拟南芥RNA解旋酶AtHELPS和AtRDEM在胁迫响应与生长发育中的功能及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在生长和发育的整个生命周期中,面临着许多不利的外部环境,比如土壤盐害、干旱、涝害、温度胁迫、各种离子胁迫等。在长期的进化过程中,植物形成了响应胁迫和提高抗性的多种适应机制,这些适应机制通常都有成百上千种基因表达所控制。
     RNA解旋酶是在RNA复制过程中通过解开氢键进而催化双链RNA解旋的酶,其主要功能是利用水解ATP产生的能量修饰RNA的结构。RNA很容易形成稳定却没有功能的二级结构,因此它们需要通过RNA伴侣来行使正确的功能。RNA解旋酶能够利用ATP水解产生的能量,有效的阻止RNA的错误折叠,使RNA正确折叠后行使正确的功能,所以RNA解旋酶被认为是RNA的最佳伴侣。在不同的生物体中以及不同的器官中,都己经证实RNA解旋酶的存在,而且总是起着十分重要的作用。RNA解旋酶可以调控并影响RNA转录、mRNA剪切、蛋白质翻译、RNA降解、核糖体发生和组装、配子及胚胎发生、以及细胞生长和分化等生命活动。近年来,动物和植物中的RNA解旋酶已成为本领域的研究热点。
     研究表明,RNA解旋酶在植物多种生长发育以及生理过程中起到关键调控作用。2001年,Seki等首次在拟南芥中发现冷害诱导型DEAD-box解旋酶基因AB050574;DEAD-box RNA解旋酶CRYOPHYTE/LOS4定位于核膜上,可以调节拟南芥的耐寒能力,而且对于mRNA的输出和植株的生长发育以及逆境响应也具有重要的作用;STRS1和STRS2是两个胁迫响应抑制子,可以负调控拟南芥对多种非生物胁迫的响应。在胁迫应答途径中,RNA解旋酶位于逆境胁迫应答途径的上游,在转录水平、转录后水平或翻译水平上调控下游功能基因的表达。拟南芥RNA解旋酶家族是一个很大的家族,成员繁多,功能复杂,研究较多的属于DEAD-box家族成员,但对于拟南芥DExD/H-box RNA解旋酶与逆境胁迫及生长发育之间的关系,仍不是很清楚。
     在模式植物拟南芥中,我们分离鉴定了DExD/H-box家族的两个成员AtHELPS和AtRDEM,并分别对其表达模式和功能进行了分析:
     (1)拟南芥RNA解旋酶AtHELPS蛋白靠近氨基酸N段区域中包含RNA解旋酶所特有的八个保守基序,I,Ia,Ib,II,III,IV,V和VI,具有解旋酶家族蛋白的基本特征。
     (2)利用洋葱表皮细胞进行的瞬时表达实验证明AtHELPS非特异性地定位于整个细胞中,并且在细胞质膜和细胞核中的表达量稍高于细胞质中。对转AtHELPS-GFP融合蛋白的稳定表达植株的研究结果证实了AtHELPS的表达模式,该结果与瞬时表达实验结果一致。
     (3)利用实时定量RT-PCR和GUS染色实验证明,AtHELPS主要在幼苗时期的根和叶脉的维管束组织中表达,在成苗时期的根中也有较强的表达;利用切片实验观察到该基因主要在中柱鞘细胞和靠近木质部的薄壁细胞中表达。AtHELPS的表达受到多种非生物胁迫的调控,包括盐胁迫、低钾、冷害等,其中受低钾胁迫最明显。另外除了玉米素能诱导其表达外,其他激素对该基因的表达量并无明显影响。
     (4)通过对三种基因型(WT,helps和OE6)的芯片杂交实验所得数据的GO分析,证明在正常条件下,三个基因型之间的差异表达基因中有近半数编码转录因子,它们分别属于bHLH、WRKY、MYB转录因子等家族以及编码一些蛋白激酶类,说明该基因在调节环境胁迫诱导基因表达方面有重要的作用,很可能参与了某种或多种生物胁迫过程。另外在表达差异基因中,还有一部分属于离子结合蛋白和离子通道类蛋白,这也说明该基因在离子运输和转运中也发挥功能。
     (5)AtHELPS调节拟南芥植株对盐胁迫的耐受性。AtHELPS突变体和超表达植株表现出了对盐胁迫敏感性的不同。正常生长条件下,二者与WT相似,没有明显的表型差异。在盐胁迫下,OE6超表达植株表现出对NaCl高敏感性,而helps突变体则表现出一定的盐胁迫耐受性。通过对耐盐基因和转录因子的qRT-PCR分析,盐胁迫条件下,在helps突变体,超表达株系和WT植株中,SOS1,SOS2等基因的表达并没有明显差异,而WRKY转录因子家族成员WRKY25和WRKY33的表达量在三种基因型中的变化差异较大,说明AtHELPS并不参与影响SOS调控途径,它可能在调节WRKY转录因子家族WRKY25和WRKY33的表达时有着重要的作用,进而影响拟南芥对盐胁迫的耐受性。非损伤微测结果显示,不管是正常条件还是盐胁迫条件下,各个基因型植株中的Na+流速并没有明显的变化,暗示AtHELPS可能是影响了盐胁迫条件下其它的离子运输过程。
     (6)AtHELPS调节拟南芥植株对低钾胁迫的耐受性。AtHELPS突变体和超表达植株表现出了对低钾胁迫耐受性的不同。在正常的生长条件下,突变体和超表达植株幼苗和成苗的生长和形态上的发育都与野生型植株没有明显差异。低钾条件下,WT和超表达株系OE6的种子萌发及生长要明显滞后于突变体helps。qRT-PCR实验结果显示,拟南芥受到低钾胁迫时AtHELPS影响了AKT1,CBL1,CBL9和CIPK23的表达,AKT1表达受到诱导后,介导胞外钾离子向细胞内流动。通过非损伤微测技术获得的数据分析表明,在正常条件下,三者之间的K~+外流没有明显的差异;然而在钾缺乏的条件下,突变体helps幼苗根的分生组织中受诱导的K~+内流比WT和OE6的大,表明AtHELPS可能通过调控钾离子通道AKT1的表达参与了拟南芥钾缺乏时K~+的离子运输过程。
     (7)AtRDEM在拟南芥生长发育过程中起作用。超表达AtRDEM植株表现出株型变小、莲座叶数目少、顶端优势不明显甚至缺失、茎短、花发育畸形、果荚成簇、植株矮小、茎分枝多等等发育不正常的表型,说明AtRDEM调控拟南芥的生长发育。通过对基因芯片结果的分析,AtRDEM的超表达使很多生物学过程发生了变化。其中,植物发育相关基因和激素响应途径明显受到影响。因此,拟南芥AtRDEM可能通过参与对调控生长发育有重要作用的某种激素代谢过程,影响了拟南芥的生长发育。通过对芯片结果中发育相关和激素响应相关的关键基因的qRT-PCR验证分析,结果表明与芯片数据是基本一致的。另外,我们还发现合成独脚金萌发素内酯的关键酶基因CCD7和CCD8在OEAtRDEM株系中表达量明显上调,而处于合成下游的Cyt P450的表达量在各超表达株系是明显下调的。这说明在超表达拟南芥植株中独脚金萌发素内酯合成的量有可能减少,推测可能是超表达AtRDEM基因后影响了合成酶基因的表达,调节了该激素的合成和信号转导途径,最终与其他因素共同导致超表达株系出现分枝增多,顶端优势不明显甚至缺失等发育异常的表型。
Plants are sessile organisms and hence cannot escape unfavorable environmental conditions within their life cycle, such as high salinity, drought, waterlog, temperature stress, various ion stresses and so on. To deal with the abiotic stresses, plants have developed a series of coordinated responses involving a complex variety of tolerance mechanisms that are activated by the expression of relevant genes.
     RNA helicases refer to enzymes that use energy derived from the hydrolysis of a nucleotide triphosphate to unwind double-stranded RNAs and modify RNA structure. As RNA molecules are prone to forming stable nonfunctional secondary structures, their proper function requires RNA chaperones. RNA helicases are prominent candidates for RNA chaperones because they can actively disrupt misfolded RNA structures to ensure correct folding. Helicases belong to a class of molecular motor proteins in yeast, animals and plants. RNA helicases are proved to be involved in every step of RNA metabolism, including nuclear transcription, pre-mRNA splicing, translation, RNA decay, ribosome biogenesis and assembly, nucleocytoplasmic transport, embryogenesis, cell division and differentiation. Because of their multiple functions, RNA helicases have been the research hotpot in life sciences.
     Several studies have shown the majority of RNA helicases is involved in plant growth and development and diverse physiological processes. In 2001, Seki et al. reported firstly that an Arabidopsis helicase gene AB050574 was induced by cold treatment, suggesting that helicases might play a role in plant stress response. Recently, an Arabidopsis DEAD box RNA helicase LOS4 localized in the cytoplasm and enriched at the nuclear rim was shown to be essential for mRNA export and important for development and stress responses in Arabidopsis. Another two DEAD box RNA helicases, STRS1 and STRS2, were shown to improve Arabidopsis responses to multiple abiotic stresses as negative regulators, such as salt, osmotic stress, heat stress and ABA. In response to abiotic stress, RNA helicase have been proved to regulate downstream genes expression on transcription, post-transcription and translation level. In Arabidopsis, RNA helicase is the biggest family, with many members and various functions. Nevertheless, the relationships between DExD/H-box RNA helicase and environmental stress and development are still largely unknown in Arabidopsis.
     Two DExD/H-box RNA helicases have been isolated and characterized from the Arabidopsis genome, which were designated as AtHELPS (AT3G46960) and AtRDEM (AT5G47010). Their expression pattern and function are analyzed in detail.
     (1) Arabidopsis RNA helicase AtHELPS possesses eight conserved motifs, I, Ia, Ib, II, III, IV, V and VI in N terminal; these characterizations indicate that AtHELPS protein has hallmarks of DExD/H-box RNA helicase.
     (2) Transient analysis with onion epidermal cells and stable analysis with AtHELPS-GFP transgenic lines by Confocal Microscopy revealed that AtHELPS is unexclusively localized in the whole cell, but higher expression level is detected in plasma membrane and nucleus than in cytoplasm.
     (3) By quantitative real-time reverse transcription-PCR (qRT-PCR) and promoter:β-glucouronidase (GUS) fusions analysis, AtHELPS is shown to mainly express in vascular tissues of leaves and roots in young seedlings. The expression of AtHELPS could be regulated by several stresses like salt, low K~+ and low temperature stress, especially by low K~+ stress. Moreover, the expression level of AtHELPS could be induced by zeatin but not by other hormones.
     (4) GO analysis based on the microarray data indicated that around half amount of genes with different expression patterns encode the protein kinase and transcription factors such as bHLH, WRKY, MYB etc. Among those differentially expressed genes, a certain amount of which encodes ion binding proteins, ion channel proteins and transporters. These data suggest that AtHELPS might participate in the abiotic stress responses and ion transportation.
     (5) AtHELPS regulated Arabidopsis responses and tolerances to salt stress. Our results indicate that helps mutant, OE6 and WT plants have different sensitivity to salt stress. In our experiments, we discovered both seedling and adult of helps mutant and OE6 plants showed no morphological or developmental differences compared to WT when grown under normal conditions. But the results suggest that the helps mutant plants are more tolerant to salt stress, whereas the OE6 plants are more sensitive to salt stress. qRT-PCR analysis showed that the expression levels of WRKY25 and WRKY33 were higher in the OE6 than those in wild-type and helps mutant plants under salt stress condition, but the expression of SOS family genes were not affected. We thus suggest that the DEVH box RNA helicase AtHELPS might be involved in the regulation of expression of WRKY25 and WRKY33 under salt stress condition. We also applied noninvasive ion-selective microelectrode ion flux measurements to clarify genotype differences of Na+ flux profiles from root meristem zones of Arabidopsis. The net Na+ flux in helps mutant, wild type and OE6 seedlings showed no difference under salt stress condition compared to normal condition, suggesting that AtHELPS might not be involved in regulating Na+ uptake and accumulation in Arabidopsis roots, but possibly involved in other ion uptake, assimilation and transportation.
     (6) AtHELPS regulated Arabidopsis responses and tolerances to low K~+ stress. Our results indicate that helps mutant, OE6 and WT plants have different sensitivity to low K~+ stress. The seed germination percentage and seedling fresh weight of the helps mutants were higher than those of wide-type and OE6 plants in the low K~+ condition, whereas no differences were observed among the three genotypes under normal conditions. Interestingly, qRT-PCR analysis showed that the expression of AKT1, CBL1/9, and CIPK23 in the helps mutants were consistently higher than those in WT and OE6 plants after low K~+ treatment. We thus suggest that the DEVH box RNA helicase AtHELPS might be involved in the regulation of the AKT1-mediated and CBL/CIPK-regulated K~+ uptake pathway under the low K~+ stress condition. We also applied noninvasive ion-selective microelectrode ion flux measurements to clarify genotype differences of K~+ flux profiles from root meristem zones of Arabidopsis. The net K~+-induced influx in helps mutants was higher than that of wild type and OE6 seedlings when they were exposed to potassium deprivation, suggesting that AtHELPS might be involved in regulating K~+ uptake in Arabidopsis roots via high-affinity transporters like AKT1.
     (7) AtRDEM plays an important role in the growth and development of Arabidopsis. OEAtRDEM exhibited obvious phenotypic alterations, such as lacked an apical dominance, shorter stem, flower abnormality, silique cluster and more shoot branching. These data reveal that AtRDEM plays an important role in plant development in Arabidopsis. By microarray analysis, many biological processes are affected by overexpressing AtRDEM, such as developmental progress, hormone metabolic pathway, response to abiotic or biotic stimulus, signal transduction etc. Among these changed genes, the expressions of genes involved in development, hormone responsive and metabolic are changed significantly in AtRDEM overexpression plants compared to WT plants, suggesting AtRDEM mediated Arabidopsis growth and development, most probably through hormone. In addition, we found that the expression level of Carotenoid Cleavage Dioxygenase 7 (CCD7) and Carotenoid Cleavage Dioxygenase 8 (CCD8) were enhanced in AtRDEM overexpression lines, but the cytochrome P450 monooxygenase located downstream of the strigolactone biosynthesis pathway was reduced. These results suggested that the novel hormone strigolactone might not accumulate and move acropetally to inhibit axillary bud outgrowth. Together, we speculate that the AtHELPS may be involved in regulating the strigolactone biosynthesis and signal transduction pathway.
引文
初立业,邵宏波,李茂言。高等植物中的DNA解旋酶。重庆邮电学院学报,2005,17(4):511-515
    洪法水。氯化钙和氯化钠浸种对水分胁迫下小麦幼苗抗旱性状的影响。植物生理学通讯,1992,4:287-288
    胡笃敬,董任瑞,葛且之。植物钾营养的理论与实践(湖南科学技术出版社,长沙,1993)。
    李彦,张英鹏,孙明。盐胁迫对植物的影响及植物耐盐机理研究进展。植物生理科学,2008,24(1):258-265
    林盛榕,方雄英,应康。人RNA解旋酶基因家族新成员dvh的克隆与初步功能研究。复旦学报(自然科学版),2000,39(6):645-650
    刘爱荣,赵可夫。盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用。植物生理与分子生物学学报,2005,31(4):389-395
    刘进平。植物腋芽生长与顶端优势。植物生理学通讯,2007,43(3):575-582
    刘友良和汪良驹。植物对盐胁迫的反应和耐盐。余叔文、汤章城主编:植物生理与分子生物学(第二版)。科学出版社,1998,752-769
    鲁黎明和杨铁钊。高等植物K+吸收转运蛋白及其分子调节。西北植物学报,2006,26(11):2402-2410
    米海莉,许兴,李树华。干旱胁迫下牛心朴子幼苗的抗旱生理反应和适应性调节机理。干旱地区农业研究,2002,20(4):11-16
    潘瑞炽,董愚得。植物生理学,北京:高等教育出版社,1995,322-328
    彭茂宇,宋平,桂建芳。黄鳝DEAD-box家族pL10基因的克隆与序列分析。武汉大学学报,2005,51(2):227-234
    綦左莹,王伟,曹敏建。不同钾效应型大豆根系形态和生理特性差异的比较。沈阳农业大学学报,2008,39(2):137-140
    孙存华,白嵩,白宝璋。水分胁迫对小麦幼苗根系生长和生理状态的影响。吉林农业大学学报,2003,25(3):485-489
    孙逸武,焦新福。解旋酶的结构,功能与人类疾病。国外医学遗传学分册,1998,21(6):289-293
    王爱国。活性氧对花生叶片大分子量DNA的损伤。植物生理学通讯,1993,29:260-262
    王宝山。植物生理。科学出版社,2004,151-156
    王冰,李家洋,王永红。生长素调控植物株型形成的研究进展。植物学通报,2006,23(5):443-458
    韦存虚,王建波,陈义芳。盐生植物星星草叶表皮具有泌盐功能的蜡质层。生态学报,2004,24(11):2451-2456
    韦毅,胡美浩。人p68核蛋白在小鼠成纤维细胞中过量表达引起恶性转化的研究。遗传学报,2001,28(11):991-996
    吴小萍,陈晓萍,斯昇亮。丝裂原活化蛋白激酶信号通路相关研究。生物学通报,2006,41(6):20-21
    张洁明,孙景宽,刘宝玉。盐胁迫对荆条、白蜡、沙枣种子萌发的影响。植物研究,2006,26(5):595-599
    张晶,陈允梓,华子春。一种新假定的解旋酶RUVbl1的抗凋亡活性研究。东南大学学报(医学版),2005,24(4):244-246
    张其德。盐胁迫对植物及其光合作用的影响。植物杂志,1999,6:32-33
    张珊珊,陶勇生,郑用琏。玉米DEAD-box RNA解旋酶基因的克隆及分析。中国生物化学与分子生物学报,2006,22(8):640-646
    赵可夫,范海。盐生植物及其对盐渍生境的适应生理(第一版)。北京:科学出版社,2005,131-180
    赵可夫,李法曾。中国盐生植物(第一版)。北京:科学出版社,1999,30-65
    赵勇,马雅琴,翁跃进。盐胁迫下小麦甜菜碱和脯氨酸含量变化。植物生理与分子生物学学报,2005,31(1):103-106
    Abdelhaleem M.. RNA helicases: Regulators of differentiation. Clin. Biochem., 2005, 38: 499-503
    Abe H., Yamaguchi-Shinozaki K. and Urao T.. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868
    Ali H., Tucher T. C. and Thompson T. L.. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. Agro. Crop Sci., 2001, 186: 223-228
    Anderson S. F., Schiegel B. P., Nakajima T., Wolpin E.S. and Parvin J.. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genetic, 1998, 19: 254-256
    Apse M. P., Aharon G. S. and Snedden W. A.. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285: 1256-1258
    Attia H., Karray N. and Rabhi M.. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta Physiologiae Plantarum, 2008, 30: 723-727
    Aubbourg S., Kreis M., and Lecharny A.. The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res., 1999, 27: 622-636
    Beveridge C. A. and Kyozuka J.. New genes in the strigolactone-related shoot branchingpathway. Curr. Opin. Plant Biol., 2010, 13(1): 34-39
    Bishopp A., Mahonen A. P. and Helariutta Y.. Signs of change: hormone receptors that regulate plant development. Development, 2006, 133: 1857-1869
    Blaha G., Stelza U., Spahn C. M. T., Agrawal R. K., Frank J. and Nierhaus K. H.. Preparation of functional ribosomal complexed and effect of buffer conditions on tRNA positions observed by cryoelecttron microscopy. Methods in Enzymology, 2000, 317: 292-309
    Blumwald E., Aharon G. S. and Apse M. P.. Sodium transport in plant cells. Biochim Biophys. Acta., 2000, 1465: 140-151
    Blumwald E.. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol., 2000, 12: 431-434
    Boddeker N., Stade K. and Franceschi F.. Characterization of DbpA, an Escherichia coli DEAD box protein with ATP independent RNA unwinding activity. Nucleic Acids Res., 1997, 25: 537-547
    Bohnert H. J. and Sheveleva E.. Plant stress adaptations, making metabolism move. Curr. Opin. Plant Biol., 1998, 1: 267-274
    Bohumil M.. Germination requirements of invasive and non-invasive Atriplex species: a comparative study. Flora, 2003, 198: 45-54
    Booker J., Auldridge M. and Wills S.. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol., 2004, 14: 1232-1238
    Booker J., Sieberer T. and Wright W.. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch inhibiting hormone. Developmental Cell, 2005, 8: 443-449
    Boudsocq M. and Lauriere C.. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol., 2005, 138: 1185-1194
    Bravo L. A., Gallardo J. and Navarrete A.. Cryoprotective activity of a cold induced dehydrin purified from barley. Plant Physiol., 2003, 118: 262-269
    Bray E. A.. Abscisic acid regulation of gene expression during water deficit stress in the era of the Arobidopsis genome. Plant Cell Environ., 2002, 25: 153-161
    Breckle S. W.. Salinity tolerance of different halophyte types. In: Bassam NEL ed. Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990, 167-175
    Brewer P. B., Dun E. A. and Ferguson B. J.. Strigolactone acts downstream of auxin to regulate bud out growth in Pea and Arabidopsis. Plant Physiol., 2009, 150: 482-493
    Buelt M. K., Glidden B. J. and Storm D. R.. Regulation of P68 RNA helicase by calmodulin and protein kinase C. J. Biol. Chem., 1994, 269: 29367-29370
    Cakmak I. and Marschner H.. Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants. Plant and Soil, 1990, 129: 261-268
    Camps M., Nichols A. and Arkinstall S.. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J., 1999, 14: 6-16
    Castrillon D. H., Quade B. J., Wang T. Y., Quigley C. and Crum C. P.. The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl. Acad. Sci. USA, 2000, 97(17): 9585-9590
    Chamout D., Magee W. C. and Yu E.. A cold shock-induced cynobacterial RNA helicase. J. Bacteriol, 1999, 181: 1728-1732
    Charollais J., Drefus M. and Iost I.. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res., 2004, 32: 2751-2759
    Chen J. Y. F.. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell, 2001, 7: 227-232
    Chen X., Liu J. and Cheng Y.. HEN 1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development, 2002, 129: 1085-1094
    Chhipa B. R. and Lal P.. Na/K ratios as the basis of salt tolerance in wheat. Aust J AgricRes, 1995, 46(3): 533-539
    Chico J. M., Chini A., Fonseca S. and Solano R.. JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol., 2008, 11: 486-494
    Chini A., Fonseca S. and Fernandez G.. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448: 666-671
    Chipilski R., Andonov B., Boyadjieva D. and Malkov K.. A study of a germplasm T. aestivum L. for breeding of drought tolerance. Journal of Agricultural Science and Forest Science, 2009, 8(2): 44-48
    Choi H., Hong J. and Ha J.. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 2000, 275: 1723-1730
    Chuang R. Y., Weaver P. L. and Liu Z. Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science, 1997, 275: 1468-1471
    Cordin O., Tanner N. K., Doere M., Linder P. and Banroques J.. The newly discovered Q motif of DEAD-box RNA helicase regulates RNA binding and helicase activity. EMBO J., 2006, 23: 2478-2487
    Daniel J. A., Pray-Grant M. G. and Grant P. A.. Effector proteins for methylated histones: an expanding family. Cell cycle, 2005, 4(7): 919-926
    Davenport R., James R. A., Zakrisson-Plogander A., Tester M. and Munns R. Control ofsodium transport in durum wheat. Plant Physiol., 2005, 137: 807-818
    De la Cruz J., Kressler D. and Linder P.. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci., 1999, 24: 192-198
    Dennison K. L.. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol., 2001, 127: 1012-1019
    Dharmasiri N., Dharmasiri S. and Estelle M.. The F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 441-445
    Dhindsa R. S., Beasley C. A. and Ting I. E.. Osmoregulation in cotton fiber. Plant Physiol., 1975, 56: 394-398
    Dracup M.. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Australian Journal of Plant Physiol., 1991, 18: 1-15
    Dugan K. A., Wood M. A. and Cole M. D.. TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene, 2002, 21: 5835-5843
    Epstein E., Rains D. W. and Elzam O. E.. Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA, 1963, 49(5): 684-692
    FAO. Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service. 2005
    Finkelstein R. R., Gampala S. S. L. and Rock C. D.. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14: 15-45
    Flowers T. J. Improving crop salt tolerance. J. Exp. Bot., 2004, 55(396): 307-319
    Flowers T. J.. Chloride as a nutrient and as an osmoticum. In: Tinker B, L?uuchli A, eds. Asvanced in plant nutrition, New York: Praeger, 1988, 55-78
    Frugis G. and Chua N. H.. Ubiquitin-mediated proteolysis in plant hormone signal transduction. Trends Cell Biol., 2002, 12: 308-311
    Fu H. H. and Luan S.. AtKUP1: a dual affinity K+ transporter from Arabidopsis. Plant Cell, 1998, 10: 63-73
    Fukuda A., Nakainura A. and Tagiri A.. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice. Plant Cell Physiol., 2004, 45(2): 146-159
    Gaxiola R., Li J., Undurraga S., Dang L. M., Allen G. J., Alper S. L. and Fink G. R.. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Procedings of the National Academy of Science of the USA, 2001, 98: 11444-11449
    Gendra E., Moreno A. M., Alba M. and Pages M.. Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase proteinfrom Zea mays. Plant J., 2004, 38(6): 875-888
    Gierth M., Maser P. and Schroeder J. I.. The potassium transporter AtHAK5 functions in K+ deprivation-induced high affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol., 2005, 137: 1105-1114
    Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M. and Thomashow M. F.. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J., 1998, 16(4): 433-442
    Gomez-Roldan V., Fermas S., Brewer P. B., Dun E. A., Pillot J. P., Beveridge C. A., Rameau C. and Rochange S. F.. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194
    Gong Z., Dong C., Lee H., Zhu J., Xiong L. and Gong D.. A DEAD box RNA helicase is essential for RNA export and important for development and stress responses in Arabidopsis. Plant Cell, 2005, 17: 256-267
    Gorbalenya A. E. and Koonin E. V.. Helicases: amino acid sequence comparisons and structure function relationships. Curr. Opin. Struct. Biol., 1993, 3: 419-429
    Gossett D. R., Millhollon E. P. and Lucas M. C.. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci., 1994, 34: 706-714
    Gray W. M., Kepinski S., Rouse D., Leyser O. and Estelle M.. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature, 2001, 414: 271-276
    Greb T., Clarenz O. and Schafer E.. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev., 2003, 17 (9): 1175-1187
    Greenway H. and Munns R.. Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Physiol., 1980, 31: 149-190
    Gubis J., Vankova R., Cervena V. and Dragunova M.. Transformed tobacco plants with increased tolerance to drought. South African Journal of Botany, 2007, 73: 505-511
    Guo H., Yu H., Jiang C., Xia , Liu Y. and Cao M.. Difference of root traits and potassium efficiency in different tolerant maize at seedling stage under potassium deficiency. Crops, 2009, 2: 62-65
    Guo Y., Halfter U. and Ishitani M.. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13: 1383-1400
    Halfter U., Ishitani M. and Zhu J. K.. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3. Proc. Natl. Acad. Sci. USA, 2000, 97: 3735-3740
    Han N., Shao Q., Lu C. M. and Wang B. S.. The leaf tonoplast V-H+-ATPase activity of a C3 halophyte Suaedasalsa is enhanced by salt stress in a Ca-dependentmode. Journal of Plant Physiol., 2005, 162: 267-274
    Hara M., Terashima S. and Kuboi T.. Characterization and cryoprotective activity of cold responsive dehydrin from Citrusunshiu. Plant Physiol., 2001, 158: 1333-1339
    Hare P. D. and Cress W. A.. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regular., 1997, 21: 79-102
    Hartung W., Sauter A. and Hose E.. Abscisic acid in the xylem: where does it come from, where does it go to? J. Exp. Bot., 2002, 53: 27-32
    Hasegawa P. M., Bressan R. A., Zhu J. K. and Bohnert H. J.. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Mol. Plant Physiol., 2000, 51: 463-499
    Henriksson E. and Henriksson K. N.. Salt-stress signalling and the role of calcium in the regulation of the Arabidopsis ATHB7 gene. Plant Cell Environ., 2005, 28: 202-210
    Hirsch R. E., Lewis B. D. and Spaiding E. P.. A role for the AKT1 potassium channel in plant nutrition. Science, 1998, 280: 918-921
    Holmstrom K. O., Mantyla E. and Welin B.. Drought tolerance in tobacco. Nature, 1996, 379: 683-684
    Hsiao T C, Laiichli A.. Role of potassium in plant-water relations. In Advances in Plant Nutrition, Tinker B and Laachli A (eds), Volume 2. (Praeger Publishers, New York, 1986)
    Huq E.. Degradation of negative regulators: A common theme in hormone and light signaling networks? Trends Plant Sci, 2006, 11: 4-7
    Ichimura K., Mizoguchi T., Yoshida R., Yuasa T. and Shinozaki K.. Various abiotic stresses rapidly active Arabidosis MAP kinases AtMPK4 and AtMPK6. Plant J., 2000, 24: 655-665
    Inagaki S., Suzuki T., Ohto M. A., Urawa H., Horiuchi T., Nakamura K. and Morikami A.. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell, 2006, 18: 879-892
    Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K. and Kakimoto T.. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 2001, 409: 1060-1063
    Ishikawa S., Maekawa M. and Arite T.. Suppression of tiller bud activity in tillering dwarf mutants o f rice. Plant and Cell Physiology, 2005, 46: 79- 86
    Jacobsen S. E., Running M. P. and Meyerowitz E. M.. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development, 1999, 126, 5231-5243
    Jang J. Y., Kim D. G. and Kim Y.. An expression analysis of a gene family encoding plasmamembrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol., 2004, 54(5): 713-725
    Jayachandran S. and Bailey-Serres J.. Nucleotide sequence of a cDNA for the maize protein syhthesis initiation factor 4A. Plant Physiol., 1995, 108: 1317-1318
    Jiang Y. and Deyholos M. K.. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol., 2006, 6: 25
    Jiang Y. and Deyholos M. K.. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol., 2009, 69(1-2): 91-105
    Johansson I., Karisson M. and Shukla V. K.. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell, 1998, 10: 451-459
    Johnson D. S., Bai L., Smith B. Y., Patel S. S. and Wang M. D.. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 2007, 129: 1299-1309
    Johnson X., Brcich T. and Dun E. A.. Branching genes are conserved across species. Genes controlling a novel signal in pea are co-regulated by other long-distance signals. Plant Physiol., 2006, 142: 1014-1026
    Jung J. Y., Shin R. and Schachtmana D. P.. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell, 2009, 21: 607-621
    Kant P., Kant S., Gordon M., Shaked R. and Barak S.. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-Box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol., 2007, 145: 814-830
    Kashubaa V. I., Gizatullina R. Z., Protopopova A. I., Allikmetse R., Korolevc S., Lia J., Boldoga F., Toryf K., Zabarovskaa V., Marcsekg Z., Sumegih J., Kleina G., Zabarovskya E .R. and Kisselev L.. NotI linking/jumping clones of human chromosome 3: mapping of the TFRC, RAB7 and HAUSP genes to regions rearranged in leukemia and deleted in solid tumors. FEBS Lett., 1997, 419: 181-185
    Kavi Kishor P. M., Hong Z., Miao G. H., Hu C. A. A. and Verma D. P. S.. Overexpression of Delta 1-pyrroline-5-carboxylate synthesis increase proline production and confers osmotolerance in transgenetic plants. Plant Physiol., 1996, 108: 1387-1394
    Khadri M., Tejera N. A. and Lluch C.. Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ. Exp. Bot., 2007, 60: 211-218
    Kholova J., Hash C. T. and Kakkera A.. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet. J. Exp. Bot., 2010, 61(2): 369-377
    Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., Eklof S., Till S.,Bogre L., Hirt H. and Meskiene I.. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, 12: 2247-2258
    Kinoshita T., Cano-Delgado A., Seto H., Hiranuma S., Fujioka S., Yoshida S. and Chory J.. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433, 167-171
    Kiss T.. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell, 2002, 109: 145-148
    Kistler A. L. and Guthrie C.. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev., 2001, 15: 42-49
    Knight H.. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol., 2000, 95: 269-324
    Kobayashi K., Otegui M. S., Krishnakumar S., Mindrinos M. and Zambryski P.. INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell, 2007, 19: 1885-1897
    Kohorn B. D.. WAKs: cell wall associated kinases. Curr. Opin. Cell Biol., 2001, 13: 529-533
    Lecourieux D., Ranjeva R. and Pugin A.. Calcium in plant defence-signalling pathways. New Phytol., 2006, 171: 249-269
    Leigh R. A. and Wyn Jones R. G.. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in plant cell. New Phytol., 1984, 97: 1-13
    Leroy P., Seboun E. and Fellous M.. Testis Specific Transcripts Detected by a Human Y-DNA-Derived Probe. Development, 1987, 101: 177-183
    Li S. C., Chung M. C. and Chen C. S.. Cloning and characterization of a DEAD box RNA helicase from the viable seedlings of aged mung bean. Plant Mol. Biol., 2001, 47: 761-770
    Linder P. and Owttrim G. W.. Plant RNA helicases: linking aberrant and silencing RNA. Trends Plant Sci., 2009, 14: 344-352
    Linder P., Tanner N. K. and Banroques J.. From RNA helicases to RNPases. Trends Biochem. Sci., 2001, 26(6): 339-341
    Link V. L., Hofmann M. G. and Sinha A. K.. Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defence-related stimuli. Plant Physiol., 2002, 128: 271-281
    Liu J. and Zhu J. K.. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280: 1943-1945
    Liu J., Ishitani M. and Halfter U.. The Arabidopsis thaliana SOS2 gene encodes a proteinkinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA, 2000, 97: 3730-3734
    Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K.. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391-1406
    Liu X., Yue Y., Li B., Nie Y., Li W., Wu W. H. and Ma L. A.. G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 2007, 315(5819): 1712-1716
    Liu Y., Tian X. and Cao M.. The Effects of Low Potassium Stress on Root Growth and Potassium Absorption of Maize Seedling. Journal of Maize Sciences, 2007, 15(2): 107-110
    Lohman T. M. and Bjornson K. P.. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem., 1996, 65: 169-214
    Lohman T. M.. Helicase-catalyzed DNA Unwinding. J Biol Chem. 1993, 268(4): 2269-2272
    Longenberger P. S., Smith C. W., and Duke S. E.. Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica, 2009, 166: 25-33
    Luking A., Stahl U. and Schmidt U.. The protein family of RNA helicases. Biochem. Mol. Biol., 1998, 33 (4): 259-296
    Lukovic J., Maksimovic I. and Zoric L.. Histological characteristics of sugar beet leaves potentially linked to drought tolerance. Industrial Crops and Products, 2009, 30: 281-286
    Ma S., Gong Q. and Bohnert H. J.. Dissecting salt stress pathways. J. Exp. Bot., 2006, 57: 1097-1107.
    Mahajan S. and Tuteja N.. Cold, salinity and drought stress. Arch. Biochem. Biophys., 2005, 444: 139-158
    Maria A. F., Lee C. S., Lian W. L., Jeanne L. H., Mauro C. M., Luo M. J., Robin R. and Nahum S.. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA, 2004, 101: 4118-4123
    Mariaux J. B., Bockel C. and Salamini. Desiccation and abscisic acid responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol. Biol., 1998, 38: 1089-1099
    Maser P., Thomin S. and Schroeder J. I.. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol., 2001, 126: 1646-1667
    Maslenkova L. T., Zanev Y. and Popova L. P.. Adaptation to salinity as monitored by pSIIoxygen evolving reactions in barley thylakoids. Plant Physiol., 1993, 142: 629-634
    Matsuura Y. and Miyamura T.. The molecular biology of hepatits C virus. Seminar in Virology, 1993, 4: 297-304
    Mendoza I., Rubio F., Rodriguez-Navarro A. and Pardo J. M.. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem., 1994, 269: 8792-8796
    Metz A. M., Timmer R. T. and Browning K. S.. Sequence of a cDNA encoding the alpha-subunit of wheat translation elongation factor 1. Gene, 1992, 120: 313-314
    Miguel A., Stephen W., Bahler J. and Paul R.. Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol. Cell Biol., 2006, 26: 6347-6356
    Mikolajczyk M., Olubunmi S. A., Muszynska G., Klessig D. F. and Dorowolska G.. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homog of protein kinase ASK1 in tobacco cells. Plant Cell, 2000, 12: 165-178
    Mittler R., Vanderauwera S., Gollery M. and Breusegem F. V.. Reactive oxygen gene network of plants. Trends Plant Sci., 2004, 9: 490-498
    Miyawaki K., Matsumoto-Kitano M. and Kakimoto T.. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J., 2004, 37 (1): 128-138
    Morris S. E., Cox M. C. H. and Ross J. J.. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol., 2005, 138 (3): 1665-1672
    Muhannad A. A., Amjad A. and Shahid N.. Morpho-physiological criteria for drought tolerance in Sorghum (Sorghum bicolor) at seedling and post-anthesis stages. Int J Agric Biol., 2009, 11(6): 674-680
    Munne-Bosch S. and Penuelas J.. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci., 2004, 166(4): 1105-1110
    Munns R.. Comparative physiology of salt and water stress. Plant Cell and Environ., 2002, 25: 239-250
    Munson R. D. (eds). Potassium in Agriculture. (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, 1985)
    Nakamura T., Muramot Y. O. and Takabe T.. Structural and transcriptional characterization of a salt-responsive gene encoding putative ATP-dependent RNA helicase in barley. Plant Sci., 2004, 167: 63-70
    Neeti S. M., Xuan H. P., Sopory S. K. and Narendra T.. Pea DNA helicase 45 overexpressionin tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA, 2005, 102(2): 509-514
    Nielsen P. J., McMaster G. K. and Trachsel H.. Cloning of eukaryotic protein synthesis initiation factor genes: Isolation and characterization of cDNA clones encoding factor eIF-4A. Nucleic Acids Res., 1985, 13: 6867-6880
    Niu X., Bressan R. A., Hasegswa P. M. and Pardo J.. M. Ion homeostasis in NaCl stress environments. Plant Physiol., 1995, 109: 735-742
    Nuccio M. L., Rhodes D., McNeil SD. and Hanson A. D.. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol., 1999, 2: 128-134
    Outlaw W. H.. Current concepts on the role of potassium in stomatal movements. Physiologia Plantarum, 1983, 59: 302-311
    Owttrim G. W.. Survey and Summary RNA helicases and abiotic stress. Nucleic Acids Res., 2006, 34(11): 3220-3230
    Pandey G. K., Reddy V. S., Reddy M. K., Deswal R., Bhattacharya A. and Sopory S. K.. Transgenic tobacco expressing Entamoeba histolytica calcium binding protein enhanced growth and tolerance to slat stress. Plant Sci., 2002, 162: 41-47
    Pardo J. M., Cubero B. and Leidi E. O.. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot., 2006, 57: 1181-1199
    Parida A. K. and Das A. B.. Salt tolerance and salinity effects on plants. Ecotoxicol Environ Safe, 2005, 60: 324-349
    Park K. Y., Jung J. Y. and Park J.. A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol., 2003, 132: 92-98
    Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T. F., Alfred S. E., Bonetta D., Finkelstein R., Provart N. J., Desveaux D., Rodriguez P. L., McCourt P., Zhu J. K., Schroeder J. I., Volkman B. F. and Cutler S. R.. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324(5930): 1068-1071
    Park W., Li J., Song R., Messing J. and Chen X.. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol., 2002, 12: 1484-1495
    Patterson B. D., Macrea E. A. and Ferguson I. B.. Estimation of hydrogen peroxide in plant extracts titanium. Analytical Biochemistry, 1984, 139: 487-492
    Pei Z. M., Murata Y. and Benning G.. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 2000, 406: 731-734
    Petal S. S. and Picha K. M.. Structure and function of hexameric helicase. Ann. Rev. Biochem.,2000, 69: 651-697
    Pham X. H. and Tuteja N.. Potent inhibition of DNA unwinding and ATPase activities of pea DNA helicase 45 by DNA-binding agents. Biochem. Biophys. Res. Comm., 2002, 294: 334-339
    Phan T. N., Ehtesham N. Z. and Tuteja R.. A nuclear DNA helicase with high specific activity from Pisum sativum catalytically translocates in the 3'-5'direction. Eur. J. Biochem., 2003, 270: 1735-1745
    Pierce W. S. and Higinbotham N.. Compartments and fluxes of K+, Na+ and CI- in Arena coleoptile cells. Plant Physiol., 1970, 46: 666-673
    Pilot G., Gaymard F., Mouline K. and Cherel I.. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol., 2003, 51: 773-787
    Preugschat F., Averett D. R., Clarke B. E. and Porter J. T.. A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the Hepatitis C Virus NS3 helicase domain. J. Biol. Chemis., 1996, 271: 24449-24457
    Py B., Higgins C. F., Krisch H. M. and Carpousis A. J.. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature, 1996, 381: 169-172
    Qin F., Sakuma Y., Tran L. S., Maruyama K., Kidokoro S., Fujita Y., Fujita M., Umezawa T., Sawano Y., Miyazono K., Tanokura M., Shinozaki K. and Yamaguchi-Shinozaki K.. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell, 2008, 20(6): 1693-1707
    Qiu Q. S., Guo Y. and Dietrich M. A.. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA, 2002, 99: 8436-8441
    Rania B. S. and Nabil Z.. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger‘‘AlSAP’’gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol. Biol., 2010, 72: 171-190
    Rathinaseabapathi B., Mccue K. F. and Gage D. A.. Metabolic engineering of glycine betaine synthesis -plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155-162
    Raven E. H., Even R. E., and Curtis H.. Biology of Plants. (Worth Publishers, New York, 1976)
    Razem F. A., El-Kereamy A., Abrams S. R. and Hill R. D.. The RNA-binding protein FCA is an abscisic acid receptor. Nature, 2006, 439(7074): 290-294
    Ren D., Yang H. and Zhang S.. Cell death mediated by MAPK is associated with hydrogenperoxide production in Arabidopsis. J. Biol. Chem., 2002, 277: 559-565
    Ripmaster T. L., Vaughn G. P., Woolford J. R. and J. L.. A putative ATP-dependent RNA helicase involved in Saccharomyces Cerevisiae ribosome assembly. Proc. Natl. Acad. Sci. USA, 1992, 89: 11131-11135
    Rocak S. and Linder P.. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol., 2004, 5: 232-241
    Rogers G. W., Komar A. A. and Merrick W. C.. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol., 2002, 72: 307-331
    Roldan A., Diaz-Vivancos P. and Hernandez J. A.. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in anamended semiarid soil. Plant Physiol., 2008, 165(7): 715-722
    Ron M. and Avni A.. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant cell, 2004, 16(6): 1604-1615
    Rossler O. G., Hloch P., Schutz N., Weitzenegger T. and Stahl H.. Structure and expression of the human P68 RNA helicase gene. Nucleic Acids Res., 2000, 28: 932-939
    Rynditcha A., Pekarskya Y., Schnittgerc S. and Gardinera K.. Leukemia breakpoint region in 3q21 is gene rich. Gene, 1997, 193: 49-57
    Saffman E. E. and Lasko P.. Germline development in vertebrates and invertebrates. Cell Mol. Life Sci., 1999, 55: 1141-1163
    Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K.. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5): 1292-1309
    Sakurai J., Ishikawa F. and Yamaguchi T.. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol., 2005, 46(9): 1568-1577
    Santner A. and Estelle M.. Recent advances and emerging trends in plant hormone signaling. Nature, 2009, 459: 1071-1078
    Santner A., Calderon-Villalobos L. I. A. and Estelle M.. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol., 2009, 5: 301-307
    Schaller G. E. and Bleecker A. B.. Ethylene-Binding Sites Generated in Yeast Expressing the Arabidopsis ETR1 Gene. Scinece, 1995, 270: 1809-1811
    Schmitt C., Kobbe C., Bachi A., Pante N., Rodrigues J. P., Boscheron C., Rigaut G., Wilm M., Seraphin B., Carmo-Fonseca M. and Izaurralde E.. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J., 1999, 18: 4332-4347
    Schroeder J. I., Allen G. J., Hugouvieux V., Kwak J. M. and Waner D.. Guard cell signaltransduction. Plant Mol. Biol., 2001, 52: 627-658
    Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y. and Shinozaki K.. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61-72
    Shen Q. and Ho T. H.. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell, 1995, 7: 295-307
    Shen Q., Zhang P. and Ho T. H.. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 1996, 8: 1107-1119
    Shen Y. Y., Wang X. F., Wu F. Q., Du S. Y., Cao Z., Shang Y., Wang X. L., Peng C. C., Yu X .C., Zhu S. Y., Fan R. C., Xu Y. H. and Zhang D. P.. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006, 443(7113): 823-826
    Shi H. Z., Lee B. H., Wu S. J. and Zhu J. K.. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabisopsis thaliana. Nat. Biotech., 2002, 21: 81-85
    Shi H., Ishitani M., Kim C. and Zhu J. K.. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA, 2000, 97: 6896-6901
    Shi H., Quintero F. J., Pardo J. M. and Zhu J. K.. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant cell, 2002, 14: 465-477
    Shin R. and Schachtman D. P.. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA, 2004, 101(23): 8827-8832
    Shinozaki K. and Yamaguchi-Shinozaki K.. Gene expression and signal transduction in water-stress response. Plant Physiol., 1997, 115: 327-334
    Shinozaki K. and Yamaguchi-Shinozaki K.. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol., 2000, 3(3): 217-223
    Silberbush M. and Ben-Asher J.. Simulation study of nutrient uptake by plants from soiless cultures as affected by salinity buildup and transpiration. Plant and Soil, 2001, 233: 59-69
    Silvermen E., Edwalds-Gilbert G. and Lin R. J.. DExD/H-box protein and their partners: helping RNA helicases unwind. Gene, 2003, 312: 1-16
    Snay-Hodge C. A., Colot H. V., Goldstein A. L. and Cole C. N.. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J., 1998, 17: 2663-2676
    Sorefan K., Booker J. and Haurogn K.. MAX 4 and RMS 1 are orthologous dioxygenase- like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev., 2003, 17: 1469-1474
    Spychalla J. P. and Desborough S. L.. Superoxide dismutase, catalase, and alphatocopherol content of stored potato tubers. Plant Physiol., 1990, 94: 1214-1218
    Steponkus P. L., Leipham A., Fleck R. A., Langis R., Kasuga M., Yamaguchi-Shinozaki K. and Shinozaki K.. Overexpression of DREB1A results in a prodigiouis increase in the freezing tolerance of Arabidopsis thaliana. Plant Biol., 2000, San Diego, CA, USA
    Stirnberg P., Van De Sande K. and Leyser O.. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 2002, 129: 1131-1141
    Stoneblooma S., Burch-Smitha T., Kima I., Meinkeb D., Mindrinosc M. and Zambryski P.. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc. Natl. Acad. Sci. USA, 2009, 106(40): 17229-17234
    Styhler S., Nakamura A., Swan A., Suter B. and Lasko P.. Vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development, 1998, 125: 1569-1578
    Sugino M., Hibino T., Tanaka Y., Nii N. and Takana T.. Overexpression on DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Sci., 1999, 146: 81-88
    Sung J. A., Shin R. and Schachtman D. P.. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol., 2004, 134: 1135-1145
    Svitkin Y. V., Ovchinnikov L. P., Dreyfuss G. and Sonenberg N.. General RNA binding proteins render translation cap dependent. EMBO J., 1996, 15: 7147-7155
    Szabolcs I.. Soils and salinization. In: Pessarakli M, ed. Handbook of plant and crop stress. New York: Marcel Dekker, 1994, 3-11
    Tanaka M., Takei K. and Kojima M.. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J., 2006, 45(6): 1028-1036
    Tanaka S. S., Toyooka Y. and Akasu R.. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev., 2000, 14: 841-853
    Tanner N. K. and Linder P.. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell, 2001, 8: 251-262
    Tanner N. K., Cordin O. and Banroques J.. The Q motif: a newly identified motif in DEAD-box helicases may regulate ATP binding and hydrolysis. Mol. Cell, 2003, 11: 127-138
    Tester M. and DavenportR.. Na+ tolerance and Na+ transport in higher plants. Annals ofBotany, 2003, 91: 503-527
    Testerink C. and Munnik T.. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci., 2005, 10: 368-375
    Thines B., Katsir L. and Melotto M.. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling. Nature, 2007, 448: 661-665
    Tran L. S. P., Nakashima K. and Sakuma Y.. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell, 2004, 16: 2481-2498
    Tseng S. S., Weaver P. L., Liu Y., Hitomi M., Tartakoff A. M. and Chang T. H.. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J., 1998, 17: 2651-2662
    Tuteja N. and Phan T. N.. A chloroplast DNA helicase II from pea that prefers fork-like replication structures. Plant Physiol., 1998, 118: 1029-1038
    Tuteja N. and Tuteja R.. Unraveling DNA helicases motif, structure, mechanism and function. Eur. J. Biochem., 2004, 271: 1849-1863
    Tuteja N.. Plant DNA helicases: the long unwinding road. J. Exp. Bot., 2003, 54 (391): 2201-2214
    Ueguchi-Tanaka M., Ashikari M. and Nakajima M.. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-698
    Umehara M., Hanada A., Yoshida S., Akiyama K., Arite T., Kyozuka J. and Yamaguchi S.. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200
    Uno Y., Furihata T. and Abe H.. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 2000, 97: 11632-11637
    Van C. W. and Willekensh. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology, 1994, 12: 165-168
    Vashisht A. A. and Tuteja N.. Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance. J. Photochem. Photobiol. B., 2006, 84: 150-160
    Vashisht A., Pradhan A., Tuteja R. and Tuteja N.. Cold and salinity stress-induced pea bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J., 2005, 44: 76-87
    Very A. A. and Sentenac H.. Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol., 2003, 54: 575-603
    Vierstra R. D.. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol. Cell Biol., 2009, 10: 385-397
    Wang B., Davenport R. J., Volkov V. and Amtmann A.. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J. Exp. Bot., 2006, 57: 1161-1170
    Wang H., Qi Q., Schorr P., Cutler A. J., Crosby W. L. and Fowke L. C.. ICK1, a cyclin-dependent protein kinase inhibitor form Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J., 1998, 15: 501-510
    Wang W., Vinocur B. and Altman A.. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1-14
    Wang Y. N., Zhang W. S. and Li K. X.. Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. Plant Res., 2008, 121: 87-96
    Wang Y., Duby G., Purnelle B. and Boutry M.. Tobacco VDL gene encodes a plastid DEAD box RNA helicase and is involved in chloroplast differentiation and plant morphogenesis. Plant Cell, 2000, 12: 2129-2142
    Weir I., Lu J. P. and Cook H.. CUPUL IFORM IS establishes lateral organ boundaries in Antirrhinum. Development, 2004, 131(4): 915-922
    White P. J.. Calcium channels in higher plants. Biochem. Biophys. Acta., 2000, 1465: 171-189.
    Wickson M. and Thimann K. V.. The antagonism of auxin and kinetin in apical dominance. Plant Physiol., 1958, 11: 62-74
    Wieland J., Naitsche A. and Strayle J.. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J., 1995, 14: 3870-3882
    Winicov I.. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany, 1998, 82: 703-710
    Wise R. R. and Naylor A. W.. Chilling-enhanced photooxidation: Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol., 1987, 83: 278-282
    Wu C. A., Yang G. D. and Meng Q. W.. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important rolein salt stress. Plant Cell Physiol., 2004, 45(5): 600-607
    Wyn Jones R. G., Brady C. J. and Speirs J.. Ionic and osmotic relations in plant cells. In Laidman D L and Wyn Jones RG (eds). Recent advances in the biochemistry of cereals. (Academic Press, London, 1979)
    Xiong L. M., Schumaker K. S. and Zhu J. K.. Cell signaling during cold, drought and salt stress. Plant Cell, 2002, 14: 165-183
    Xu J., Li H. D., Chen L. Q., Wang Y., Liu L. L., He L. and Wu W. H.. A protein kinase,interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347-1360
    Xue Y. F. and Liu Z. P.. Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress. Russian Journal of Plant Physiol., 2008, 55(6): 863-858
    Yamaguchi-Shinozaki K. and Shinozaki K.. A Novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1994, 6(2): 251-264
    Yamaguchi-Shinozaki K. and Shinozaki K.. Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci., 2005, 10: 88-94
    Yang K. Y., Liu Y. and Zhang S.. Acttivation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA, 2001, 98: 741-746
    Yeo A. R.. Molecular biology of salt tolerance in the context of whole plant. Plant Physiol., 1998. 49: 915-929
    Yi L. P., Ma J. and Li Y.. Impact of salt stress on the features and activities of root system for three desert halophyte species in their seedling stage. Sci. China ser. D-Earth Sci., 2007, 50: 97-106
    Yokoi S., Quintero F. J. and Cubero B.. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J., 2002, 30: 529-539
    Zhang S. Q. and Klessig D. F.. MAPK cascades in plant defense signaling. Trends Plant Sci., 2001, 6: 520-534
    Zhang Z., Wang Q. L., Li Z. H., Duan L. and Tian X. L.. Effect of potassium deficiency on root growth of cotton (Gossypium hirsutum L.) seedlings and its physiological mechanisms involved. Acts Agronomica Sinca, 2009, 35(4): 718-723
    Zhao F. G. and Qin P.. Protective effect of exogenous polyamines on root tonoplast functions against salt stress in barley seedlings. Plant Growth Regulation, 2004, 42: 97-103
    Zhong X. L. and Ahmad R. S.. A Helicase A in the MEF1 transcription factor complex up-regulates the MDR1 gene in multidrug-resistant cancer cells. J. Biol. Chem., 2004, 279: 17134-17141
    Zhu J. K.. Plant salt tolerance. Trends Plant Sci., 2001, 6: 66-71
    Zhu J. K.. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 2003, 6: 441-445
    Zhu J. K.. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol., 2002, 53: 247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700