兴奋性突触传递对tau蛋白表达和磷酸化的影响及其在阿尔茨海默病发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴奋性突触传递是神经元最基本的功能,NMDA受体(N-Methyl-D-aspartate receptor, NMDAR)是神经系统中最主要的兴奋性离子型受体之一,其在学习记忆,突触可塑性,神经发育等方面具有重要作用,但NMDA受体过度激活导致谷氨酸聚集于突触间隙所诱导的神经毒性作用也是许多神经退行性疾病的共同发病机制。阿尔茨海默病(Alzheimer's disease, AD)是成人痴呆症最主要的病因,其中tau蛋白过度磷酸化和聚集是AD脑内的主要病理特征之一。兴奋性突触传递与tau病变之间的联系目前少见报道。本研究探讨了谷氨酸能兴奋性突触传递增强对tau蛋白表达和磷酸化的影响及其在AD样神经退行性变中的作用。
     本文第一部分探讨了短时间突触传递增强对tau蛋白磷酸化的影响和内在机制。成人脑内约有一半的谷氨酸能神经元是谷氨酸-锌能神经元,即突触兴奋时锌离子与谷氨酸一起释放至突触间隙。本研究阐明了谷氨酸-锌能神经元兴奋时突触释放的锌离子通过抑制蛋白磷酸酯酶2A (Protein phosphatase2A, PP2A)的活性导致tau蛋白过度磷酸化。从理论上解释了谷氨酸-锌能神经元在大脑中的分布区域(海马,杏仁核,内嗅皮层及颞叶皮层区域)与过度磷酸化tau蛋白聚集形成的神经元纤维缠结(Neurofibrillary tangles, NFTs)的分布相重叠的可能机制,为锌稳态失衡参与AD发病提供了新线索,也为临床干预tau相关病变提供了新靶点
     本文第二部分探讨了NMDA受体慢性激活时,特别是突触外NMDA受体(Extrasynaptic NMDA receptor, E-NMDAR)激活后对tau蛋白的作用。首次报道突触外NMDA受体慢性激活后可导致总tau蛋白、磷酸化及非磷酸化tau蛋白水平均显著增加,tau的mRNA水平也明显增加,突触内NMDA受体激活时tau蛋白表达则无明显变化。在敲除tau蛋白的小鼠神经元中激活E-NMDA受体,与野生型神经元相比神经元死亡减少,生存信号分子ERK活性增高,磷酸化CREB水平也明显升高,神经元活性得以保存。研究证明了突触外NMDA受体激活通过tau蛋白过度表达对神经元产生毒性作用,E-NMDA受体可能成为治疗AD等tau相关疾病的干预靶点。
     总而言之,本研究着重阐明了谷氨酸能突触传递增强对神经元内tau蛋白表达及磷酸化的长期和短期作用,其结果为NMDA受体过度激活在阿尔茨海默病发病中的病理作用机制提供了全新资料。
     第一部分
     突触传递释放的锌通过抑制蛋白磷酸酯酶2A导致tau蛋白过度磷酸化
     在阿尔茨海默病(Alzheimer's Disease,AD)病人脑中,过度磷酸化的微管相关蛋白tau是神经元纤维缠结(Neurofibrillary tangles, NFTs)的主要成分,而神经元纤维缠结主要分布于富含锌离子的谷氨酸-锌能神经元所在的部位如海马、内嗅皮层、杏仁核等,提示谷氨酸-锌能神经元突触传递释放的锌离子可能参与了tau蛋白的磷酸化。为了验证这种假说,我们在体外培养的大鼠海马脑片及原代神经元用谷氨酸或Bic/4-AP处理来模拟突触兴奋性增强,采用锌离子螯合剂螯合突触释放的锌,探讨了突触传递释放的锌在tau蛋白磷酸化中的作用。实验结果显示,谷氨酸或Bic/4-AP处理后,tau蛋白在Ser396,Ser404, Thr231,Thr205等AD相关的位点发生过度磷酸化,而预先用细胞内或细胞外锌离子鳌合剂处理,或通过移除细胞外液中的钙离子来阻断突触锌离子的释放均可逆转由突触兴奋性增高导致的tau蛋白过度磷酸化。通过检测培养基中锌离子浓度,我们证实了在两种突触兴奋性增高的模型中锌离子的释放。外源性地给予硫酸锌处理,也导致海马脑片的tau蛋白过度磷酸化。进一步对tau蛋白过度磷酸化的机制进行探讨发现,突触兴奋性增高导致tau蛋白过度磷酸化时伴随蛋白磷酸酯酶2A(Protein phosphatase2A, PP2A)的活性下降,且用锌的鳌合剂预孵育可逆转PP2A的失活。以上实验结果表明:突触间隙释放的锌离子通过抑制蛋白磷酸酯酶2A导致tau蛋白过度磷酸化,AD脑中谷氨酸-锌能神经元锌稳态失衡可能参与了AD患者脑中PP2A失活和tau相关病变的发生。
     第二部分
     突触外NMDA受体对tau蛋白表达的影响及其在神经退行性变中的作用
     神经系统中,突触内外NMDA受体在调节突触可塑性、基因表达及神经元命运方面有不同的作用。突触外NMDA受体(extrasynaptic NMDA receptors, E-NMDARs)激活可导致神经元死亡和神经退行性变,但其内在机制尚未完全阐明。在本研究中,我们利用培养的原代皮质神经元模型,首次报道E-NMDAR受体激活后可导致总的,磷酸化及非磷酸化的tau蛋白水平增加,tau蛋白mRNA水平也明显增加,伴随神经元活性下降和轴突退行性变。选择性的E-NMDAR受体拮抗剂美金胺可逆转E-NMDAR受体激活所导致的tau蛋白表达增加。在敲除tau蛋白的小鼠神经元中激活E-NMDA受体,发现神经元死亡较野生型神经元减少,生存信号分子ERK活性增高,磷酸化CREB水平也明显升高。以上结果提示,E-NMDA受体激活通过tau蛋白表达增加介导了其对神经元的毒性效应,选择性干预E-NMDA受体可能成为治疗tau相关神经退行性病变如阿尔茨海默病(Alzheimer's Disease,AD)的有效手段,而tau蛋白也可能成为神经元兴奋性毒性损伤中的一个治疗靶点。
Excitatory neurotransmission is the basic function of neurons; N-Methyl-D-aspartate receptor (NMDAR) is one of the predominant excitatory ionotropic receptors in human brain, which plays important roles in learning and memory, synaptic plasticity, and neuronal development. However, excessive activation of NMDA receptors-induced glutamate accumulation in synaptic cleft also causes neuronal toxicity, which is now realized to be an upstream factor of many neurodegenerative diseases. Alzheimer's disease is the most common disease causing adult dementia; abnormal tau phosphorylation and accumulation is the characteristic pathological changes in AD brain. Till now the relationship between excitatory neurotransmission and tauopathy has not yet been elucidated. In the present study, we explored the effect of excitatory neurotransmission on tau expression and phosphorylation, and its role in AD-like neurodegeneration.
     In part I, we explored the changes of tau phosphorylation in neurons with short term activation of synaptic transmission. Nearly half of the glutamatergic neurons are "gluzinergic" neurons, which release glutamate and zinc simultaneously upon excitation. Our results suggest that synaptically released zinc promotes tau hyperphosphorylation through protein phosphatase2A (PP2A) inhibition. This finding explains the possible underlying mechamism for that location of zinc containing glutamatergic neurons is largely overlapped with neurofibrillary tangles (NFTs, which is formed by hyperphosphorylated tau) in AD susceptible brain regions such as hippocampus, amygdala, entorhinal and temporal cortex.
     In part II, we explored the effect of chronic activation of NMD A receptors, especially extrasynaptic NMDA receptors (E-NMDAR) on tau protein expression. We reported for the first time that prolonged activation of E-NMDAR dramatically increased total, phosphorylated and dephosphorylated tau levels, with simultaneous increase of tau mRNA level, while chronic activation of synaptic NMDAR showed no effect on tau protein expression. Activation of E-NMDA receptors in tau knockout mice neurons resulted in less neuronal death, increased level of survival signaling molecules such as active extracellular signal-regulated kinase (ERK) and phosphorylated CREB. These results indicate that tau overexpression mediates the neuronal toxicity of E-NMDAR activation. E-NMDAR may be a promising therapeutic target for AD and related tauopathy.
     In a summary, the present study focused on the effects of short or long term activation of glutamatergic synaptic transmission on tau expression and phosphorylation, the results disclosed new clues for the role of excessive activation of NMDA receptors in AD pathogenesis.
     Part Ⅰ
     Synaptic released zinc promotes tau hyperphosphorylation by inhibition of PP2A
     Hyperphosphorylated tau is the major component of neurofibrillary tangles in Alzheimer's disease (AD), and the tangle distribution is largely overlapped with zinc containing glutamatergic neurons, suggesting that zinc released in synaptic terminals may play a role in tau phosphorylation. To explore this possibility, we treated the cultured hippocampal slices or primary neurons with glutamate or Bic/4-AP to increase the synaptic activity with or without pre-treatment of zinc chelators, and then detected the phosphorylation levels of tau. We found that glutamate or Bic/4-AP treatment caused tau hyperphosphorylation at multiple AD-related sites, including Ser396, Ser404, Thr231, and Thr205, while application of intracellular or extracellular zinc chelators, or blockade of zinc release by extracellular calcium omission almost abolished the synaptic activity-associated tau hyperphosphorylation. The zinc release and translocation of excitatory synapses in the hippocampus was detected, and zinc-induced tau hyperphosphorylation was also observed in cultured brain slices incubated with exogenously supplemented zinc. Tau hyperphosphorylation induced by synaptic activity was strongly associated with inactivation of protein phosphatase2A (PP2A), and this inactivation can be reversed by pre-treatment of zinc chelator. Together, these results suggest that synaptically released zinc promotes tau hyperphosphorylation through PP2A inhibition.
     Part Ⅱ
     Effect of extrasynaptic NMDA receptors on tau protein expression and its role in neurodegeneration
     Synaptic and extrasynaptic NMDA receptors (E-NMDAR) play distinct roles in neuronal plasticity, gene regulation, and neuronal survival. Activation of E-NMDA receptors may induce neuronal degeneration and neuronal death, however, the underlying mechanisms remain elusive.In the present study,, we reported for the first time that in cultured primary cortical neurons, activation of E-NMDA receptors dramatically increased the protein levels of total, phosphorylated and dephosphorylated tau, as well as the tau mRNA levels, which was accompanied with axonal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDA receptors, reversed E-NMDAR-induced tau expression. Activation of E-NMDA receptors in tau knockout mice neurons resulted in less neuronal death, increased survival signaling molecules such as active extracellular signal-regulated kinases (ERk) and phosphorylated CREB.These results suggested that tau overexpression may mediate the toxicity of E-NMDA receptor activation; selective targeting E-NMDA receptor may be a promising therapeutic strategy for tauopathy like Alzheimer's Disease (AD), and tau may also be a target for the development of therapy for neuronal excitoxicity.
引文
[1]. Mount, C. and C. Downton, Alzheimer disease:progress or profit? Nat Med,2006. 12(7):p.780-4.
    [2]. Iqbal, K. and I. Grundke-Iqbal, Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease. Mol Neurobiol,1991.5(2-4):p. 399-410.
    [3]. Wang, J.Z. and F. Liu, Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol,2008.85(2):p.148-75.
    [4]. Papasozomenos, S.C., Tau protein immunoreactivity in dementia of the Alzheimer type:Ⅱ.Electron microscopy and pathogenetic implications. Effects of fixation on the morphology of the Alzheimer's abnormal filaments. Lab Invest,1989.60(3):p. 375-89.
    [5]. Kopke, E., et al., Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem,1993.268(32):p. 24374-84.
    [6]. Hoover, B.R., et al., Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron,2010.68(6):p.1067-81.
    [7]. Hauser, W.A., et al., Seizures and myoclonus in patients with Alzheimer's disease. Neurology,1986.36(9):p.1226-30.
    [8]. Rutten, B.P., et al., No alterations of hippocampal neuronal number and synaptic bouton number in a transgenic mouse model expressing the beta-cleaved C-terminal APP fragment. Neurobiol Dis,2003.12(2):p.110-20.
    [9]. Minkeviciene, R., et al., Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci,2009.29(11):p.3453-62.
    [10]. Deshpande, A., et al., A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. J Neurosci,2009.29(13):p. 4004-15.
    [11]. Slomianka, L., G. Danscher and C.J. Frederickson, Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite. Neuroscience,1990.38(3):p.843-54.
    [12]. An, W.L., et al., Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J Neurochem, 2005.92(5):p.1104-15.
    [13]. Ishiguro, K., et al., Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem,1992.267(15):p.10897-901.
    [14]. Takashima, A., GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimers Dis,2006.9(3 Suppl):p.309-17.
    [15]. Pei, J.J., et al., Subccllular distribution of protein phosphatases and abnormally phosphorylated tau in the temporal cortex from Alzheimer's disease and control brains. J Neural Transm,1998.105(1):p.69-83.
    [16]. Liu, F., Z. Liang, and C.X. Gong, Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease. Panminerva Med,2006.48(2):p.97-108.
    [17]. Liu, R., et al., Acute anoxia induces tau dephosphorylation in rat brain slices and its possible underlying mechanisms. J Neurochem,2005.94(5):p.1225-34.
    [18]. Frederickson, C.J. and A.I. Bush, Synaptically released zinc:physiological functions and pathological effects. Biometals,2001.14(3-4):p.353-66.
    [19]. Ketterman, J.K. and Y.V. Li, Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J Neurosci Res,2008.86(2):p.422-34.
    [20]. Mo, Z.Y., et al., Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J Biol Chem,2009.284(50):p.34648-57.
    [21]. Cherny, R.A., et al., Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 2001.30(3):p.665-76.
    [22]. Lavoie, N., et al., Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol,2007.578(Pt 1):p. 275-89.
    [23]. Hardingham, G.E., F.J. Arnold and H. Bading, Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci,2001. 4(3):p.261-7.
    [24]. Li, Y., et al., Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol, 2001.86(5):p.2597-604.
    [25]. Riederer, B.M., Differential phosphorylation of some proteins of the neuronal cytoskeleton during brain development. Histochem J,1992.24(11):p.783-90.
    [26]. Frederickson, C.J., J.Y. Koh and A.I. Bush, The neurobiology of zinc in health and disease. Nat Rev Neurosci,2005.6(6):p.449-62.
    [27]. Sheline, C.T., et al., Depolarization-induced 65zinc influx into cultured cortical neurons. Neurobiol Dis,2002.10(1):p.41-53.
    [28]. Dobrowsky, R.T., et al., Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem,1993.268(21):p.15523-30.
    [29]. Sindreu, C.B., et al., Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus. Cereb Cortex,2003.13(8):p. 823-9.
    [30]. Karakas, E., N. Simorowski and H. Furukawa, Structure of the zinc-bound amino-terminal domain of the NMD A receptor NR2B subunit. EMBO J,2009.28(24): p.3910-20.
    [31]. Takeda, A., et al., Zinc differentially acts on components of long-term potentiation at hippocampal CA1 synapses. Brain Res,2010.1323:p.59-64.
    [32]. Palmiter, R.D., et al., ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A,1996.93(25):p.14934-9.
    [33]. Cornett, C.R., W.R. Markesbery, and W.D. Ehmann, Imbalances of trace elements related to oxidative damage in Alzheimer's disease brain. Neurotoxicology,1998. 19(3):p.339-45.
    [34]. Religa, D., et al., Elevated cortical zinc in Alzheimer disease. Neurology,2006.67(1): p.69-75.
    [35]. Adlard, P.A., et al., Cognitive loss in zinc transporter-3 knock-out mice:a phenocopy for the synaptic and memory deficits of Alzheimer's disease? J Neurosci,2010.30(5): p.1631-6.
    [36]. Lovell, M.A., et al., Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer's disease. Neurotox Res,2005.7(4):p.265-71.
    [37]. Smith, J.L., et al., Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and late Alzheimer's disease brain. Neuroscience,2006.140(3):p. 879-88.
    [38]. Bitanihirwe, B.K. and M.G. Cunningham, Zinc:the brain's dark horse. Synapse,2009. 63(11):p.1029-49.
    [39]. Ebadi, M, et al., Expression and regulation of brain metallothionein. Neurochem Int, 1995.27(1):p.1-22.
    [40]. Yin, H.Z., et al., Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+accumulation and neuronal loss in hippocampal pyramidal neurons. J Neurosci,2002.22(4):p.1273-9.
    [41]. Suh, S.W., et al., Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis,2004.16(3):p.538-45.
    [42]. Koh, J.Y., et al., The role of zinc in selective neuronal death after transient global cerebral ischemia. Science,1996.272(5264):p.1013-6.
    [43]. Lee, Y.I., et al., Membrane depolarization induces the undulating phosphorylation/dephosphorylation of glycogen synthase kinase 3beta, and this dephosphorylation involves protein phosphatases 2A and 2B in SH-SY5Y human neuroblastoma cells. J Biol Chem,2005.280(23):p.22044-52.
    [44]. Brautigan, D.L., P. Bornstein and B. Gallis, Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem,1981.256(13):p.6519-22.
    [45]. Cho, U.S. and W. Xu, Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature,2007.445(7123):p.53-7.
    1. Hardingham, G.E. and H. Bading, Synaptic versus extrasynaptic NMDA receptor signalling:implications for neurodegenerative disorders. Nat Rev Neurosci.11(10):p. 682-96.
    2. Hardingham, G.E., Y. Fukunaga, and H. Bading, Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci,2002.5(5):p.405-14.
    3. Shapiro, M., Plasticity, hippocampal place cells, and cognitive maps. Arch Neurol, 2001.58(6):p.874-81.
    4. Leveille, F., et al., Suppression of the intrinsic apoptosis pathway by synaptic activity. J Neurosci.30(7):p.2623-35.
    5. Lau, D. and H. Bading, Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci,2009.29(14):p. 4420-9.
    6. Tu, W., et al., DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell.140(2):p.222-34.
    7. Milnerwood, A.J., et al., Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron. 65(2):p.178-90.
    8. Bordji, K., et al., Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ss production. J Neurosci.30(47):p.15927-42.
    9. Grundke-Iqbal, I., et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A,1986. 83(13):p.4913-7.
    10. Vantard, M., et al., Higher plant microtubule-associated proteins:in vitro functional assays. Biochimie,1993.75(8):p.725-30.
    11. Drubin, D.G. and M.W. Kirschner, Tau protein function in living cells. J Cell Biol, 1986.103(6 Pt 2):p.2739-46.
    12. Timasheff, S.N. and L.M. Grisham, In vitro assembly of cytoplasmic microtubules. Annu Rev Biochem,1980.49:p.565-91.
    13. Khatoon, S., I. Grundke-Iqbal, and K. Iqbal, Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett,1994.351(1):p.80-4.
    14. Khatoon, S. and K. Iqbal, Exchangeable GTP binding site of the beta-subunit of brain tubulin in Alzheimer disease. Prog Clin Biol Res,1989.317:p.801-7.
    15. Hardingham, G.E., F.J. Arnold, and H. Bading, Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci,2001. 4(3):p.261-7.
    16. Ishii, T., et al., Inactivation of integrin-linked kinase induces aberrant tau phosphorylation via sustained activation of glycogen synthase kinase 3beta in N1E-115 neuroblastoma cells. J Biol Chem,2003.278(29):p.26970-5.
    17. Leveille, F., et al., Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMD A receptors. FASEB J,2008.22(12):p.4258-71.
    18. Chalifoux, J.R. and A.G. Carter, Glutamate spillover promotes the generation of NMDA spikes. J Neurosci.31(45):p.16435-46.
    19. Xia, P., et al., Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci.30(33):p.11246-50.
    20. Lipton, S.A., The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders:low-affinity, uncompetitive antagonism. Curr Alzheimer Res,2005.2(2):p.155-65.
    21. Chandler, L.J., et al., N-methyl D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J Biol Chem,2001.276(4):p.2627-36.
    22. Urushitani, M., et al., N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death:a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res,2001.63(5):p.377-87.
    23. Crunelli, V., et al., On the excitatory post-synaptic potential evoked by stimulation of the optic tract in the rat lateral geniculate nucleus. J Physiol,1987.384:p.603-18.
    24. Goldberg, M.P. and D.W. Choi, Combined oxygen and glucose deprivation in cortical cell culture:calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci,1993.13(8):p.3510-24.
    25. Hardingham, G.E., et al., Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron,1999.22(4):p.789-98.
    26. Bading, H., D.D. Ginty, and M.E. Greenberg, Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science,1993. 260(5105):p.181-6.
    27. Papadia, S., et al., Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci,2008.11(4):p.476-87.
    28. Xu, J., et al., Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci,2009.29(29):p.9330-43.
    29. LaFerla, F.M., et al., The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet,1995.9(1):p.21-30.
    30. Minkeviciene, R., et al., Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci,2009.29(11):p.3453-62.
    31. Hauser, W.A., et al., Seizures and myoclonus in patients with Alzheimer's disease. Neurology,1986.36(9):p.1226-30.
    32. Ballatore, C, V.M. Lee, and J.Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci,2007.8(9):p.663-72.
    33. Mazanetz, M.P. and P.M. Fischer, Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov,2007.6(6):p.464-79.
    34. Ittner, L.M., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell,2010.142(3):p.387-97.
    35. Haass, C. and E. Mandelkow, Fyn-tau-amyloid:a toxic triad. Cell.142(3):p.356-8.
    36. Shipton, O.A., et al., Tau protein is required for amyloid{beta}-induced impairment of hippocampal long-term potentiation. J Neurosci,2011.31(5):p.1688-92.
    37. Roberson, E.D., et al., Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci.31(2):p.700-11.
    38. Jin, M., et al., Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A,2011.108(14):p.5819-24.
    39. Lipton, S.A., Pathologically-activated therapeutics for neuroprotection:mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets,2007. 8(5):p.621-32.
    1. Eccles, J.C., Calcium in long-term potentiation as a model for memory. Neuroscience, 1983.10(4):p.1071-81.
    2. Curtis, D.R., J.W. Phillis, and J.C. Watkins, Chemical excitation of spinal neurones. Nature,1959.183(4661):p.611-2.
    3. Lucas, D.R. and J.P. Newhouse, The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol,1957.58(2):p.193-201.
    4. Urushitani, M., et al., N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death:a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res,2001.63(5):p.377-87.
    5. Crunelli, V., et al., On the excitatory post-synaptic potential evoked by stimulation of the optic tract in the rat lateral geniculate nucleus. J Physiol,1987.384:p.603-18.
    6. Goldberg, M.P. and D.W. Choi, Combined oxygen and glucose deprivation in cortical cell culture:calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci,1993.13(8):p.3510-24
    7. Muir, K.W. and K.R. Lees, Excitatory amino acid antagonists for acute stroke. Cochrane Database Syst Rev,2003(3):p. CD001244.
    8. Adams, S.M., J.C. de Rivero Vaccari, and R.A. Corriveau, Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus. J Neurosci,2004.24(42):p.9441-50.
    9. Gould, E., H.A. Cameron, and B.S. McEwen, Blockade of NMD A receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol,1994.340(4): p.551-65.
    10. Hwang, J.Y., et al., N-Methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp Neurol,1999.159(1):p.124-30.
    11. Monti, B. and A. Contestabile, Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci,2000.12(9):p.3117-23.
    12. Pohl, D., et al, N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A,1999.96(5):p. 2508-13.
    13. Kitamura, T. and H. Sugiyama, Running wheel exercises accelerate neuronal turnover in mouse dentate gyrus. Neurosci Res,2006.56(1):p.45-52.
    14. Hardingham, G.E. and H. Bading, The Yin and Yang of NMD A receptor signalling. Trends Neurosci,2003.26(2):p.81-9.
    15. Kater, S.B. and S.A. Lipton, Neurotransmitter regulation of neuronal outgrowth, plasticity and survival in the year 2001. Trends Neurosci,1995.18(2):p.71-2.
    16. Thomas, C.G., A.J. Miller, and G.L. Westbrook, Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol,2006.95(3): p.1727-34.
    18. Li, Y.H., J. Wang, and G. Zhang, Involvement of synaptic NR2B-containing NMDA receptors in long-term depression induction in the young rat visual cortex in vitro. Chin J Physiol.54(3):p.190-5.
    19. Morgan, J.I., et al., Mapping patterns of c-fos expression in the central nervous system after seizure. Science,1987.237(4811):p.192-7.
    20. Zhang, S.J., et al., Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet,2009.5(8):p. e1000604.
    21. Enslen, H., et al., Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J Biol Chem,1994.269(22):p.15520-7.
    22. Chrivia, J.C., et al., Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature,1993.365(6449):p.855-9.
    23. Sun, P., et al., Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev,1994.8(21):p.2527-39.
    24. Mantamadiotis, T., et al., Disruption of CREB function in brain leads to neurodegeneration. Nat Genet,2002.31(1):p.47-54.
    25. Carlezon, W.A., Jr., R.S. Duman, and E.J. Nestler, The many faces of CREB. Trends Neurosci,2005.28(8):p.436-45.
    26. Maronde, E., et al., Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes. Biol Cell,1997.89(8):p.505-11.
    27. Lau, D. and H. Bading, Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci,2009.29(14):p. 4420-9.
    28. Leveille, F., et al., Suppression of the intrinsic apoptosis pathway by synaptic activity. J Neurosci,2010.30(7):p.2623-35.
    29. Papadia, S., et al., Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci,2008.11(4):p.476-87.
    30. Al-Mubarak, B., F.X. Soriano, and G.E. Hardingham, Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site:FOXO1 is a FOXO target gene. Channels (Austin),2009.3(4):p.233-8.
    31. Hardingham, G.E., et al., Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron,1999.22(4):p.789-98.
    32. Sala, C., S. Rudolph-Correia, and M. Sheng, Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J Neurosci,2000.20(10):p.3529-36.
    33. Hetman, M. and G. Kharebava, Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem,2006.6(8):p.787-99.
    34. Groc, L., L. Bard, and D. Choquet, Surface trafficking of N-methyl-D-aspartate receptors:physiological and pathological perspectives. Neuroscience,2009.158(1):p. 4-18.
    35. Xu, J., et al., Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci,2009.29(29):p.9330-43.
    36. Chen, R.W., et al., Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons:roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem,2003.84(3):p.566-75.
    37. Cao, J., et al., Distinct requirements for p38alpha and c-Jun N-terminal kinase stress-activated protein kinases in different forms of apoptotic neuronal death. J Biol Chem,2004.279(34):p.35903-13.
    38. Liu, Y, et al., NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci,2007.27(11):p. 2846-57.
    39. Zhong, W.X., et al., N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. Neuroscience,2006.141(3):p. 1399-413.
    40. Tu, W., et al., DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell.140(2):p.222-34.
    41. Mohrmann, R., et al., Deletion of the C-terminal domain of the NR2B subunit alters channel properties and synaptic targeting of N-methyl-D-aspartate receptors in nascent neocortical synapses. J Neurosci Res,2002.68(3):p.265-75.
    42. Thomas, R.J., Excitatory amino acids in health and disease. J Am Geriatr Soc,1995. 43(11):p.1279-89.
    43. Chen, H.S. and S.A. Lipton, The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem,2006.97(6):p.1611-26.
    44. Gouix, E., et al., Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci,2009.40(4):p.463-73.
    45. Milnerwood, A.J., et al., Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron, 2010.65(2):p.178-90.
    46. Okamoto, S., et al., Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med,2009. 15(12):p.1407-13.
    47. Bramblett, G.T., J.Q. Trojanowski, and V.M. Lee, Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent tau and accumulation of abnormal tau-isoforms (A68 proteins). Lab Invest,1992.66(2):p.212-22.
    48. Shin, R.W., Interaction of aluminum with paired helical filament tau is involved in neurofibrillary pathology of Alzheimer's disease. Gerontology,1997.43 Suppl 1:p. 16-23.
    49. Nukina, N., K.S. Kosik, and D.J. Selkoe, Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein. Proc Natl Acad Sci U S A,1987.84(10):p.3415-9.
    50. Wang, J.Z. and F. Liu, Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol,2008.85(2):p.148-75.
    51. Ballatore, C., V.M. Lee, and J.Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci,2007.8(9):p.663-72.
    52. Mazanetz, M.P. and P.M. Fischer, Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov,2007.6(6):p.464-79.
    53. Sultan, A., et al., Nuclear tau, a key player in neuronal DNA protection. J Biol Chem, 2011.286(6):p.4566-75.
    54. Morishima-Kawashima, M., [Molecular analysis of tau deposited in the FTDP-17 brain]. Rinsho Shinkeigaku,2001.41(12):p.1107-10.
    55. Gong, C.X., et al., Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem,2000.275(8):p.5535-44.
    56. Ferreira, A. and E.H. Bigio, Calpain-mediated tau cleavage:a mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med,2011.17(7-8):p. 676-85.
    57. Li, H.L., et al., Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer's neurodegeneration. Proc Natl Acad Sci U S A,2007.104(9):p.3591-6.
    58. Wang, H.H., et al., Tau overexpression inhibits cell apoptosis with the mechanisms involving multiple viability-related factors. J Alzheimers Dis,2010.21(1):p.167-79.
    59. de Calignon, A., et al., Caspase activation precedes and leads to tangles. Nature,2010. 464(7292):p.1201-4.
    60. Zempel, H., et al., Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci,2010.30(36):p.11938-50.
    61. Hoover, B.R., et al., Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron,2010.68(6):p.1067-81.
    62. Ittner, L.M., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell,2010.142(3):p.387-97.
    63. Amadoro, G., et al., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci U S A,2006.103(8):p.2892-7.
    64. Sun, X.Y., et al., Synaptic released zinc promotes tau hyperphosphorylation by inhibition of PP2A. J Biol Chem.
    65. Allyson, J., et al., Blockade of NR2A-containing NMDA receptors induces Tau phosphorylation in rat hippocampal slices. Neural Plast,2010.2010:p.340168.
    66. Gutierrez, R., The GABAergic phenotype of the "glutamatergic" granule cells of the dentate gyrus. Prog Neurobiol,2003.71(5):p.337-58.
    67. Karakas, E., N. Simorowski, and H. Furukawa, Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J,2009.28(24): p.3910-20.
    68. Nimmrich, V. and U. Ebert, Is Alzheimer's disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Rev Neurosci,2009. 20(1):p.1-12.
    69. Wang, Y.T. and M.W. Salter, Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature,1994.369(6477):p.233-5.
    70. Cheung, H.H. and J.W. Gurd, Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J Neurochem,2001.78(3):p.524-34.
    71. Kalia, L.V., J.R. Gingrich, and M.W. Salter, Src in synaptic transmission and plasticity. Oncogene,2004.23(48):p.8007-16.
    72. Sala, C. and M. Sheng, The fyn art of N-methyl-D-aspartate receptor phosphorylation. Proc Natl Acad Sci U S A,1999.96(2):p.335-7.
    73. Bhaskar, K., S.H. Yen, and G. Lee, Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem,2005.280(42):p.35119-25.
    74. Derkinderen, P., et al., Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci, 2005.25(28):p.6584-93.
    75. Lee, G, et al., Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci, 1998. 111 (Pt 21):p.3167-77.
    76. Lesort, M., R.S. Jope, and G.V. Johnson, Insulin transiently increases tau phosphorylation:involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem,1999.72(2):p.576-84.
    77. Cheng, Q., et al., Cdk5/p35 and Rho-kinase mediate ephrin-A5-induced signaling in retinal ganglion cells. Mol Cell Neurosci,2003.24(3):p.632-45.
    78. Ho, G.J., et al., Altered p59Fyn kinase expression accompanies disease progression in Alzheimer's disease:implications for its functional role. Neurobiol Aging,2005.26(5): p.625-35.
    79. Lambert, M.P., et al., Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA,1998.95(11):p. 6448-53.
    80. De Felice, F.G., et al., Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging,2008.29(9):p.1334-47.
    81. Wang, Y.P., ct al., Endogenous overproduction of beta-amyloid induces tau hyperphosphorylation and decreases the solubility of tau in N2a cells. J Neural Transm,2006.113(11):p.1723-32.
    82. Haass, C. and E. Mandelkow, Fyn-tau-amyloid:a toxic triad. Cell,2010.142(3):p. 356-8.
    83. Roberson, E.D., et al., Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci,2011.31(2):p.700-11.
    84. Bordji, K., et al., Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ss production. J Neurosci.30(47):p.15927-42.
    85. Li, S., et al., Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci.31(18):p.6627-38.
    86. Park, S.Y. and A. Ferreira, The generation of a 17 kDa neurotoxic fragment:an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J Neurosci,2005.25(22):p.5365-75.
    87. Albers, G.W., et al., Aptiganel hydrochloride in acute ischemic stroke:a randomized controlled trial. JAMA,2001.286(21):p.2673-82.
    88. Biegon, A., et al., Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice:Implications for treatment of neurological and cognitive deficits. Proc Natl Acad Sci U S A,2004.101(14):p.5117-22.
    89. Yaka, R., et al., D-cycloserine improves functional recovery and reinstates long-term potentiation (LTP) in a mouse model of closed head injury. FASEB J,2007.21(9):p. 2033-41.
    90. Lipton, S.A., Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci,2007.8(10):p.803-8.
    91. Milnerwood, A.J., et al., Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron. 65(2):p.178-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700