植酸酶PHYA的高效表达及二硫键的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在饲料中添加植酸酶可提高植物性饲料中磷的利用率和单胃动物对矿质元素的吸收率,并减轻动物排泄物中磷对环境的污染。植酸酶的饲喂效果已经在全世界范围内得到了确证,但目前还未能得到很好的推广应用。其主要原因是植酸酶在天然材料中含量太低;另一方面,酶的稳定性不能完全满足工业化生产的要求。因此,提高植酸酶基因的表达水平,改善植酸酶的稳定性是一个亟待解决的问题。
     以往研究者往往通过体外添加酶的保护剂、酶的固定化等手段提高植酸酶的稳定性,这些措施都取得了一定的效果,但不是十分的理想。随着基因工程的发展,在分子水平上对酶基因进行改造为改良酶蛋白的性质开辟了一条新的途径。二硫键对蛋白质的结构稳定性及功能具有重要的作用,植酸酶分子中含有5对二硫键,目前关于二硫键对植酸酶的催化活性和构象稳定性的研究较少,仅限于二硫键整体上在植酸酶的去折叠过程中对维持酶的空间结构和催化活性的影响。
     本研究以自行筛选的产胞外植酸酶的黑曲霉Aspergillus niger N-J为出发菌株,克隆了植酸酶phyA基因,将其在毕赤酵母(Pichia pastoris)中实现了高效表达,酶学性质研究表明表达的植酸酶具有良好的应用特性。在此基础上,首次对植酸酶(PHYA)5对二硫键分别进行了缺失研究,系统地比较了缺失突变体与野生型植酸酶在结构和功能上的区别。本实验的主要结果如下:
     1.以自行筛选的产胞外植酸酶的黑曲霉Aspergillus niger N-J基因组DNA为模板,PCR扩增得到植酸酶phyA基因片段。序列分析表明phyA开放阅读框长度为1347 bp,包含编码448个氨基酸的植酸酶成熟肽的完整序列;在其编码的氨基酸序列中,存在组氨酸酸性磷酸酶的活性位点保守序列、11个潜在的N-糖基化位点及10个半胱氨酸残基。将phyA基因构建了酵母表达载体pPICZαA/phyA,转化毕赤酵母Pichia pastoris GS115,得到了高表达工程菌株。诱导后发酵液植酸酶比活力较出发菌株相比提高了30,000倍,酶学性质研究表明表达的植酸酶具有优良的工业应用特性,从而实现了植酸酶的高效表达。
     2.利用定点突变技术将植酸酶分子中的5对二硫键分别进行了突变,构建了5个二硫键分别缺失的植酸酶突变体(C12S, C263S, C395S, C417S和C446S)的表达质粒。5个突变体均在毕赤酵母中得到了高效表达。
     3.对纯化后酶蛋白的酶学性质研究表明,5个缺失突变体在酸性pH范围内均具有较高的酶活性,比较适合在动物酸性胃肠环境中发挥作用,但二硫键Cys12-Cys21和Cys245-Cys263的缺失造成了酶蛋白pH适用范围的缩小;同时Cys12-Cys21的缺失降低了酶蛋白的最适作用温度。酶促反应动力学研究发现,二硫键Cys52-Cys395、Cys196-Cys446、Cys245-Cys263和Cys417-Cys425的缺失增大了酶对底物的亲和力及催化效率;而Cys12-Cys21的缺失降低了酶与底物的结合能力,同时也降低了酶的催化效率。
     4.对野生型及突变体植酸酶的空间构象分析表明,5对二硫键的缺失均对酶蛋白的空间结构产生了或多或少的影响,其中Cys245-Cys263和Cys417-Cys425缺失突变体的分子结构变得尤为松散。
     5.对酶抵抗变性剂稳定性的分析发现,二硫键缺失突变体抗变性剂的能力较野生型均降低,但不同缺失突变体的表现各异。其中二硫键Cys12-Cys21、Cys245-Cys263和Cys417-Cys425的缺失极大地降低了酶在盐酸胍溶液中的稳定性,而Cys52-Cys395和Cys196-Cys446缺失的突变体降低较少。
     6.对野生型及突变体植酸酶的热稳定性分析表明,5对二硫键的缺失均造成突变体活性中心的构象比野生型更容易发生变化,二硫键Cys245-Cys263及Cys417-Cys425的缺失极大地降低了酶分子的热稳定性;而在高温下Cys196-Cys446的缺失提高了酶分子的耐热能力。此外我们还推测,在受热过程中酶分子的结构存在自我调整以对抗热变性的过程。
Phytase catalyzes the hydrolysis of phytate to myo-inositol and inorganic phosphate. The supplementation of animal feed with phytase increases the bioavailability of phosphorus in monogastric animals besides reducing the phosphorus pollution. Despite its corroborated effect, the low yield and stability remain a critical issue in the extensive application of phytase. Therefore, increasing the yield and improving the stability of phytase are of great urgency.
     Studies of enhancing the stability of phytase are mainly focused on adding protecting agent or the immobility. As the development of gene engineering, it is to be a promising approach to improve enzyme property via protein engineering. Disulfide bonds are indispensable for the stability and function of enzyme. Phytase contains five disulfide bonds. However, comparatively few studies regard the contribution of disulfide bonds to the catalytic activity and conformational stability.
     In this paper, we selected an A. niger strain which produces extracellular phytase and cloned the phyA gene. This gene was transformed into Pichia pastoris and phytase with potential industrial application was overexpressed. We also investigated the effects of the five disulfide bonds on the conformation, thermostability, resistance to denaturant and catalytic activity of phytase for the first time. Comparison of the functions of different disulfide bonds was also discussed comprehensively. The main results were as follows:
     1. A phytase-producing strain, Aspergillus niger N-J, was isolated and identified. The phyA gene was cloned by PCR with the genomic DNA of A. niger N-J as template. The sequence analysis showed that the ORF comprises 1347 bp, encoding 448 amino acid residues of phytase mature protein. It has the conservative motif RHGXRXP and 11 potential N-glycosylation sites. It also has 10 Cys that form five pairs of disulfide bonds. We transformed phyA into Pichia pastoris and overexpressed phytase with potential industrial application.
     2. In this study, five expression plasmids of phytase mutants with deletion of the five disulfide bonds respectively (C12S, C263S, C395S, C417S, C446S) were constructed. All the five mutants were expressed at high level in Pichia pastoris.
     3. Assay of the enzymological characteristics showed that all the five mutants hold high activity in the range of pH 2.5 to 5.5, which are similar to the stomach and intestines of animal. The deletion of Cys12-Cys21 and Cys245-Cys263 shrank the favorable pH range, and also the deletion of Cys12-Cys21 decreased the optimum temperature. The kinetics analysis showed that the deletions of Cys52-Cys395, Cys196-Cys446, Cys245-Cys263 and Cys417-Cys425 increased the kcat and the kcat/ Km; and the deletion of Cys12-Cys21 decreased the the kcat and the kcat/ Km.
     4. Conformation studies indicated that deletions of the five disulfide bonds changed the stucture of phytase more or less. The structure of C263S and C417S become loose while the C446S becomes more compact than the wild-type.
     5. The changes of the resistance to guanidine hydrochloride (GdnHCl) were studied by spectroscopic and activity analysis. It turns out the deletions of disulfide bonds decreased the stability of phytase in GdnHCl solution. However the effect varies greatly with different mutants. The removal of Cys12-Cys21, Cys245-Cys263 and Cys417-Cys425 decreased the stability in GdnHCl solution dramatically, while the removal of Cys52-Cys395 and Cys196-Cys446 changed relatively slighter.
     6. Thermostability analysis indicated that the deletion of disulfide bond caused a easier-to-change conformation of the active-site. The deletion of Cys245-Cys263 and Cys417-Cys425 decreased the thermolstability largely and the mutant C446S is more stable than the wild-type phytase in high temperature.
引文
贝锦龙,陈庄,杨林等.人工合成的黑曲霉NRRL3135菌株植酸酶基因在毕赤酵母系统中的高效表达[J].生物工程学报, 2001, 17: 254-258
    陈惠,王红宁,杨婉身,赵海霞,吴琦,单志. F43Y及I354M,L358F定点突变对植酸酶热稳定性及酶活性的改善[J].中国生物化学与分子生物学报, 2005, 21(4): 516-520
    陈惠,王红宁,赵海霞.基因工程酵母产植酸酶的酶学性质研究[J].微生物学通报, 2003, 30: 38-41
    陈惠,赵海霞,王红宁,杨婉身,吴琦,倪燕.植酸酶基因中稀有密码子的改造提高其在毕赤酵母中的表达量[J].中国生物化学与分子生物学报, 2005, 21(2): 171-175
    陈小鸽,刘德海,杨玉华等.微量比色法测定饲用植酸酶活力[J].河南农业科学, 2001,10:40-41
    黄大舫.农业微生物基因工程研究与展望[J].农业生物技术学报, 2003, 11(2): 111-114
    黄遵锡,张克昌.植酸酶基础与应用研究概况[J].食品与发酵工业, 1999, 25(2): 54-58
    黄遵锡,赵明哲,李凤梅等.无花果曲霉(A. ficuum)的植酸酶功能区基因的克隆及生物学活性的测定[J].云南师范大学学报, 2001, 21: 46-53
    霍丹群,范守成,张云茹等.黑曲霉F246的phyA基因克隆及其新型表达载体构建[J]. 重庆大学学报, 2004, 27(8): 60-64
    江均平.热稳定性的曲霉植酸酶[J].微生物学报, 1996, 36: 476-478
    李海阔,王琛,周碧君.提取产生荚膜梭菌染色体DNA的新方法—氯化苄法[J].贵州大学学报(农业与生物科学版), 2002, 21(1): 57-61
    力政军,陈素丽,颜思旭.磷酸盐及其结构类似物对文昌鱼酸性磷酸酶的影响[J].厦门大学学报, 1995, 34:791-794
    廖明星,顾振新.植酸酶基因工程及开发利用研究[J].食品科学, 2003, 24: 155-159
    刘永海,李大力,杨成丽等.植酸酶产生菌的筛选与酶的纯化及其性质的研究[J].工业微生物, 2004, 34(2): 26-29
    刘雨田,晏向华,郭小泉.植酸酶的研究进展[J].国外畜牧学(猪与禽), 1999, 42:23-24
    陆文清,李德发,武玉波.介绍两种提高饲用酶制剂热稳定性的方法[J].粮食与饲料工业, 2000, 12:34-35
    罗会颖,姚斌,袁铁铮等.来源于Escherichi coli高比活植酸酶基因的高效表达[J].生物工程学报, 2004, 20:78-84
    潘冬梅,李弘剑,李白桦等.无花果曲霉植酸酶发酵及酶动力学[J]。暨南大学学报(自然科学版), 2001, 22:107-112
    彭日荷,熊爱生,李贤等.应用毕赤酵母高效表达耐高温植酸酶[J].生物化学与生物物理学报, 2002, 34: 725-730
    萨楚尔夫,罗辽复.蛋白质变性的渐变模型[J].内蒙古师范大学学报, 2002, 31(1): 26-30
    施安辉,王光玉,李桂杰,张治国.目前国内外植酸酶研究进展[J].中国酿造, 2005, 146: 5-11
    宋耿云,王敏,王晓云.底物和产物及其类似物对植酸酶的抑制动力学[J].山东农业大学学报, 2005, 36 (3):235-240
    王红宁,吴琦,刘世贵等.黑曲霉N25植酸酶phyA基因的克隆及序列[J].分析微生物学报, 2001, 41: 310-314
    王红宁,吴琦,谢晶等.真菌植酸酶phyA基因研究进展[J].四川农业大学学报, 2000, 18: 84-88
    王红宁,马孟根,吴琦等.黑曲霉N25植酸酶phyA基因在巴斯德毕赤酵母中高效表达的研究[J].菌物系统, 2001, 20(4): 486-493
    王文兵,姚斌,肖庆利等.植酸酶基因在家蚕杆状病毒表达系统中的表达及酶学特性[J] . 生物工程学报, 2003 ,19(1) :112-116
    王亚茹,姚斌,曹虹等.枯草芽孢杆菌中的植酸酶的纯化和酶学性质[J].微生物学报, 2001, 41:198-203
    魏威,李弘剑,李月琴等.工程菌BL21-PETZ1a(+)-phyA表达植酸酶的研究.中国生物工程杂志, 2004, 24(1):66-69
    吴琦,刘世贵,王红宁.芽孢杆菌植酸酶研究进展[J].中国饲料, 2003, 12: 11-14
    吴琦,王红宁,胡勇等. Bacillus subtilis WHNB02植酸酶phyC基因的克隆及序列分析[J]. 生物技术, 2004, 14(3): 1-4
    夏立秋,程海娜,陈宇等.植酸酶及其基因工程研究进展[J].激光生物学报, 2001, 10(3): 231-235
    邢自力,陈华友,谢芳.植酸酶及其热稳定性研究进展[J].中国生物工程杂志, 2003, 23:31-35
    姚斌,范云六.植酸酶的分子生物学与基因工程[J].生物工程学报, 2000, 16: 1-5
    姚斌,袁铁铮,王元火.来源于Bacillus subtilis的中性植酸酶基因的克隆及在大肠杆菌中的表达[J].生物工程学报, 2001, 17: 11-15
    姚斌,张春义,王建华等.产植酸酶的黑曲霉菌株筛选及其植酸酶基因克隆[J].农业生物技术学报, 1998, 6(1): 1-6
    姚斌,张春义,王建华等.高效表达具有生物活性的植酸酶的毕赤酵母[J].中国科学(C辑), 1998, 3:237-243
    张莉莉,张苓花等.利用氯化苄提取真菌基因组DNA及其分子生物学分析[J].大连轻工业学院学报, 2000, 19(1): 36-39
    郑敏,张飞雄等.酵母表达系统表达外源基因的研究进展[J].首都师范大学学报(自然科学版), 1999, 20(4): 73-78
    钟铃,汪天虹.氯化苄法提取染色体DNA[J].微生物学杂志, 1997, 17(3): 62-63
    朱国萍,滕脉坤,王玉珍.脯氨酸对蛋白质热稳定性的贡献[J].生物工程进展, 2000, 20:48-51
    朱衡,瞿峰.利用氯化苄提取适用于分子生物学分析的真菌DNA[J].真菌学报, 1994, 13(1): 34-40
    邹立扣,王红宁,吴琦等.植酸酶phyC基因表达载体的构建及其在E.coli中的表达[J]. 生物技术, 2004, 14(3): 11-14
    Abelson PH. A potential phosphate crisis[J]. Science, 1999, 283:2015
    Acharya AS, Taniuchi H. Implication of the structure and stability of disulfide intermediates of lysozyme on the mechanism of renaturation[J]. Mol Cell Biochem, 1982, 44:129-148
    Anons. Enzymes emerge as big feed supplement[J]. Chemical Engineering News, 1998, 29:302
    Bae HD, Yanke LJ, Cheng KJ, et al. A novel staining method for detecting phytase activity [J]. J Microbiol Meth, 1999, 39: 17-22
    Bedows E, Huth J, Suganuma N, et al. Disulfide bond mutations affect the folding of the human chorionic gonadotropin-βsubunit in transfected Chinese hamster ovary cells[J]. J Biol Chem, 1993, 26 (8):11655-11662
    Betz SF, Marmorion JL, Saunders AJ, et al. Unusual effects of an engineered disulfide on global and local protein stability[J]. Biochemistry, 1996, 35:7422-7428
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72 :248-254
    Branza-Nichita N, Lazar C, Durantel D, et al. Role of disulfide bond formation in the folding and assembly of the envelope glycoproteins of a pestivirus[J]. Biochem Biophys Res Commun, 2002, 296:470-476
    Brinch-Pedersen H, Hatzack F, Sorensen LD, et al. Transgenic Res. 2003, 12(6):649-659
    Casey A, Walsh G. Indentification and characterization of a phytase of potential commercial interest [J]. J Biotechnol, 2004, 110: 313-322
    Casey A, Walsh G. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142[J]. Bioresource Technol, 2003, 86: 183-188
    Chang SG, Choi KD, Jang SH et al. Role of disulfide bonds in the structure and activity of human insulin[J]. Mol Cells, 2003, 16:323-330
    Chapnik N. A one-tube site-directed mutagenesis method using PCR and primer extension[J]. Anal Biochem, 2007, 16:315-320
    Chen CC, Wu PH, Huang CT, et al. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase [J]. Enz Microbial Technol, 2004, 35: 315-320
    Chen HJ, Zhang GB, Zhang YJ, et al. Functional implications of disulfide bond, Cys206-Cys210, in recombinant Prochymosin[J]. Biochemistry, Chen QX, Zhou HM. Inhibitors of green crab (Scylla serrata) alkaline phosphatase[J]. J. Enzyme Inhib, 1999, 14 :251-257
    Chen X, Liu W, Quinto I, et al. High efficiency of site-directed mutagenesis mediated by a single PCR product[J]. Nucleic Acids Res, 1997, 3 :682-684
    Choi YM, Suh HJ, Kim JM. Purification and properties of extracellular phytase from Bacillussp.KHU210[J]. J Protein Chem, 2001, 20(4): 287-292
    Clarke J, Henrick K, Fersht AR. Disulfide mutants of barnase. I: Changes in stability and structure assessed by biophysical methods and X-ray crystallography[J]. J Mol Biol, 1995, 253:493-504
    Clarke J, Hounslow AM, Fersht AR. 1995. Disulfide Mutants of Barnase II: Changes in Structure and Local Stability Identified by Hydrogen Exchange[J]. J Mol Biol, 253: 505-513
    Cosgrove DJ. Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase[J]. J Biol Sci, 1970 (23):1207-1220
    Cowieson AJ, Acamovic T, Bedford MR. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens[J]. Br Poult Sci, 2004, 45: 101-108
    Cregg JM, Cereghino JL, et al. Recombinant protein expression in Pichia pastoris: A review. Molecular Biotechnology[J]. 2000, 16 (1): 23-52
    Creighton TE, Goldenberg J. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor[J]. J Mol Biol, 1984, 179:497-526
    Creighton TE, Zapun A, Darby NJ. Mechanisms and catalysts of disulfide bond formation in proteins[J]. Trends in Biotechnology, 1995, 13:18 -23
    Creighton TE. Disulfide bond formation in proteins[J]. Methods Enzymol, 1984, 107:305-329
    Dassa E, Cahu M, Desjoyaux-Cherel B, et al. The acid phosphatase with optimum pH of 2.5 of Escherichia coli: physiological and biochemical study[J]. J Biol Chem, 1982, 257(12):6669-6676
    Ehrilich KC, Montalbano BG, Mullaney EJ, et al. Identification and cloning of a second phytase gene (phyB) from Aspergillus niger ( ficuum )[J]. Biochem Bioph Res Co. 1993, 195(1): 53-57
    Eric MS, Henry AL. Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels[J]. J Neurosci Methods, 2003, 124:75-81
    Fernando LR. Roles of disulfide bonds in recombinant human Interliukin 6 conformation[J]. Biochemistry, 1994, 33:5146-5154
    Fieschi J, Niccoli P, Camilla C, et al. Polymerase chain reaction-based site-directedmutagenesis using magnetic beads[J]. Anal Biochem, 1996, 234 :210-214
    Flinn JP, Pallaghy PK, Lew MJ, et al. Role of disulfide bridges in the folding, structure and biological activity of omega-conotoxin GVIA[J]. Biochim Biophys Acta, 1999, 1434:177-190
    Freedman RB. The formation of protein disulfide bonds[J]. Current Opinion in Structural Biology, 1995, 5:85 -91
    Freund WD, Mayr GW, Tietz C, et al. Metabolism of inositol phosphates in the protozoan Paramecium. Characterization of a novel inositol-hexakisphosphate- dephosphorylating enzyme[J]. Eur J Biochem, 1992, 207:359-367
    Froy O, Zilberberg N, Gordon D, et al. The putative bioactive surface of insect-selective scorpion excitatory neurotoxins[J]. J Biol Chem, 1999, 274:5769-5776
    Gargova S, Sariyska M. Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase[J]. Enzyme Microb Tech. 2003, 32: 231-235
    Gibson DM, Ullah AHJ. Purification and characterization of phytase from cotyledons of germinating soybean seed[J]. Arch Biochem Biophys, 1988, 260:503-513
    Golovan S, Wang GR, Zhang J, et al. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities[J]. Can J Microbiol, 2000, 46(1): 59-71
    Golovan SP, Hayes MA , Phillips JP, et al. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control [J]. Nature Biotechnology , 2001 , 19 (5) : 429- 433
    Golovan SP, Meidinger RG, Ajakaiye A, et al. Pigs expressing salivary phytase produce low-phosphorus manure [J]. Nature Biotechnology, 2001,19 (8) :741-745
    Gong ZL, Zhang H, Gabos S, et al. Rapid and efficient polymerase chain reaction-based strategies for one-site and two-site mutagenesis[J]. Anal Biochem, 2004, 331:404–406
    Goto Y, Hamaguchi K. Formation of the intrachain disulfide bond in the constant fragment of the immunoglobulin light chain[J]. J Mol Biol, 1981, 146:321-340
    Greiner R, Konietznv U, Jany KD. Purification and characterization of two phytases from Escherichia coli [J]. Arch Biochem Biophys, 1993, 303: 1326-1336
    Han YM, Wilson DB, Lei XG. Expression of an Aspergillus niger phytase gene (phyA) inSaccharomyces cerevisiae[J]. Appl Environ Microbiol, 1999, 65(5): 1915-1918
    HanYM, Lei XG. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris[J]. Archives of Biochemistry and Biophysics, 1999, 364 (1): 83-90
    Hara A, Ebina S, Kondo A, et al. Agriculture Biology Chemistry. 1985, 49: 3539- 3544
    Ho SN, Horton RM, Pullen JK, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction[J]. Gene, 1989,77:51-59
    Hober S, Forsberg G, Palm G, et al. Disulfide exchange folding of insulin-like growth factor I[J]. Biochemistry, 1992, 31:1749-1756
    Hober S, Hansson A, Uhlen M, et al. Folding of insulin-like growth factor I is thermodynamically controlled by insulin-like growth factor binding protein[J]. Biochemistry, 1994, 33:6758-6761
    Hober S, Ljung JL, Uhlen M, et al. Insulin-like growth factors I and II are unable to form and maintain their native disulfides under in vivo redox conditions[J]. FEBS letters, 1999, 443: 271-276
    Hober S, Uhlen M, Nilsson B. Disulfide exchange folding of disulfide mutants of insulin-like growth factor I in vitro[J]. Biochemistry, 1997, 36:4616-4622
    Houde RL, Alli I, Kermasha S. Purification and characterization of canola seed (Brassica sp.) phytase[J]. J Food Biochem, 1990, 14:331-351
    Howson SJ, Davis RJ. Production of phytate-hydrolysing enzyme by fungi[J]. Enzyme Microbiol Technol, 1983, 5:377-382
    Huang K, Zhang Z, Liu N, et al. Functional implication of disulfide bond, Cys250-Cys283, in bovine chymosin[J]. Biochem biophys Res Commun, 1992, 187:692-696
    Hubel F, Beck E. Maize root phytase: purification, characterization, and localization of enzyme activity and its putative substrate[J]. Plant Physiol, 1996, 112:1429-1436
    Ioannou YA, Zeidner KM, Grace ME, et al. Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility[J]. Biochem J, 1998, 332:789-797
    Irving GCJ, Cosgrove DJ. Inositol phosphate phosphatase of microbiological origin. Some properties of a partially purified bacterial (Pseudomonas sp.) phytase[J]. J Biol Sci, 1971, 24:547-557
    Iwaoka M, Juminaga D, Scheraga HA. Regeneration of three-disulfide mutants of bovine pancreatic ribonuclease A missing the 65-72 disulfide bond: Characterization of a minor folding pathway of ribonuclease A and kinetic roles of Cys65 and Cys72[J]. Biochemistry, 1998, 37:4490-4501
    Iwaoka M, Wedemeyer WJ, Scheraga HA. Conformational unfolding studies of three-disulfide mutants of bovine pancreatic Ribonuclease A and the coupling of proline isomerization to disulfide redox reactions[J]. Biochemistry, 1999, 38:2805-2815
    Jermutus L, Tessier M, Pasamontes L, et al. Structure-based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case[J]. J Biotechnol, 2001, 85:15-24
    Judith AM, Richard AM, Ronan RGP. Purification and physico-chemical characterization of genetically modified phytases expressed in Aspergillus awamori[J]. Bioresource Technol, 2006, 97: 1703-1708
    Kammann M, Laufs J, Schell J, et al. Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR)[J]. Nucleic Acids Res, 1989, 17 : 5404
    Ke SH, Madison EL. Rapid and efficient site-directed mutagenesis by single-tube “megaprimer PCR”method[J]. Nucleic Acids Res, 1997, 25 :3371-3372
    Kerovuo J, Lappalainen I, Reinikainen T. The metal dependence of Bacillus subtilis phytase[J]. Biochem Biophys Res Commun, 2000, 268:365-369
    Kerovuo J, Lauraeus M, Nurminen Petal. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis[J]. Appl Enviroment Microbiol, 1998, 64(6): 2079-2083
    Kerovuo J, Tynkkynen S. Expression of Bacillus subtilis phytase in Lactobacillus plantarum [J]. Lett Appl Microbiol, 2000, 30: 325-329
    Klink TA, Woycechowsky KJ, Taylor KM, et al. Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A[J]. Eur J Biochem, 2000, 267:566-572
    Ko JH, Jang WH, Kim EK, et al. Enhancement of thermostability and catalytic efficiency of AprP, and alkaline protease from Pseudomonas sp., by introduction of a disulfide bond[J]. Biochem Biophys Res Commun, 1996, 221:631-635
    Konietzny U, Greiner R, Jany KD. Purification and characterization of a phytase from spelt[J]. J Food Biochem, 1995,18:165-183
    Kostrewa D, Grnninger-Leitch F. Crystal structure of phytase from Aspergillus ficuum at 2.5 ? resolution [J]. Nature structural Biol, 1997, 4: 185-190
    Kostrewa D, Wyss M, D'Arcy A, van Loon AP. Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2. 4 ? resolution[J]. J Mol Biol, 1999, 288:965-974
    Laboure AM, Gagnon J, Lescure AM. Purification and characterization of a phytase (myo-inositol-hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination[J]. Biochem J, 1993, 15: 413-419
    Lassen SF, Breinholt J, Wyss M, et al. Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, Ceriporia sp.,and Trametes pubescens[J]. Appl Environ Microbiol, 2001, 67 (10):4701-4707
    Lehmann M, Kostrwa D, Wyss M, et al. From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase[J]. Protein Eng , 2000 , 13(1) :549– 571
    Lehmann M, Loch C, Middendorf A, et al. The consensus concept for thermostability engineering of proteins: further proof of concept[J]. Protein Eng, 2002, 15(5):403-411
    Lehmann M, Lopez-Ulibarri R, Loch C, et al. Exchanging the active site between phytases for altering the functional properties of the enzyme[J]. Protein Sci, 2000, 9:1866-1872
    Lehrer SS. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compound and of lysozyme by iodide ion[J]. Biochemistry, 1971, 10:3245-3263
    Lei XG, Porres JM. Phytase enzymology, applications, and biotechnology [J]. Biotechnol Lett, 2003, 25:1787-1794
    Lelanda PA, Staniszewskia KE, Kima BM, et al. A synapomorphic disulfide bond is critical for the conformational stability and cytotoxicity of an amphibian ribonuclease[J]. FEBS Letters, 2000, 477:203-207
    Li J, Carla E. Secretion of active recombinant phytase from soybean cell suspension cultures [J]. 1997, 114: 1103-1111
    Lim D, Golovan S, Forsberg CW, et al. Crystal structures of Escherichia coli phytase and its complex with phytate[J]. Nat Struct Biol, 2000, 7(2):108-113
    Liu Y, Tang JG. Influence of A7-B7 disulfide bond deletion on the refolding and structure of proinsulin[J]. Acta Biochimica Biophysica Sinica. 2003,35:122-126
    Mandal NC, Burnman S, Biswas BB. Isolation, purification and characterization of phytase from germinating mung beans[J]. Phytochemistry, 1972, 11:495-502
    Marks W, Luis P, Arno F, et al. Biophysical characterization of fungal phytase (myo-inosito hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol, 1999, 65:359-366
    Martinez C, Ros G, Periago MJ, et al. Phytic acid in human nutrition[J]. Food Science and Technology International, 1996, 2:201-209
    Matsumura M, Becktel WJ, Levit M, et al. Stabilization of phageT4 lysozyme by engineered disulfide bonds[J]. Proc Mad Acad Sci USA, 1989, 86:6562-6566
    Matsumura M, Signor G, Matthews BW. Substantial increase of protein stability by multiple disulphide bonds[J]. Nature, 1989, 342:291-293
    Messner E, Huber WM, Gloekshuber R. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thio/disulfide oxidoreductases[J]. Protein Sci, 1998, 7:1233-1244
    Michael LM, Brian HR. Approaches to DNA mutagenesis: an overview[J]. Anal Biochem, 1997, 254 : 157-178
    Miksch G, Kleist S, Friehs K, et al. Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors [J]. Appl Microbiol Biotechnol, 2002, 59: 685-694
    Milner SJ, Carver JA, Ballard FJ, et al. Probing the disulfide pathway of insulin-like growth factor-I[J]. Biotechnol Bioeng, 1999, 62:693-703
    Mi-Young Jeong, Sanguk Kimc, Cheol-Won Yun, et al. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J Biotechnology, 2007, 127:300–309
    Mullaney EJ, Daly CB, Kim T, et al. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0[J]. Biochem Biophys Res Commun, 2002, 297: 1016-1020
    Mullaney EJ, Daly CB, Ullah AH. Advances in phytase research [J]. Adv Appl Microbiol, 2000, 47: 157-199
    Mullaney EJ, Ullah AHJ. Conservation of cysteine residues in fungal histine acid phytases [J]. Biochem Biophys Res Commun, 2005, 328: 404-408
    Mullaney EJ, Ullah AHJ. Conservation of the active site motif in Aspergillus niger (ficuum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase[J]. Biochem Biophys Res Commun, 1998, 243: 471- 473
    Nabavi S, Nazar RN. Simplied one-tube“megaprimer”polymerase chain reaction mutagenesis[J]. Anal Biochem, 2005, 345:346-348
    Nagy ZB, Felfooldi F, Tamaas L, et al. A one-tube, two-step polymerase chain reaction-based site-directed mutagenesis method with simple identication of the mutated product[J]. Anal Biochem, 2004, 324: 301-303
    Nelson TS, Shieh TR, Wodzinski RJ, et al. The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase[J]. Poult Sci, 1968, 47: 1842-1848 Nelson TS. The utilization of phytate phosphorus by poultry--a review. Poult Sci, 1967, 46: 862-871
    Omid RS, Andrée Lougarre, Lucille Lamouroux, et al. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase[J]. BMC Biochemistry, 2006,7:12
    Omura F, Otsu M, Kikuchi M. Accelerated secretion of human lysozyme with a disulfide bond mutation[J]. Eur J Biochem, 1992, 205:551-559
    Ostanin K, Saeed A, Robert L, et al. Heterologous expression of human prostatic acid phosphatase and site- directed mutagenesis of the enzyme active site[J]. Biol Chem, 1994, 269(12):8971-8978
    Pace CN, Grimsley GR, Thomson JA, et al. Conformational stability and activity of Ribonuclease T1 with zero, one and two intact disulfide bonds[J]. J Biol Chem, 1988, 263: 11820-11825
    Pace CN. Conformational stability of globular proteins[J]. Trends Biochem Sci, 1990, 15:14-17
    Panchal T, Wodzinski RJ. Comparison of glycosylation patterns of phytase from Aspergillus niger (A. ficuum) NRRL 3135 and recombinant phytase[J]. Prep Biochem Biotechnol, 1998, 28:201-217
    Pandy A, Szakacs G, Soccol CR, et al. Production, purification and properties of microbial phytase[J]. Bioresource Technology, 2001, 77: 203-214
    Pasamontes L, Haiker M, Henriquez-Huecas M, et al. Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus[J]. Biochim Biophys Acta, 1997, 1353:217-223
    Pasamontes L, Haiker M, Wyss M, et al. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus[J]. Appl Environ Microbiol, 1997, 63: 1696-1700
    Piddington CS, Houston CS, Paloheimo M, et al. The cloning and sequencing of the genes encoding phytase and pH 2.5-optimum acid phosphatase (aph) from Aspergilllus niger var.awamori[J]. Gene, 1993,133(1):55-62
    Powar VK, Jagannathan V. Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol[J]. 1982, 151:1102-1108
    Rodriguez E, Han YM, Lei XG. Cloning, sequencing and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon [J]. Biochem Biophys Res Commun, 1999, 257: 117-123
    Rodriguez E, Mullaney EJ, Lei XG. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme[J]. Biochem Biophys Res Commun, 2000, 268:373-378
    Rodriguez E, Wood ZA, Karplus PA, et al. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris[J]. Arch Biochem Biophys, 2000, 382:105-112
    Rothwarf DM, Li YJ, Scheraga HA. Regeneration of bovine pancreatic ribonuclease A: Identification of two native like three-disulfide intermediates involved in separate pathways[J]. Biochemistry, 1998, 37:3760-3766
    Sarkar G, Sommer SS. The megaprimer method of site-directed mutagenesis[J]. Biotechniques, 1990, 4:404-407
    Schulke N, Schmid FX. The stability of yeast invertase is not significantly influenced by glycosylation[J]. J Biol Chem, 1988, 263:8827-8831
    Scott JJ, Loewus FA. A calcium-activated phytase from pollen of Lilium longiflorum[J]. Plant Physiol, 1986, 82:333-335
    Segueilha L, Lambrechts C, Boze H, et al. Purification and properties of the phytase from Schwanniomyces castellii[J]. J Ferment Bioeng, 1992, 74:7-11
    Shah V, Parekh LJ. Phytase from Klebsiella Sp. No. PG-2: purification and properties[J]. Indian J Biochem Biophys, 1990, 27:98-102
    Sharma CB, Goel M, Irshad M. Myoinositol hexakisphosphate as a potential inhibitor of α-amylase of different origins[J]. Phytochemi stry, 1978, 17: 201-204
    Sheridan RP, Levy RM, Salemme FR.α-Helix dipole model and electrostatic stabilization of 4-a-helical proteins, Proc Natl Acad Sci, 1982, 79:4545-4549
    Shieh TR, Ware JH. Survey of microorganism for the production of extracellular phytase[J]. Appl Microbiol, 1968, 16:1348-1351
    Shimizu M. Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1[J]. Biosci Biotechnol Biochem, 1993, 57:1364-1365
    Silva LG, Trugo LC. Characterization of phytase acivity in lupin seed[J]. J Food Biochem, 1996, 20:329-340
    Singh RR, Rao AGA. Reductive unfolding and oxidative refolding of a Bowman–Birk inhibitor from horsegram seeds (Dolichos biflorus): evidence for‘hyperreactive’disulfide bonds and rate-limiting nature of disulfide isomerization in folding. Biochim[J]. Biophys Acta, 2002, 1597: 280-291
    Sonali PJ, Barry GG, Bakul DM, Pushpalatha PNM., Alkaline phytase from lily pollen: Investigation of biochemical properties[J]. Arch Biochem Biophys, 2005, 440: 132-140
    Song GY, Wang XY, Wang M. Influence of Disulfide Bonds on the conformational Changes and Activities of Refolded Phytase[J]. Protein and Peptide Letters, 2005,12:533-535
    Song Y, Azakami H, Hamasu M, et al. In vivo glycosylation suppresses the aggregation of amyloidogenic hen egg white lysozymes expressed in yeast[J]. FEBS Lett, 2001, 491:63-66
    Steinberg RA, Gorman KB. A high-yield method for site-directed mutagenesis using polymerase chain reaction and three primers[J]. Anal Biochem, 1994.219 :155-157
    Suganuma N, Matzuk M, Boime I. Elimination of disulfide bonds affects assembly and secretion of the human chorionic gonadotropinβsubunit[J]. J Biol Chem, 1989, 264: 19302-19307
    Sutardi M, Buckle KA. Characterization of extra and intracellular phytase from Rhizopus oligosporus used in temeh production[J]. Int J Food Microbiol, 1988, 6: 67-69
    Sutardi M, Buckle KA. The characteristics of soybean phytase[J]. J Food Biochem,1996, 10: 197-216
    Tambe SM, Kaklij GS, Kelkar SM, et al. Two distinct molecular forms of phytase from Klebsiella aerogenes: Evidence for unusually small active enzyme peptide[J]. J Ferment Bioeng, 1994, 77:23-27
    Tams JW, Welinder KG. Mild chemical deglycosylation of horseradish peroxidase yields a fully active, homogeneous enzyme[J]. Anal Biochem, 1995, 228:48-55
    Tang B, Zhang S, Yang K. Assisted refolding of recombinant prochymosin with the aid of protein disulfide isomerase[J]. Biochem J, 1994, 304:17 -20
    Taniyama Y, Yamamoto Y, Nakao M, et al. Role of disulfide bonds in folding and secretion of human lysozyme in Saccharomyces cerevisiae[J]. Biochem Biophys Res Commun, 1988, 152:96 -967
    Thorton JM. Disulfide bridges in globular proteins[J]. J Mol Biol, 1981, 151:261-287
    Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, Lassen SF, Burger D, Kronenberger A, van Loon AP, Pasamontes L, Wyss M. Engineering of phytase for improved activity at low Ph[J]. Appl Environ Microbiol, 2002, 68: 1907-1913
    Tomschy A, Tessier M, Wyss M, et al. Optiminzation of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure[J]. Protein Sci, 2000a, 9:1304-1311
    Tomschy A, Wyss M, Kostrewa D, Vogel K, Tessier M, Hofer S, Burgin H, Burgin H,
    Kronenberger A, Remy R, van Loon AHGM, Pasamontes L. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties[J]. FEBS Letters, 2000b, 472: 169-172
    Tsou CL. Adv Enzymol Related Areas Mol Biol. 1998, 61: 381-436 Tsou CL. Conformational flexibility of enzyme active sites[J]. Science, 1993, 262 (5132): 380-381
    Tsou CL. Inactivation precedes overall molecular conformation changes during enzyme denaturation[J]. Biochim Biophys Acta, 1995, 1253 (2): 151-162
    Tsou CL. Sci. Sin, 1962, 11: 1535-1558
    Tuomas PJ, Knowles, Ralph Z. Enhanced stability of human prion proteins with two disulfide bridges[J]. Biophysical Journal, 2006, 91 : 1494–1500
    Udgaonkar JB, Baldwin RL.) NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A[J]. Nature, 1988, 335:694-699
    Ullah AH, Cummins BJ, Dischinger HC Jr. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase[J]. Biochem Biophys Res Commun, 1991, 178:45-53
    Ullah AH, Dischinger HC Jr. Aspergillus ficuum phytase active site: involvement of Arg and Trp residues[J]. Ann N Y Acad Sci, 1995, 750:51-57
    Ullah AH, Dischinger HC Jr. Identification of active-site residues in Aspergillus ficuum extracellular pH 2.5 optimum acid phosphatase[J]. Biochem Biophys Res Commun, 1993, 192:754-759
    Ullah AH, Gibson DM. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization[J]. Prep Biochem, 1987, 17:63-91
    Ullah AH, Mullaney EJ. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase[J]. Biochem Biophys Res Commun, 1996, 227:311-317
    Ullah AH, Sethumdhavan K, Lei XG, et al. Biochemical characterization of cloned Aspergillus fumigatus phytase (phy A)[J]. Biochem Biophys Res Commun, 2000, 275: 279-285
    Ullah AH. Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization[J]. Prep Biochem. 1988, 18:459-471
    Ullah AHJ , Sethumadhavan K, Mullaney EJ , et al. Cloned and expressed fungal phya gene in alfalfa produces a stable phytase[J] . Biochem Biophys Res Commun , 2002 , 290 (4) :1343-1348
    Ullah AHJ, Mullaney EJ. Conservation of cysteine residues in fungal histidine acid phytases[J]. Biochem Biophys Res Commun, 2005, 328: 404- 408
    Ullah AHJ, Sethumadhavan K, Mullaney EJ, et al. Fungal phyA gene expressed in potato leaves produces active and stable phytase [J]. Biochem Biophys Res Commun, 2003, 306: 603-609
    Ullah AHJ, Sethumadhavan K, Mullaney EJ. Monitoring of unfolding and refolding in fungal phytase (phyA) by dynamic light scattering. Biochem Biophys Res Commun, 2005, 327: 993-998
    Ullah AHJ, Sethumadhavan K. Different in the active sit environment of Aspergillus ficuum phytases [J]. Biochem Biophys Res Commun, 1998, 243: 458-462
    Urban A, Neukirchen S, Jaeger KE. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR[J]. Nucleic Acids Res, 1997, 11: 2227-2228
    Van Hartingsveldt W, Van Zeijl CMJ, Harteveld GM, et al. Cloning characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger [J]. Gene, 1993, 127: 87-94
    Varallyay E, Lengyel Z, Graf L, et al. The role of disulfide bond C191-C220 in trypsin and chymotrypsin[J]. Biochem Biophys Res Commun, 1997, 230:592-596
    Vats P, Banerjee UC. Production studies and catalytic properties of phytass (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol, 2004, 35: 3-14
    Verwoerd TC, Paridon PA. Stable accumulation of aspergillus niger phytase in transgenic tobacco leaves [J]. Plant Physicol ,1995 , 109 :1199-1205
    Villafranca JE, Howell EE, Oatley SJ, et al. An engineered disulfide bond in dihydrofolate reductase[J]. Biochemistry, 1987, 26:2182-2189
    Wang GF, Cao ZF, Zhou HM, et al. Comparison of inactivation and unfolding of methanol dehydrogenase during denaturation in Guanidinium Chioride[J]. Int J Biochem Cell Biol, 2000, 32:873-878
    Wang XY, Meng FG, Zhou HM. The role of disulfide bonds in the conformational stability and catalytic activity of phytase[J]. Biochem Cell Biol. 2004a, 82: 329-334
    Wang XY, Meng FG, Zhou HM. Unfolding and inactivation during thermal denaturation of an enzyme that exhibits phytase and acid phosphatase activities[J]. Int J Biochem Cell Biol, 2004b, 36(3):447-459
    Wang XY, Sun ML, Zhao DM, Wang M. Kinetics of Inactivation of phytase (phy A) during modification of histidine residue by IAA and DEP. Protein Peptide Lett, 2006, 13: 565-570
    Wei D, Li M, Zhang X, et al. An improvement of the site-directed mutagenesis method by combination of megaprimer, one-side PCR, and DpnI treatment[J]. Anal Biochem, 2004, 331 :401-403
    Williams MG, Wilsher JW, Nugent P, et al. Mutagenesis, biochemical characterization and X-ray structural analysis of point mutants of bovine chymosin[J]. Protein Engineering, 1997, 10:991-997
    Witrup DK. Disulfide bond formation and eukaryotic secretory productivity[J]. Current Opinionin Biotechnology, 1995, 6:203-208
    Wodzinski RJ, Ullah AH. Phytase[J]. Adv Appl Microbiol, 1996, 42:263-302
    Woirn A, Pluickthun A. An intrinsically stable antibody scFv Fragment can tolerate the loss of both disulfide bonds and fold correctly[J]. FEBS Letters, 1998, 427: 357-361
    Wu BN, Park YD, Tian WX, et al. Unfolding and inactivation of fatty acid synthase from chicken liver during urea denaturation[J]. Biochim Biophys Acta, 2001, 1549:112-121
    Wu Y, Wang ZX. Comparison of conformation changes and inactivation of soybean lipogenase-1 during urea denaturation[J]. Biochim Biophys Acta, 1998, 1388:325-336
    Wyss M, Brugger R, et al. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): catalytic properties[J]. Appl Environ Microbiol. 1999b, 65: 363-373
    Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphydrolases): Molecular size, glycosylation pattern, and engineering of proteolytic resistance[J]. Appl Environ Microbio, 1999a, 65: 359-366.
    Wyss M, Pasamontes L, Remy R, et al. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase[J]. Appl Environ Microbiol, 1998, 64:4446-4451
    Yamaguchi S, Takeuchi K, Mase T, et al. The consequence of engineering an extra disulfide bond in the Penicillium camembertii mono- and diglyceride specific lipase[J]. Protein Eng, 1996, 9:789-795
    Yamamoto S, Minoda Y, Yamada K. Chemical and physicochemical properties of phytase from Aspergillus terreus[J]. Agric Biol Chem, 1972, 36:2097-2103
    Yang WJ, Matsuda Y, Sano SI, Masutani H, Nakagawa H. Purification and characterization phytase from tat intestinal mcosa[J]. Biochim Biophys Acta, 1991, 1075: 75-82
    Yao B, Zhang CY, Wang JH, et al. Recombinant Pichia pastoris over-expressing bioactive phytase[J]. Sci China, 1998, 3:330-336
    Yao QZ, Hou LX, Zhou HM, et al. Conformational changes of creatine kinase during guanidine denaturation[J]. Sci Sin, 1982, 25a: 1186-1193
    Yao QZ, Zhou HM, Hou LX, et al. A comparison of denaturation and inactivation rates of creatine kinase in guanidine solutions[J]. Sci Sin, 1982, 25b: 1296-1302
    Yip W, Wang L, Cheng C, et al. Biochem Biophys Res Commun. 2003, 310(4):1148-1154
    Yoon SJ, Choi YJ, Min HK, et al. Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme[J]. Enzyme Microb Technol, 1996, 18:449-454
    Yusa A, Kitajima K, Habuchi O. N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1[J]. Biochem J, 2005, 4:449-454
    Zhang M, Zhou M, Van Etten RL,et al. Crystal structure of bovine low molecular weight phosphotyrosyl phosphatase complexed with the transition state analog vanadate[J]. Biochemistry, 1997, 36:15-23
    Zhang Y, Li H, Wu H, et al. Functional implications of disulfide bond, Cys45-Cys50, in recombinant prochymosin[J]. Biochim Biophys Acta, 1997, 1343:278-286
    Zhou HM, Zhang XH, Yin Y, et al. Conformational changes at the active site of creatine kinase at low concentrations of guanidinium chloride[J]. Biochem J, 1993, 291: 103-107
    Zhu H, Dupureur CM, Zhang X, et al. Phospholipase A2 engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function[J]. Biochemistry, 1995, 34:15307-15314
    Zinin NV, Serkina AV, Gelfand MS, Shevelev AB, Sineoky SP. Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus[J]. FEMS Microbiology Letters, 2004, 236: 283-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700