Cancer, 2001, 93(5) :725 - 730.
    34. Kang M R, Chung I K. Down-regulation of DNA topoisomerase II alpha in human colorectal carcinoma cells resistant to a protoberberine alkaloid, berberrubine[J ] . Mol Pharmacol, 2002, 61 (4) :879 - 884.
    35. Matsumoto Y, Takano H, Kunishio K, et al . Incidence of mutation and deletion in topoisomerase II alpha mRNA of etoposide and Mamsa-resistant cell lines[J ] . Jpn J Cancer Res, 2001, 92(10) :1133 - 1137.
    36. Zhou Z, ZwellingL A, Ganapathi R, et al . Enhanced etoposide sensitivity following adenovirus-mediated human topoisomerase II alpha genetransfer is independent of topoisomerase II beta[J ] . Br J Cancer, 2001, 85(5) :745 - 751.
    37. Lazaris A C, Karandzas N G, Zorzos H S, et al . Markers of drug resistance in relapsing colon cancer[J ] . J Cancer Res Clin Oncol, 2002, 128(2) :114 - 118.
    38. Dziegil P, J elen M, Muszczynska B, et a1. Role of metallothionein expression in non-small cell lung carcinomas[J ] . Rocz Akad Med Bialymst, 2004, 49 (Suppl 1) :43-48
    39. Depeille P, Cuq P, Passagne I, et al. Combined effects of GSTP1 and MRP1 in melanoma drug resistance [J ] . Br JCancer, 2005, 93 (2) :216-220
    40. Tsuruo T, Nato M, Tomida A, et al . Molecular targeting therapy of cancer :drug resistance, apoptosis and survival signa[J ] . Cancer Sci, 2003, 94(1) :15 - 21.
    41. White E. Life death and the pursuit of apoptosis[J ] . Genes and Development, 1996, 10(1) :1 - 15.
    42. Ramachandran C, Melnick S J, Escalon E, et al . Expression of apoptosis, cell proliferation, and drug resistance gene in pediatric Wilms’tumors[J ] . Anticancer Res, 2000, 20 (50) :3759 - 3765.
    43. Hashimoto Y, Deda K, Minamik, et al . The potential clinical value of GMC and the P53 gene as a prodictor [J ] . Int J Clin Oncol, 2001, 6(2) :90 - 96.
    44. Van Brussel J P, Jan Van Steenbrugge G, Van Krimpen C, et al .Expression of multidrug resistance related proteins and proliferative activity is increased in advanced clinical prostate cancer[J ] . J Urol, 2001, 165(1) :130– 135
    45. Cheng AL, Chuang SE, Fine RL, et al. Inhibition of themembrane translocation and activation of protein kinase C, and porentiation of doxorub-cin-induced apotosis of hepatocellular carcinoma cells by tamoxifen. Biochem Pharmcol, 1998, 55:523-531
    46. Miyamoto K, Wakabayashi D, Minamino T, et al. Characterization of naturally acquired multiple-drug resistance of Yoshida ratascites hepatoma AH66 cell line. Anti-cancer Res, 1996, 16:1235-1240
    47. Fire A, Xu S, Montgomery MK, et a1.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J ]. Nature, 1998, 391(6669): 806-811
    48. Couzin J.Breakthrough of the year: small RNAs make big splash[J]. Science. 2002, 298(5602): 2296-2297.
    49. Nieth C, Priebsch A, Stege A, et al. Modulation of the classical multidrug resistance (MDR) phenotype by RNA inerference(RNAi). FEBS Lett, 2003, 545:144-150
    50. Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein)restores sensitivity to multidrug-resistant cancer cells. Cancer Res, 2003, 63:1515-1519
    51. Yague E, Higgins CF, Raguz S. Complete reversal of multidrug resistance by Stable expression of small interfereing RNAs targeting MDR1. Gene Ther, 2004, 14:1170-1174
    52. Stege A, Priebsch A, Nieth C, et al. Stable and complete overcoming of MDR1/ P-glycoproteinmediated multidrug resistance in human gastriccarcinoma cells by RNA interference Cancer Gene Ther, 2004, 11: (11):699-706
    53. Abbas-Terki T, Blanco-Bose W, Deglon N, et al. Lentiviral-mediated RNA interference. Human Gene Ther, 2002, 13:2197-2201
    54. Holm PS, Lage H, Bergmann S, et al. Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication:impact for cancer gene therapy. Cancer Res, 2004, 64:322-328
    55. Naoki Irie, Norio Sakai, et al. Subtype- and species-specific knockdown of PKC using short interfering RNA. Biochemical and Biophysical Research Communications 298 (2002) 738–743
    56. Bond TD, Valverde MA, Higgins CF. Protein kinase C phosphorylation disengages human and mouse-1a P-glycoproteins from influencing the rate of activation of swelling-activated chloride currents. J Physiol, 1998; 15: 333-340.
    57. Han Y, Han ZY, Zhou XM, et al. Expression and function of classical protein kinase C isoenzymes in gastric cancer cell line and its drug-sistant sublines. World J Gastroenterol.2002; 8: 441-445.
    58.韩英,时永全,李玲.蛋白激酶C同工酶PKCα及PKC-βⅠ在胃癌及其耐药细胞中的表达和功能.中华肿瘤杂志, 2001;23:103-106.
    59. Trang-Tiau Wu, Yi-Hsien Hsieh, et al. Overexpression of protein kinase CαmRNA in human hepatocellular carcinoma: A potential marker of disease prognosis. Clinica Chimica Acta .2007;54-58
    60. Lahn M, Paterson BM, Sundell K,et al. The role of protein kinase C-alpha (PKC-alpha) in malignancies of the gastrointestinal tract. Eur J Cancer, 2004: 40:10-20.
    61. Soh JW, Lee YS, Weinstein IB. Effects of regulatory domains of specificisoforms of protein kinase C on growth control and apoptosis in MCF-7 breast cancer cells. J Exp Ther Oncol, 2003;3:115-126.
    62. Zhang B, Wu Q, Ye XF, et al. Roles of PLC-gamma2 and PKC alpha in TPA-induced apoptosis of gastric cancer cells.World J Gastroenterol. 2003; 9:2413-2418.
    63. Chiang HS,Yang RS,Lin SW, et al. Tissue factor activity of SW2 480 human colon adenocarcinoma cells is modulated by thrombin and protein kinase C activation. Br J Cancer.1998; 78: 1121一1127.
    64. Mohri T,Kameshita I,Suzuki S,et al. Rapid adhesion and spread of non-adherent colon cancer Co1o201 cells induced by the protein kinase inhibitors,K252a and KT5720 and suppression of the adhesion by the immunosuppressants FK506 and cyclosporin A. Cell Struct Funct. 1998; 23: 255-264
    65.朱育焱王海明孔垂泽,等.蛋白激酶Cα对浅表膀胱癌分化及阿霉素内源性耐药的作用.中华外科杂志2005;43:662-666
    66.刘涛孔垂泽,等.蛋白激酶C抑制剂逆转肾癌多药耐药机制的探讨.中华肿瘤杂志. 2006;28:92-95
    67.韩英,时永全,李玲,等.蛋白激酶C同工酶PKCα及PKC-βⅠ在胃癌及其耐药细胞中的表达和功能.中华肿瘤杂志, 2001;23:103-106.
    68.祝葆华姚榛祥江黎明,等.蛋白激酶C-α反义核酸对人肝癌细胞HepG2体外增殖及凋亡的影响.中华实验外科杂志. 2004;21:678-680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700