用户名: 密码: 验证码:
发菜(Nostoc flagelliforme)不同生长状态差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发菜是一种陆生固氮蓝藻,主要分布于干旱―半干旱荒漠草原地区,是当地主要的生物固氮资源和拓荒植物。本研究建立了发菜蛋白质组学研究技术,研究了日生长周期中不同生长状态下的蛋白质表达差异、干燥失水和恢复吸水状态下的超微结构、生理学和蛋白质表达差异,克隆了与生长发育和抗逆相关的差异蛋白(Peroxiredoxin、Mn-CAT、Ferritin和Hypothetical protein NXL-01)基因,进行了生物信息学分析,研究其原核表达,并进行了RT-PCR和Western blot验证。
     1发菜蛋白质组学研究方法的建立
     为建立适用于发菜蛋白质组研究的双向电泳技术,对发菜蛋白质的提取、裂解、上样量、IEF及SDS-PAGE电泳等关键步骤进行了优化,结果显示:发菜蛋白质主要分布在pH4~7范围内,采用改良TCA法可提高提取液中蛋白质的含量和双向电泳图谱的分辨率,裂解液含60 mmol/L DTT,上样量1.3 mg /(24 cm IPG胶条)时不仅提高了蛋白质的溶解性,而且改善了双向电泳的分离效果,蛋白点清晰,图谱分辨率较好。采用优化后的双向电泳体系提高了发菜蛋白质双向电泳的分辨率和重复性,建立起一套适用于发菜蛋白质组分析的双向电泳方法。
     利用双向凝胶电泳(2-DE)技术,PDQuest软件分析图像,基质辅助激光解析电离飞行时间串联质谱(MALDI-TOF-TOF/MS)分析得到肽质量指纹图谱(PMF),通过MASCOT和NCBI进行数据库检索,初步建立了发菜蛋白质组学研究方法。从2-DE图谱中选择89个蛋白点进行蛋白质谱鉴定,共成功鉴定到68个蛋白点,代表44种蛋白,鉴定率为76.40%。57个蛋白点确定为数据库中收录的蓝藻的蛋白,其中43个来源于已知的点形念珠藻的蛋白,7个来源于念珠藻PCC 7120,2个来源于鱼腥藻,3个来源于普通念珠藻,4个未鉴定出物种来源。另有3个蛋白点来源于其他物种。对发菜SOD的PMF和氨基酸序列进行了分析,表明与普通念珠藻SOD的序列覆盖率为41%。
     2发菜日生长周期差异蛋白质组学研究
     在生长季节的日生长周期中,早晨发菜凈光合速率与暗呼吸速率旺盛,固氮酶和谷氨?泛?成酶活性高,氮代谢活跃;中午随着气温升高,发菜失水干燥,光照强度加大,凈光合速率与暗呼吸速率均急剧下降,固氮酶和谷氨酰胺合成酶活性降低;下午,气温逐渐下降,光照强度逐渐减弱,发菜再次逐渐吸收少量空气中的水分,凈光合速率与暗呼吸速率均小幅回升,固氮酶和谷氨酰胺合成酶活性回升。
     运用2-DE对生长季节的日生长周期中不同生长状态发菜差异蛋白分离进行分离,在上午7:00的2-DE图谱上共检测到蛋白点1247个,下午13:00的2-DE图谱上共检测到蛋白点1164个,下午19:00的2-DE图谱上共检测到蛋白点1188个。3个时期2-DE图谱的平均匹配率为71.32 %。对3个时期2-DE图谱Master胶进行统计,匹配的蛋白点较多集中在66.2-26.6kD,占总蛋白点数的68%,pH 4.5~6之间,占总蛋白点数的83%。PDQuest图像软件分析表明,有38个表达量差异在2倍以上蛋白点,其中18个差异蛋白呈下调表达,7个蛋白呈上调表达,13个蛋白先下调然后上调表达。MALDI-TOF-TOF/MS鉴定结果表明,有31个蛋白点被成功鉴定(鉴定率为81.58%),可以分为6个功能类群,包括分泌和调节蛋白(15.79%),抗氧化作用相关的蛋白(20.05%),氮代谢相关的蛋白(10.53%),能量和糖代谢相关的酶(10.53%),细胞分裂相关蛋白(2.63%),未知蛋白(21.05%)等,另有7个蛋白点未鉴定成功(18.42%)。这些差异蛋白在发菜的生长发育和抗逆作用有中具有重要功能。
     3干燥和恢复吸水发菜超微结构、生理和蛋白质组学分析
     在发菜持续失水48 h,然后恢复吸水4 h条件下,形态和结构分析表明,持续失水48h(48HAD)的发菜外表干燥、邹缩,呈黑色,但藻体、藻丝体、胶鞘和细胞结构完整,类囊体膜及细胞内颗粒物质无明显变化,恢复吸水4 h后,藻体膨胀、呈蓝绿色或棕褐色,具有光泽,藻体、藻丝体、胶鞘和细胞结构完整,但细胞内液泡的数量和体积比干燥发菜细胞的要多;生理学分析表明,恢复吸水4 h后的发菜自由水含量、自由水/束缚水比值、净光合活性、暗呼吸速率、RuBisCO活性、可溶性糖、ō_2˙、SOD、CAT、POD、固氮酶和谷氨酰胺合成酶活性显著增加,而MDA、H2O2、氨、脯氨酸、谷氨酸盐含量明显下降;比较蛋白质组学研究表明,与失水—复吸水密切相关的32个蛋白被鉴定,包括分泌蛋白(2.38%)、信号转导(2.38%)、转录和翻译(4.76%)、抗氧化过程(11.90%)、氮代谢(9.52%)、碳和能量代谢(11.90%)、脂代谢(2.38%)、分子伴侣(4.76%)、未知蛋白(28.57%)和没有鉴定成功蛋白(21.43%)。基于形态结构、生理和蛋白质组学分析,表明随着干燥失水和恢复吸水,发菜的生长发育呈现静止休眠与复苏生长交替进行,在干燥条件下,生理代谢减弱,生长缓慢甚至停止,而当恢复吸水,代谢水平上调,生理活性增强,生长启动甚至加速。形态结构、生理和蛋白质组分的变化体现了发菜对特殊生态环境的适应。
     4发菜生长与耐旱相关差异蛋白基因克隆与原核表达
     通过分析发菜过氧化物氧还蛋白(Peroxiredoxin)、锰过氧化氢酶(Mn-CAT)、铁氧还蛋白(Ferritin)和Hypothetical protein NXL-01在不同生长状态及持续干燥48 h和复吸水4 h后的差异表达水平,根据鉴定的已知氨基酸序列设计简并性引物克隆基因并进行生物信息学分析,研究克隆基因的原核表达和分子验证。结果表明:
     (1)根据简并性引物克隆获得长度为639 bp的过氧化物氧还蛋白基因,GenBank登陆号为BankIt1373957(HM854286);693 bp的锰过氧化氢酶基因,GenBank登陆号为BankIt1311043(GU549477);540 bp的铁氧还蛋白基因,GenBank登陆号为BankIt1373981(HM854287);327 bp的Hypothetical protein NXL-01基因,GenBank登陆号为BankIt1374705(HM854288)。
     (2)生物信息学分析表明:
     ①过氧化物氧还蛋白、锰过氧化氢酶、铁氧还蛋白和Hypothetical protein NXL-01序列比较分析显示该基因具有较高的保守性。
     ②过氧化物氧还蛋白在第194的Pro亲水性最强,第122位的Arg疏水性最强;锰过氧化氢酶在第206的Gly亲水性最强,第96位的Val疏水性最强;铁氧还蛋白在第128的Asp和129位的Glu亲水性最强,第28位的Tyr疏水性最强;Hypothetical protein NXL-01在第101位的Glu亲水性最强,第12位的Gly疏水性最强。
     ③过氧化物氧还蛋白二级结构主要由α螺旋、β折叠和随机卷曲构成;锰过氧化氢酶二级结构主要由α螺旋、β折叠和随机卷曲构成;铁氧还蛋白二级结构主要由α螺旋和随机卷曲构成;Hypothetical protein NXL-01二级结构主要由α螺旋和随机卷曲构成。
     ④蛋白跨膜区分析表明过氧化物氧还蛋白、锰过氧化氢酶、铁氧还蛋白和Hypothetical protein NXL-01为膜外蛋白。
     ⑤过氧化物氧还蛋白的Ser有5个磷酸化位点,Thr有6个磷酸化位点,Tyr有2个磷酸化位点;锰过氧化氢酶的Ser有3个磷酸化位点,Thr有1个磷酸化位点,Tyr有2个磷酸化位点;铁氧还蛋白的Ser有1个磷酸化位点,Thr有2个磷酸化位点,Tyr有1个磷酸化位点;Hypothetical protein NXL-01的Ser有5个磷酸化位点,Thr有1个磷酸化位点。
     (3)将过氧化物氧还蛋白、锰过氧化氢酶、铁氧还蛋白和Hypothetical protein NXL-01基因在大肠杆菌中表达,分别获得一个约26.5 kD、26 kD、22.4 kD和12.4 kD的外源蛋白。
     (4)对过氧化物氧还蛋白和锰过氧化氢酶基因在大肠杆菌中表达的蛋白进行Western blotting验证,表明外源蛋白为过氧化物氧还蛋白和锰过氧化氢酶。
     (5)RT-PCR分析表明,在日生长周期的不同状态下,锰过氧化氢酶基因、过氧化物氧还蛋白基因和铁氧还蛋白基因在转录和翻译水平上具有同样表达差异,而Hypothetical protein NXL-01基因在转录水平上无明显差异;在干燥和复吸水状态下,过氧化物氧还蛋白基因、锰过氧化氢酶基因、铁氧还蛋白基因和Hypothetical protein NXL-01在转录和翻译水平上具有同样表达差异。
     研究结果为进一步研究发菜生长发育和耐旱的分子机理及探讨发菜对极端干旱环境的适应和保护机制奠定基础。
Nostoc flagelliforme is a kind of terrestrial nitrogen-fixing cyanobacterium whose colonies are dark brown when it is dry and it turns dark green or brown after absorbing water. It is distributed in arid or semiarid steppes in the west or west-northern parts of China. The study established proteomics method of N. flagelliforme, differently expressed proteins were analysed in daily growth cycle in growth season, ultrastructure, physiological and proteomic differences of N. flagelliforme in response to dehydration and rehydration were studied, differentially expressed proteins (peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01) gene were cloned, bioinformatics of these proteins were analysed and prokaryotic expression were disscused, RT-PCR and Western blot were also analysed. This study is the first to offer information on a novel, global insight into physiological and proteomic differences of N. flagelliforme in response to daily growth cycle, especially in dehydration and rehydration. The results laid a foundation of growth, development and drought-resistant molecular mechanism and protective mechanism of N. flagelliforme in extreme arid environment further more.
     1 The establishment of proteomic method in N. flagelliforme
     In order to establish a two-dimensional gel electrophoresis (2D-E) protocol for proteomic study of N. flagelliforme, extracting method of total protein, lysis method, loading quantity and the key process of IEF and SDS-PAGE were optimized. The results showed that the protein spots were distributed mainly within the range of pH4~7. Improved TCA method was obviously improve the protein content and resolution patterns, lysis buffer contained 60 mmol/L DTT and loading quantity of sample protein were 1.3 mg /(24 cm IPG trip)could obtain clear map and better separation effect. More than 800 protein spots with pH4~7 were detected by the way of staining with Colloidal Coomassie Blue R-250. The optimized protocol of N. flagelliforme markedly minimized the interference from non-protein substances.
     The proteomic for N. flagelliforme was primarily established. 2D-E was carried out to isolate proteins, image was analyzed by PDQuest, peptide mass figerprinting (PMF) were obtained by MALDI-TOF-TOF/MS, protein and gene information was identified by protein database searching. Of 89 protein spots from the 2-DE gel, 68 spots were identified successfully. 57 spots could be matched with the proteins of cyanobacterium in NCBI database, and 43 of these could matched with the proteins of Nostoc punctiforme PCC 73102, 7 of these could matched with Nostoc sp. PCC 7120, 2 of these could matched with Anabaena variabilis, 2 of these could matched with Nostoc commune. 4 spots could not matched with species, 3 of these could matched with other species.
     2 Differential proteomic analysis of N. flagelliforme in daily growth cycle
     In daily growth cycle in growth season of N. flagelliforme, physiological analysis showed that a significant increase in net photosynthesis, dark respiration, nitrogenase and glutamine synthetase activities were observed in the morning (7:00). While net photosynthesis, dark respiration, nitrogenase and glutamine synthetase activities registered significant decrease in the afternoon (13:00), and net photosynthesis, dark respiration, nitrogenase and glutamine synthetase activities were slowly increased when the temparature decreased, light intensity decreased and colonies rewetted slowly in the afternoon (19:00). Furthermore, 2-DE was taken to compare the proteome patterns of N. flagelliforme colonies in daily growth cycle. After CBB R-250 stained, more than 1,000 protein spots were detected on each gel (1247 protein spots were detected on gel at 7:00 AM, 1164 protein spots were detected on gel at 13:00 PM, 1188 protein spots were detected on gel at 19:00 PM). Comparative analysis of the 2-DE images of N. flagelliforme proteins was performed by using PDQuest software. In general, the proteome patterns were very similar to all 2-DE images, which indicated that most proteins were accumulated at comparable levels in daily growth cycle. However, quantitative image analysis revealed that a total of 38 protein spots changed in abundance more than two-fold during different growth stages, that 18 protein spots were down-regulated, 7 protein spots were up-regulated, 13 protein spots were down-regulated firstly, and than up-regulated. The differentially expressed proteins were excised from the 2-DE gels, in-gel digested by trypsin, and analyzed by MALDI-TOF-TOF/MS. As a whole, 31 proteins sports were identified (identification rate: 81.58%). Based on their physiological functions, all differential proteins were categorized into the following eleven groups: secretion and regulation (15.79%), antioxidative processes (20.05%), nitrogen metabolism (10.53%), carbohydrate and energy metabolism (10.53%), cell division(2.63%), unclassified (unknown) (21.05%) and unidentified proteins (18.42%). These differentially expressed proteins maybe play some important roles in growth, development and stress defense.
     3. Ultrastructure, physiological and proteomic analysis of N. flagelliforme in response to dehydration and rehydration
     Drought is one of the most severe limiting factors to terrestrial blue-alga growth and distribuation. N. flagelliforme has evolved a unique capability to tolerate desiccation and can survive for several decades under extremely dry conditions, and rapidly recover physiological metabolic activity after reabsorbing water. This study is the first to offer information on a novel, global insight into Ultrastructure, physiological and proteomic differences of N. flagelliforme in response to dehydration and rehydration. Morphological and ultrasturcture changes exhibited that colonies were dry and shrunk with black, and the structure of colonies, filaments, sheath and cell were intact, thylakoid membrane and granules were not obvious change when colonies were subjected to 48 hours of water deprivation. While colonies were swollen with blue-green or brown , the structure of colonies, filaments, sheath and cell were intact when colonies followed by rewatering for 4 hours, but quantity and volume of vacuoles were more under the condition of rehydration for 4 hours than that of dehydration in N. flagelliforme. Physiological analysis showed that a significant increase in net photosynthesis, dark respiration, O-2, SOD, CAT, POD, nitrogenase and glutamine synthetase activities were observed after N. flagelliforme colonies had been subjected to rehydration. While H2O2, ammonium, proline and glutamate contents registered significant decrease in rewetted colonies compared with dried ones. Furthermore, 2-DE reproducibly detected more than 1,000 protein spots in N. flagelliforme, with 45 protein spots being significantly altered in their intensity between dried and rewetted colonies. 32 protein spots were identified by MALDI-TOF-TOF/MS analysis and protein database searching. Most of identified proteins were associated with a variety of functions, including secretion (2.38%), signaling (2.38%), transcription and translation (4.76%), antoxidative processes (11.90%), nitrogen metabolism (9.52%), carbohydrate and energy metabolism (11.90%), lipid metabolism (2.38%), chaperonin (4.76%), and other functional classes. And their biological functions were also discussed. The expression patterns of Mn-CAT and peroxiredoxin were validated by immunoblotting analysis. We anticipate that morphological and ultrasturcture changes, physiological changes and identification of the differentially expressed proteins may lead to a better understanding of the growth and desiccation tolerance mechanisms in N. flagelliforme which is usually subjected to extreme environmental changes in nature.
     4 Gene cloning and prokaryotic expression of differential expressed proteins related to growth and drought-resistant from N. flagelliforme
     Degeneracy primer of peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 were designed based on identified amino acid sequences in order to colone these gene, the gene and amino acid sequences were analysed, Bioinformatics of peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 were analysed, and prokaryotic expression of these gene was carried out. The results indicated that peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 gene were cloned and a full length of 639 bp, 693 bp, 540 bp and 327 bp DNA were obtained, respectively (GenBank access number were BankIt 1373957(HM854286), BankIt 1311043 ( GU549477 ) , BankIt 1373981(HM854287)and BankIt 1374705(HM854288), respectively). Homology analysis showed that each of the peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 of N. flagelliforme had high consensus regions. The hydrophobicity of peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 were analysed. The secondary structure of peroxiredoxin and Mn-CAT were made up ofαhelix,βstrands and random coil, respectively, while the secondary structure of ferritin and hypothetical protein NXL-01 were made up ofαhelix and random coil, respectively. The TMHMM posterior probabilities for seguence of peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 were outside proteins. Predicted phosphyorylation sites in the sequence of peroxiredoxin (Ser: 5; Thr: 6; Tyr: 2), Mn-CAT (Ser: 3; Thr: 1; Tyr: 2), ferritin (Ser: 1; Thr: 2; Tyr: 1) and hypothetical protein NXL-01(Ser: 5; Thr: 1) were identified. Peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 gene were expressed in E. coli, and a 26.5 kD, 26 kD, 22.4 kD and 12.4 kD heterologous protein were observed, respectively. And western blotting confirmed peroxiredoxin and Mn-CAT. Semi-Quantitative RT-PCR results showed that each of Mn-CAT, peroxiredoxin and ferritin had identical regulation on transcription and translation level, while hypothetical protein NXL-01 had minor expression differential on transcription level, which the aboved-mentioned situations were the response of N. flagelliforme to daily growth cycle; that each of peroxiredoxin, Mn-CAT, ferritin and hypothetical protein NXL-01 had identical regulation on transcription and translation level, which the aboved-mentioned situations were the response of N. flagelliforme to dehydration and rehydration.
引文
[1] Gao KS. Chinese studies on the edible blue-green alga. Nostoc flagelliforme, a review[J]. Journal of Applied Phycology,1998,(10):37-49.
    [2]王勋陵,顾云龙.发菜的显微和亚显微结构的观察[J].植物学报,1984, 26(5):484-488.
    [3]王志本,粱家骥.发菜生态和形态的近年研究[J].内蒙古大学学报(自然科学版),1989, 20(2):250-259.
    [4]姜翠萱.对发菜细胞发育的初步研究[J].宁夏大学学报(自然科学版),1990,11(4): 42-48.
    [5]祝建,王俊,华振基,马丁·米勒.高压冷冻和低温替代技术制备的发菜营养细胞的超微结构[J].植物学报,1998,40(10) :901-905
    [6]刘明志,潘瑞炽.培养条件下发菜超微结构的观察[J].植物学报,1997,39(6):505-510
    [7]苏建宇.发状念珠藻—生物学基础与应用[M].银川:宁夏人民出版社,2007:12-19
    [8]程子俊,蔡惠珍.念珠藻属Nostoc三个种早期发育的初步研究[J].西北师范大学学报(自然科学版),1988,3:41-43.
    [9]姜翠萱.浅谈发菜[J].宁夏大学学报(自然科学版),1981,(2):93-97.
    [10]杨新芳,乔木,朱自安.近十年发菜的研究进展[J].中央民族大学学报(自然科学版),2010,19(3): 16-20,25
    [11]刘家琼,邱明新,马廷科.发菜的分布与生态环境条件[J].沙漠生态系统研究,1995,1: 175-180.
    [12]钱凯先,朱浩然,陈树谷.发状念珠藻的生态条件及其规律分析[J].植物生态学与地植物学学报,1989,13:97-105.
    [13]刁治民.青海发菜生长的自然环境及生态生理学特性的研究[J].生态学杂志,1996,15(1): 8-13.
    [14]葸玉琴,张金文.发菜生长地的土壤因子分析[J].甘肃农业大学学报,1993,28(4):380-383.
    [15]崔志有.内蒙古四子王旗发菜的分布[J].植物生态学与地植物学从刊,1985, (9):223-230.
    [16]唐进年,赵明,张盹明,张锦春.念珠藻发菜的水分生理特性[J].西北植物学报,2005,25(2): 236-243.
    [17]赵明,唐进年,张锦春.发菜生存与生长分布的微生态环境[J].干旱区资源与环境,2000, 14(4): 86-89.
    [18]毕永红,胡征宇.水分对发状念珠藻生理活性的影响[J].武汉植物学研究,2003,21(6): 503-507
    [19]施定基,周国飞,方昭希,钟泽璞.发菜的光合作用、呼吸作用和形态学的研究[J].植物学报,1992,34(7):507-514
    [20]钟泽璞,吴毓缳,徐洁,冯丽洁,施定基.发状念珠藻藻殖段的分化及其光合特性的研究[J].植物学报,2000,42(6):570-575.
    [21]张盹明,唐进年,聂文果,张锦春.发菜光合特性与水分关系的研究[J].西北植物学报,2003, 23(5):739-744
    [22] Gao KS, Qiu BS, Xia J, Yu AJ. Light dependency of the photosynthetic recovery of Nostoc ?agelliforme[J]. Journal of Applied Phycology,1998,10:51-53.
    [23] Zhao XM, Bi YH, Chen L, Hu S, Hu ZY. Responses of photosynthetic activity in the drought-tolerantcyanobacterium, Nostoc ?agelliforme to rehydration at different temperature [J]. Journal of Arid Environments, 2008,72: 370-377
    [24] Qiu BS, Gao KS. Daily production and photosynthetic characteristics of Nostoc ?agelliforme grown under ambient and elevated CO2 conditions[J]. Journal of Applied Phycology,2002, 14: 77-83.
    [25]钟泽璞,施定基,王发珠,崔志有.温度,含水量和光照对发菜固氮酶活性的影响[J].植物学报,1992,34(3):219-225
    [26]王梅,许亦农,姜桂珍,李良璧,匡廷云.发菜膜脂及其脂肪酸组成[J].植物学报,2000,42(12): 1263-1266.
    [27]毕永红,邓中洋,胡征宇,徐敏.发状念珠藻对盐胁迫的响应[J].水生生物学报,2005,3: 125-129.
    [28]张爱红,邱保胜,刘志礼.陆生念珠藻的耐干旱机制[J].西北植物学报,2003,23(3):516-521.
    [29]陈雪峰,李一当.发菜多糖清除自由基活性的研究[J].安徽农业科学,2008,36(8): 3088-3089.
    [30]梁文裕,马秀丽,郑国旗,谢亚军,尹晓雯,王星.发状念珠藻多糖的提取及其对农作物种子发芽率的影响[J].安徽农业科学,2008,36(23):9944-9945, 9981.
    [31] Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis[J]. Physiology, 1998, 60:73-103.
    [32]庞婉婷,吴双秀.干旱胁迫下发菜原植体海藻糖、蔗糖的测定[J].上海师范大学学报(自然科学版),2007,36(3):73-76.
    [33]梅俊学.逆温下发菜脯氨酸含量及质膜透性的变化与含水量的关系[J].山东师大学报(自然科学版),2000,15(2):178-181.
    [34]戴治稼.发菜研究的回顾[J].宁夏大学学报(自然科学版),1992,13(1):71-76
    [35]华振基,王俊,孙建芸,徐青,梁文裕.发菜生物学特性及其人工栽培途径的研究.Ⅲ.发菜繁殖机制的初步研究[J].宁夏农学院学报,1994,15(5):19-22.
    [36]金洪,杜凤玲,谢君仁,赵建,吴平.发菜的人工繁殖的研究[J].内蒙古农业大学报,1999,20(4): 43-48.
    [37]胡美容,赵永斌,张宗再.发菜生长的自然土壤与人工栽培发菜的研究初报[J].甘肃农业大学学报,1987,(3):76-81.
    [38]梁文裕,孙兰芳,赵辉,王俊.几种发菜培养体系的筛选[J].农业科学研究,2005,26(3): 33-35.
    [39]朱乘婧,曾义斌,张文君,王宏儒,付鑫华.发菜人工培养途径初探[J].同济大学学报(医学版), 2002,23(3): 221-223.
    [40]朱浩然,赵英华,钱凯先.发菜生长条件的试验[J].南京大学学报(自然科学版),1982,(1): 117-124.
    [41]王俊,苏建宇,徐青,华振基.发菜生物学特性及其人工栽植途径的研究.Ⅰ实验室培养发菜获得初步成功[J].宁夏农学院学报,1992,13(2):34-37.
    [42]梅俊学,程子俊.温度对发菜生理活性的影响[J].西北师范大学学报(自然科学版),1990,(1): 75-84.
    [43]刘明志.发菜人工培养条件探索[J].湖南农业科学,2005,(1):36-39.
    [44]梁文裕,赵辉,谢亚君,王俊.发菜液体培养的初步研究[J].宁夏农林科技,2005, (5):6-8.
    [45]赵学敏,毕永红,胡征宇.不同培养基对发菜细胞生长和光合活性的影响[J].武汉植物学研究, 2005,23(4): 332-336.
    [46] Gao KS, Ye CP. Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (cyanohpyceae) under aquatic conitions[J] Journal of Phycology,2003,39(3):617-623.
    [47]毕永红,胡征宇.温度,营养和光强对发状念珠藻生长的影响[J].过程工程学报,2004, 4(3): 245-249.
    [48]李运广,胡征宇.发菜(Nostoc flagelliforme)培养条件的研究[J].武汉植物学研究,2003, 21(5):411-414.
    [49] Liu SM, Liang SZ. Effects of lanthanum on liquid culture and contents of Amino Acid of Nostoc commume flagelliformwe cells[J]. Journal of Rare Earths,1999,17(4):298-302.
    [50] Liu XJ, Chen F. Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures[J]. Folia Microbiol, 2003,48(5):619-626.
    [51]赵学敏,毕永红,秦山,胡征宇.发菜细胞培养物对盐胁迫的响应[J].西北植物学报,2005, 25(11):2234-2239.
    [52] Gao K S, Yu A J. Influence of CO2, light and watering on growth of Nostoc flagelliforme mats [J]. Journal of Applied phycology, 2000,(12):185-189.
    [53] Qiu BS, Gao KS. Daily production and photosynthetic characteristics of Nostoc falgelliforme growth under ambient and elevated CO2 conditions[J]. Journal of Applied Phycology, 2002,(14):77-83.
    [54]李建华,田彦辉.两种发菜培养体系的筛选[J].中国野生植物资源,2001,20(6):59-62.
    [55]黄健,刘建国,闫培京.发状念珠藻人工培养的初步研究[J].莱阳农学院学报,2001,18(3): 169-173.
    [56] Liang WY, Wang X, Wang J. Identification of cultivated Nostoc flagelliforme cells based on 16S rDNA sequences analyses[J].宁夏大学学报(自然科学版), 2008,29: 169-171.
    [57]刘晶晶,康升云,曹建国,王全喜.利用16S rRNA基因分析3种念珠藻的亲缘关系[J].西北植物学报, 2008,28(3) :0459-0464.
    [58]章秀.发菜海藻糖合成酶及水解酶基因的克隆及在大肠杆菌中表达[D].上海:上海师范大学,2008,5.
    [59]汪滢,陈李萍,陈晓,章秀,于晶,王全喜.发菜中超氧化物歧化酶基因的克隆及在大肠杆菌中的表达[J].植物研究,2007,5:289-292.
    [60]沈蓉蓉,章秀,吴双秀,何靓,王全喜.发菜中麦芽寡糖基海藻糖合成酶的抗体制备及鉴定[J].上海师范大学学报(自然科学版). 2009,38(6):639-644.
    [61]焦广飞.发菜藻蓝蛋白的基因克隆与原核表达[D].福建农林大学, 2010
    [62]衣志伟,黄辉,蒋伍玲,匡廷云,隋森芳.发菜藻胆体亚单位的分子排布[J].电子显微学报,2005, 24(1):61-64.
    [63]王梅,钟泽璞,王可玢,李良璧,匡廷云.发菜类囊体膜色素蛋白复合物分离及其光谱性质的研究[J].植物学报, 2000,42(7):684-688.
    [64]梁文裕, Nishifuji T.发菜藻蓝蛋白分离纯化的研究[J].西北植物报,2008,28(2):0303 -0309.
    [65]乔木,邓志瑞,朱自安,赵东旭,方昭希,孙永强.发菜中红色蛋白的研究[J].北京理工大学学报,2007,8:728-731.
    [66]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊,2002,17(3):166-169.
    [67] Anderson NL, Matheson AD, Steiner S. Proteomics: applications in basic and applied biology[J].Current Opinion in Biotechnology, 2000, 11:408-412.
    [68]朱红,周海涛,何春涤.蛋白质组学及其主要技术[J].癌变·畸变·突变,2005, 17(5): 318-320.
    [69] Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837-846.
    [70] Wickware P, Smaglik P. Proteomics technology character references[J]. Nature, 2001, 413: 869-875.
    [71] Scott D. Patterson, Ruedi H. Proteomics: the first decade and beyond[J].Nature Genetics Supplement. 2003,33(3): 311-323.
    [72] Blackstock W P, Weir M P. Proteomics: quantitative and physical mapping of cellular proteins [J].Trends Biotechnol, 1999,7(3): 121-127.
    [73] Tonge R, Shaw J, Middleton B. Validation and differential gel of fluorescence electrophoresis technology[J]. Proteomics, 2001,1:377-396.
    [74] Lahm HW, Langen H. Mass spectrometry: a tool for the identification of proteins separated by gels [J]. Electrophoresis, 2000, 21: 2105-2114.
    [75] Vanbogelen RA, Olson ER, Wanner BL. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli[J]. J Bacteriol, 1996,178(15):4344- 4366.
    [76] Tonella L, Walsh BJ, Hochstrasser DF. '98 Escherichia coli SWISS-2DPAGE database update[J].Electrophoresis, 1998, 19: 1960-1971.
    [77] Sanchez JC, Appel RD, Hochstrasser DF. Inside SWISS-2DPAGE database[J]. Electrophoresis, 1995,16: 1131-1151.
    [78] Barrios-Llerena ME, Reardon KF, Wright PC. 2-DE proteomic analysis of the model cyanobacterium Anabaena variabilis[J]. Electrophoresis, 2007,28(10):1624-1632.
    [79] Razquin P, Schmitz S, Fillat MF, Peleato ML. Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp. [J]. Biochem. J. 1996,316 (1):157-160.
    [80] Saw YO, Phillip CW. Current trends in high throughput proteomics in cyanobacteria[J]. FEBS Letters 2009,583: 1744–1752.
    [81] Norling B. 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803[J]. FEBS Letters. 1998,436 (2):189– 1892.
    [82] Pandhal J, Wright PC, Biggs CA. Proteomics with a pinch of salt: a cyanobacterial perspective[J]. Saline Syst. 2008,4, 1.
    [83] Shevchenko A. Loboda A, Shevchenko A, Ens W, Standing KG. MALDI quadrupole time-of-?ight mass spectrometry: a powerful tool for proteomic research[J]. Anal. Chem. 2000,72 (9):2132–2141.
    [84] Sazuka T. Comparative proteomics of cyanobacteria: Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120[J]. Jpn. J. Electrophores. 2001,45 (2):123–128.
    [85] Hunsucker SW Klage K, Slaughter SM, Potts M, Helm RF. A preliminary investigation of the Nostoc punctiforme proteome[J]. Biochem. Biophys. Res. Commun. 2004,317 (4):1121–1127.
    [86] Smith JC, Figeys D. Proteomics technology in systems biology[J]. Mol. Biosyst. 2006,2(8): 364–370.
    [87] Souchelnytskyi S. Bridging proteomics and systems biology: what are the roads to be traveled? [J]. Proteomics. 2005,5 (16):4123–4137.
    [88] Wu CC, MacCoss MJ. Shotgun proteomics: tools for the analysis of complex biological systems[J]. Curr. Opin. Mol. Ther. 2002,4 (3):242–250.
    [89] Saw YO, Phillip C W.Current trends in high throughput proteomics in cyanobacteria[J]. FEBS Letters. 2009,583: 1744–1752
    [90] Staes A, Demol H, Van Damme J, Martens L, Vandekerckhove J, Gevaert K. Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18[J]. J. Proteome Res. 2004,3 (4):786–791.
    [91] Gevaert K, Van Damme J, Goethals M, Thomas GR. Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies[J]. Proteomics. 2004,4 (4):897–908.
    [92] Swanson SK, Washburn MP. The continuing evolution of shotgun proteomics[J]. Drug Discov. Today. 2005,10 (10):719–725.
    [93] Wolters DA, Washburn MP, Yates JR. An automated multidimensional protein identification technology for shotgun proteomics[J]. Anal. Chem. 2001,73 (23):5683–5690.
    [94] Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data[J]. Electrophoresis. 1999,20 (18):3551–3567.
    [95] Eng JK, McCormack A.L, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database[J]. J. Am. Soc. Mass Spectrom. 1994,5 (11):976–989.
    [96] Han Y, Ma B, Zhang K. SPIDER: software for protein identification from sequence tags with de novo sequencing error. In: Computational Systems Bioinformatics Conference, CSB Proceedings, IEEE, 2004: 206–215.
    [97] Shevchenko A, Sunyaev S, Loboda A. Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-?ight mass spectrometry and BLAST homology searching[J]. Proc. Natl. Acad. Sci. USA. 1996,93:14440–14445.
    [98] Gan CS, Reardon KF, Wright PC. Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803[J]. Proteomics 2005,5 (9):2468–2478.
    [99] Anderson DC, Campbell EL, Meeks JC. A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme[J]. J. Proteome Res. 2006,5(11):3096– 30104.
    [100] Barrios-Llerena ME, Chong PK, Gan CS, Snijders APL , Reardon KF,Wright PC. Shotgun proteomics of cyanobacteria applications of experimental and data-mining techniques[J]. Brief Funct. Genom. Proteom, 2006,5(2): 121–132.
    [101] Chong PK, Gan CS, Pham TK, Wright PC. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections[J]. J Proteome Res. 2006,5 (5):1232–1240.
    [102] Pandhal J, Wright PC, Biggs CA. A quantitative proteomic analysis of light adaptation in a globally significant marine cyanobacterium Prochlorococcus marinus MED4[J]. J. Proteome Res. 2007,6 (3):996–1005.
    [103] Stensj? K, Ow SY, Barrios-Llerena ME, Lindblad P, Wright PC. An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions[J]. J. ProteomeRes. 2007,6 (2):621–635.
    [104] Ow SY. Cardona T, Taton A, Magnuson A, Lindblad P, Stensj? P, Wright PC. Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags[J]. J. Proteome Res. 2008, 7 (4):1615–1628.
    [105] Pandhal J. Snijders APL, Wright PC, Biggs DR. A cross-species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using 15N metabolic labelling[J]. Proteomics, 2008,8 (11):2266–2284.
    [106] Han MJ, Lee SY. The Escherichia coli proteome: past, present, and future prospects[J]. Microbiol. Mol. Biol. Rev. 2006,70 (2):362–439.
    [107] Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensj? P, Wright PC. Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics[J]. J. Proteome Res. 2008,8 (1):187–198.
    [108]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学, 2001,13(2):54.
    [109]齐雨藻.中国藻类学研究[M],武汉:武汉出版社,2001.152-177.
    [110] Sazuka T, Ohara O. Towards a proteome project of cyanobacterim Synechocystis sp. Strain PCC 6803: linking 130 protein spots with their respective genes[J]. Electrophoresis, 1997,18: 1252-1258.
    [111] Sazuka T, Yamaguchi M, Ohara O. Cyano-Dbase updated: linkage of 234 protein spots to corresponding genes through N-terminal microsequencing[J]. Electrophoresis, 1999, 20: 2160-2171.
    [112] Choi JS, Kim DS, Lee J, Kim SJ, Kim SI, Kim YH, Hong J. Proteome analysis of light-induced proteins in Synechocystis sp. PCC6803: identification of proteins separated by 2D-PAGE using N-terminal sequencing and MALDI-TOF MS[J]. Mol Cells, 2000,10(6): 705-711.
    [113] Simon WJ, Hall JJ, Suzuki L, Murata N, Slabas AR. Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803 using automated matrix-assisted laser desorption/ionizationtime of flight peptide mass fingerprinting[J]. Proteomics, 2002, 2: 1735-1742.
    [114] Fulda S, Huang F, Nilsson F, Hagemann M, Norling B. Proteomics of Synechocystis sp. strain PCC 6803 identification of periplasmic proteins in cells grown at low and high salt concentrations[J]. Eur. J. Biochem. 2000, 267, 5900–5907.
    [115] Fulda S, Huckauf J, Schoor A, Hagemann M. Analysis of stress responses in the cyanobacterial strains Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7418: osmolyte accumulation and stress protein synthesis[J]. J. Plant Physiol. 1999,154: 240–249.
    [116] Wang Y, Sun J, Chitnis P R. Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803 [J]. Electrophoresis, 2000, 21: 1746-1754.
    [117] Lindahl M, Francisco J. Systematic screening of reactive cysteine proteomes [J]. Proteomics, 2004, 4:448-450.
    [118] Srivastava R, Pisareva T, Norling S. Proteomics studies of the thylakoid membrane of Synechocystis sp. 6803 [J]. Proteomics 2005,5:4905-4916
    [119] Pandey R, Chauhan S, Singhal GS. Spectral light quality affects protein profile of Synechococcus sp. PCC 7942: A comparative 2-Dimensional gel electrophoresis analysis [J]. Current Microbiology,2000,40: 297-301.
    [120] Bhagwat AA, Apte SK. Comparative analysis of proteins induced by heat shock, salinity and osmotic stress in the nitrogen fixing cyanobacterium Anabaena sp. strain L 31[J]. J. Bacteriol. 1989,171: 5187–5189.
    [121] Martin E B-L, Kenneth FR, Phillip CW. 2-DE proteomic analysis of the model cyanobacterium Anabaena variabilis[J]. Electrophoresis, 2007, 28(10):1624-1632.
    [122] Bhargava P, Mishra Y, Srivastava AK, Ara A, Rai LC. Preliminary analysis of cuprome of Anabaena doliolum using two-dimensional gel electrophoresis[J]. Current Science, 2006,91(11):1520-1523.
    [123] Srivastava AK, Bhargava P, Thapar R, Rai LC. Salinity-induced physiological and proteomic changes in Anabaena doliolum[J]. Environmental and Experimental Botany, 2008,64:49–57.
    [124] Liang R. Proteomic profiles and gene expressions in the symbiotically comptent cyanobacterium Nostoc sp. PCC 73102[D]. Stockholm Univesity, 2007.
    [125] Monika ES, Stefan S, Robin W, Angelika G, Siegfried S. The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins[J]. Molecular Microbiology, 2002, 46(3):827–843.
    [126] Rajeshwar PS, Manfred KE, Walter H, Donat-P H. Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2001,60:129-135.
    [127] Ehira S, Ohmori M, Sato N. Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120[J]. DNA Res, 2003,10 (3):97–113.
    [128]钱方,章军.铜绿微囊藻(Microcystis aeruginosa)蛋白质组学研究方法的初步建立[J].高技术通讯,2007,17(2):197-200.
    [129] Bhargava P, MishraY, Srivastava AK, Ara A, Rai LC. Preliminary analysis of cuprome of Anabaena doliolum using two-dimensional gel electrophoresis[J]. Current Science, 2006,91(11): 1520-1523.
    [130]梁文裕,陈伟,宋瑞锋,张凤.龙眼胚胎发育过程中特异蛋白的变化[J].热带亚热带植物学报,2005, 13(3):229-232.
    [131] Englard S, Seifter S. Precipitation techniques[J]. Methods Enzymol, 1990, 182: 285-300.
    [132] Bradford MM. A rapid and sensitive method for the quantitation of microgram of protein论utilizing the principle of protein-dye binding[J]. Anal. Biochem., 1976, 72: 248-254.
    [133]杨梅,陈伟,林思祖,曹光球.杉木叶片蛋白质组的双向电泳技术优化[J].热带亚热带植物学报), 2007, 15(5): 438-442.
    [134] Liu H, Liu YZ, Zheng SQ, Jiang JM, Wang P, Chen W. Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion[J]. Planta, 2010, 231:847–860.
    [135] Yang PF, Chen H, Liang Y, Shen SH. Proteomic analysis of detiolated rice seedlings upon exposure to light[J]. Proteomics, 2007,7:2459-2468.
    [136]何文锦,郭晋隆,陈由强,林思祖,陈如凯.灰木相思蛋白质组双向电泳条件的优化[J].西北植物学报, 2007, 27(8):1577-1582.
    [137] Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: Un amour impossible?[J] Electrophoresis, 2000, 21(6):1054-1070.
    [138]王晓楠,付连双,李卓夫,李文滨,孙艳丽,王金伟,刘灿,陈禹兴.小麦苗期地下茎蛋白质双向电泳技术体系的优化[J].中国生物工程杂志,2008,28(12):66-71.
    [139]徐幼平,徐秋芳,蔡新忠.适于双向电泳分析的番叶片总蛋白提取方法的优化[J].浙江农业学报, 2007, 19(2):71-74.
    [140]郭尧君.蛋白质电泳实验技术(第二版).北京:科学出版社., 2005: 114,146,214, 221.
    [141] Chen H, Romo-Leroux PR, Pedro A. The iron-containing superoxidedismutase-encoding gene from Chlamydam onas reinhardtii obtained by direct and inverse PCR[J]. Gene,1996,168:113-116.
    [142] Urquhart BL, Astolos TE, Roachd.“Proteomic contings”of Mycobacterium tuberculosis and Mycobacterium bovis (BCG) using novel immobilized pH gradients[J]. Electrophoresis, 1997,18(8): 1384-1392.
    [143] Fujii K, Kondo T, Yokoo H. Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE fluor saturation dye[J]. Proteomics, 2006, 6(5): 1640-1653.
    [144] Zhu H, Snyder M. Protein arrays and microarrays[J]. Curr Opin Chem Biol,2001,5(1):40-45.
    [145] Feilner T, Hultsching C, Lee J. High throughput identification of protential Arabidopsis mitogen- activated protein kinases substrates[J]. Mol.Cell. Proteomics, 2005,4: 1558-1568.
    [146]陈伟,游向荣,龙强,等.蛋白质组学研究方法与技术[J].福建果树, 2006,139:42-47.
    [147]梁文裕,孙兰芳,王俊.发菜人工培养研究进展[J].农业科学研究,2007,28(1):46–50.
    [148]俞岚.回复吸水过程中发菜光合活性及转录本的变化[D].华中师范大学,2007:11–12.
    [149] Zhao XM, Bi YH, Chen L, Hu S, Hu ZY. Responses of photosynthetic activity in the drought-tolerant cyanobacterium, Nostoc flagelliforme to rehydration at different temperature[J]. Journal of Arid Environments, 2008,72:370–377.
    [150] Stewart WDP, Fipzgerald GP, Burris RH. Acetylene reduction by nitrogen fixing blue-green algae[J]. Arch. Microbiol, 1968,62,336–348.
    [151] Bender RA, Janssen KA, Resnick AD. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes[J]. J Bacterial, 1977,129:1001–1009.
    [152] Wang XQ, Yan PF, Gao Q, Liu XL, Kuang TY, Shen SH, He YK. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens[J]. Planta, 2008,228:167–177.
    [153]吴毅歆,熊国如,袁远.水稻基因组中分泌蛋白的初步分析[J].分子植物育种,2008,6(5): 1011–1014.
    [154] Sasaki C, Itoh Y, Takehara H, Kuhara S, Fukamizo T. Family 19 chitinase from rice (Oryza sativa L.): sub-strate-binding subsites demonstrated by kinetic and molecular modeling studies[J].Plant Mol.Biol, 2003,52(1):43–52.
    [155] Mathieu M, Neutelings G, Hawkins S, Grenier E, David H. Cloning of a pine germin-like protein(GLP) gene promoter and analysis of its activity in transgenic tobacco Bright Yellow 2 cells[J]. Physiol Plant, 2003,117(3):425–434.
    [156] Caldas TD, Yaagaubia AE, Richarme G. Chaperone properties of bacterial elongation factor EF-Tu[J]. J.Biol. Chem., 1998,273:11478–11482.
    [157] Kroll J. Molecular chaperones and the process of cellular immortalization in vitro[J]. Bilgerontology, 2002,3:183–185.
    [158] Sagadevan GM, Bienyameen B, Shaheen M, Shaun P, Saberi M, Clare VW, Kershini G, Alice M, Samson M, Jill MF, Jennifer AT. Physiological and molecular insights into drought tolerance[J]. African Journal of Biotechnology, 2002,1 (2):28–38.
    [159] Sedgwick SG, Smerdon SJ. The ankyrin repeats: A diversity of nteractions on common structural framework[J]. Trends in Biochemical Sciences, 1999, 24(8):311–316
    [160] Latifi A, Ruiz M, Jeanjean R, Zhang CC. PrxQ-A, a member of the peroxiredoxin Q family, plays a major role in defense against oxidative stress in the cyanobacterium Anabaena sp. strain PCC7120[J]. Free Radical Biology & Medicine,2007,42: 424–431
    [161] Naomi HM, Ken M, Hidehisa Y, Akiko N, Kazuhito I, Masayuki O, Toru H. Anti-oxidative stress system in cyanobacteria[J]. Biological Chemistry, 2005, 280(1): 840–846.
    [162] Sueoka K, Yamazaki T, Hiyama T, Nakamoto H. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1[J]. Biochemical and Biophysical Research Communications,2009,380(3): 520–524.
    [163] Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chianocone E, Chasteen ND. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli[J]. J Biol Chem, 2002,277,27689–27696.
    [164] Simon CA. The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor[J]. Biochimica et Biophysica Acta, 2010,1800: 691–705.
    [165] Emilia C, Pierpaolo C. The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding[J]. Biochimica et Biophysica Acta, 2010,1800: 798–805.
    [166] Almiron M, Link AJ, Furlong D, Kolter R. A novel DNA-binding protein with regulatory and protective roles in straved Escherichia coli[J]. Genes Dev, 1992, 6,2646–2654.
    [167] Orme-Johnson WH. Nitrogenase structure: where to now[J]. Science, 1992,257:1639–1640.
    [168]陈因,方大惟.蓝藻的光合固氮和谷氨酸胺合成酶之间的关系初探[J].物生理学通讯,1987,1054(5), 24–27.
    [169]王发珠,张云.陆生蓝藻发菜的持水力和固氮作用[J].植物学通报,1985,5(2):93–95.
    [170] Cren M, Hirel B. Glutamine synthetase in higher plant: Reuglation of gene and protein expression from the organ to cell[J]. Plant Cell Physiology, 1999,40:1187–1193.
    [171] Chang F, Paul CM, Yian S, Christopher TW, Jamesr K. A common fold for peptide synthetases cleaving ATP to ADP:Glutathione synthetase and D-alanine: D-alanine ligase of Escherichia coli[J], Biochemistry,1995,92:1172–1176.
    [172] Zhao KH, Hong Q, Siebzehnrueb S. Phycoerythrocyanin: A photoreceptor pigment with two faces[J]. Frontiers of Photobiol, 1993,7:31-36.
    [173] Ong LJ, Glazer AN. R-phycocyanin II, a new phycocyanin occurring in marine Synechococcus species.Identification of the terminal energy acceptor bilin in phycocyanins[J]. Biol Chem,1987,262: 6323–6327.
    [174] Houmard J, Capuano V, Colombano MV. Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes[J]. Proc Natl Acad Sci USA, 1990,87:2152–2156.
    [175] Troxler RF, Ehrhardt MM, Brown-Mason AS. Primary structure of phycocyanin from the uncellular rhodophyte Cyandiom caldarium. Complete amino acid sequence of theβ-subunit[J]. Biol Chem, 1981,256:12176–12184.
    [176] Scherers P. Novel water stress protein from a desiccation tolerant cyanobacterium: purification and partial characterization[J]. J. Biol. Chem, 1989,264:12546–12553.
    [177]张爱红.回复吸水与失水过程中发状念珠藻的光合作用及活性氧代谢[D].武汉:华中师范大学,2003.
    [178]唐进年,赵明,张盹明,张锦春.发菜的生物学特性及资源保护[J].中国野生植物资源,2000,19:20–24.
    [179] James BT, Jungwook K, Frank MR, Hazel MH.The catalytic mechanism of galactose mutarotase[J]. Protein Sci, 2003,(5):1051–1059.
    [180] Murray RB, Dean Price G. CO2 concentrating mechanism in cyanobacteria: molecular compontents, their diversity and evolution[J]. Journal of Experimental Botany, 2003, 54(383):609–622
    [181] Price GD, Sütemeyer D, Klughammer B, Ludwig M, Badger MR. The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins and recent advances[J]. Canadian Journal of Botany, 1998,76, 973–1002.
    [182] Kaplan A, Reinhold L. CO2 concentrating mechanisms in photosynthetic microorganisms[J]. Annual Reviews in Plant Physiology and Plant Molecular Biology, 1999,50, 539–559.
    [183] Cameron RE. Species of Nostoc voucher occurring in the Sonoran Desert in Arizona[J]. Tran Am Microsc Soc, 1962, (81):379-384.
    [184] Chen Y, Chen W, Xie Y. Ecological implications of drought-resistance and nitrogen photo-fixation of Nostoc flagelliforme[J]. Soil and Fertilizer, 1987,2:29-31.
    [185] Potts M. Minireview: mechanism of desiccation tolerance in Cyanobacteria[J]. Eur J Phyco1, 1999,34: 319-328.
    [186]徐青,祁建钊,秦恳,谢亚军,张炎,田惠桥.宁夏枸杞异型绒毡层发育的超微结构特点[J].西北植物学报,2009,29(12):2452-2463
    [187]李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [188] Krause GH, Weis E. Chlorophyll ?uorescence and photosynthesis: The basics[J]. Ann. Rev. Plant. Physiol. Plant. mol. Biol, 1991,42:313–349.
    [189] Chen LS, Qi YP, Simith BR, Liu XH. Aluminum-induced decrease in CO2 assimilation in citrus seedings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation[J]. Tree Physiol, 2005,25:317-324.
    [190] Cheng L, Fuchigami LH. Rubisco activation atate decreases with increasing nitrogen content in apple leaves[J]. J Exp Bot, 2000,51:1687-1694
    [191] Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies[J]. PlantSoil, 1973,39:205–207.
    [192] Wang AG, Luo GH. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communication, 1990, 6:55-57.
    [193] Patterson BD, Macrae EA, Feaguson IB. Estimation of hydrogen peroxide in plant extracts using titanium (IV) [J]. Anal biochem, 1984,139:487-492
    [194] Beyer WF, Fridovich Y. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions[J]. Anal Biochem, 1987,161:559–566.
    [195] Aebi H. Catalase in vitro. Methods Enzymol,1984,105:121-126.
    [196] Angelini R, Manes F, Federico R. Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon deetiolation and wounding in chick-pea stems[J]. Planta, 1990,182: 89–96.
    [197] Bergmeyer HU. Methods of enzymatic analysis[M]. Academic Press, New York. 1965.
    [198] Geigenberger P, Lerchl J, Stitt M, Sonnewald U. Phloem-specific expression of pyrophophatase inhibits long distance transport of carbohydrates and amino acids in tobacco plants[J]. Plant Cell Environ, 1996,19:43–55.
    [199] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47:377–403.
    [200] Wang XN, Chen SX, Zhan g H, Shi L, Cao FL, Guo LH, Xie YM, Wang T, Yan XF, Dai SJ. Desiccation tolerance mechanism in resurrection fernally Selaginella tamariscina revealed by physiological and proteomic analysis[J]. Journal of Proteome Research, 2010, 9(12):6561-6577
    [201] Oliver MJ, Tuba Z, Mishler BD. The evolution of vegetative desiccation tolerance in land plants[J]. Plant Ecol, 2000,151:85-100.
    [202] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol, 1996, 47:377–403.
    [203] Ramanjulu S, Bartels D. Drought- and desiccation-induced modulation of gene expression in plants[J]. Plant Cell Environ, 2002, 25 (2):141–151.
    [204] Proctor MCF, Tuba Z. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? [J]. New Phytol, 2002, 156:327–349.
    [205] Wood A J. The nature and distribution of vegetative desiccation tolerance in hornworts, liverworts and mosses[J]. Bryologist, 2007, 110 (2):163–177.
    [206] Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy[J]. Plant Physiol, 2009, 149 (4):1739–1750.
    [207] Ingle RA, Schmidt UG, Farrant JM, Thomson JA, Mundree SG. Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa[J]. Plant Cell Environ, 2007,30 (4):435–446.
    [208] Scherer S, Ernst A, Chen TW. Rewetting of drought-resistant blue-green: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation[J]. Oecologia, 1984,62:418-423.
    [209] Jiang GQ, Wang Z, Shang H H, Yang W L, Hu ZA, Phillips J, Deng X. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration[J]. Planta, 2007, 225 (6):1405–1420.
    [210] Ali GM, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress[J]. J. Proteome Res, 2006, 5 (2):396–403.
    [211] Peng Z, Wang M, Li F, Lv H, Li C, Xia G. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat[J]. Mol. Cell. Proteomics, 2009, 8 (12):2676–2686.
    [212] Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics, 2002, 2 (9):1131–1145.
    [213] Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidai M, Sadeghian SY, Ober ES, Salekdeh GH. Proteome analysis of sugar beet leaves under drought stress[J]. Proteomics, 2005,5 (4):950–960.
    [214] Liotenberg S, Campbell D, Rippka R, Houmard J, deMarsac N T. Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium[J]. Microbiology, 1996, 142 (3):611-622.
    [215] Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin) [J]. Eur. J. Biochem, 1998,254:154-159.
    [216] Martin O, Fred Bernd OS, Heinrich L, Alexander S . Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica Strain BI[J]. The Journal of Biological Chemistry, 2002, 277(28): 25096–25105.
    [217] Sherman DM, Tucker D, Sherman LA. Heterocyst development and localization of cyanophycin in N2-fixing cultures of Anabaena sp. pcc 7120 (cyanobacteria) [J]. J. Phycol. 2000,36(5): 932–941.
    [218] Allen MM . Cyanobacterial cell inclusions[J]. Annu. Rev. Microbiol, 1984,38:1-25.
    [219] Simon RD. Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies. In: The Cyanobacteria (P. Fay and C. van Baalen, eds.) [M]. Elsevier, Amsterdam, 1987:199-225.
    [220] Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin). Molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme[J]. Eur. J. Biochem, 1999,263:163-169.
    [221]赵福庚,何龙飞,罗庆云.植物逆境生理生态学(第一版) [M].北学工业出版社, 2004:193-209.
    [222] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu Rev Plant Biol, 2004,55:373-399.
    [223] Mundree SG, Baker B, Mowla S, Peters S, Marais S, Willigen CV, Govender K, Maredza A, Muyanga S, Farrant JM, Thomson JA. Physiological and molecular insights into drought tolerance[J]. Afr. J. Biotechnol, 2002,1:28–38.
    [224] Smirnoff N . The role of active oxygen in the response of plants to water deficits and desiccation[J].New Phytol, 1993,125 (1):27–58.
    [225] Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco[J]. Plant J, 2003, 33:621-632
    [226] Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death[J]. Plant Physiology, 2006, 141:384-390.
    [227] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002,7:405-410.
    [228] Shulaev V, Oliver DJ. Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research[J]. Plant Physiology, 2006,141:367-372.
    [229]杨柳,米粲,霍艳英. Peroxiredoxin在H2O2介导的信号通路中的作用[J].国际病理科学与临床杂志, 2006,26(5):417-419.
    [230]刘灵芝,钟广蓉,熊莲,常雁红,肖宝清,罗晖.过氧化氢酶研究进展[J].化学与生物工程, 2009,26(3): 15-18.
    [231] Arosio P, Ingrassia R, Cavadini P. Ferritins: A family of molecules for iron storage, antioxidation and more[J]. Biochimica et Biophysica Acta, 2009, 1790: 589-599.
    [232] Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation[J]. Biochim. Biophys. Acta 1996,1275: 161-203.
    [233] Chasteen ND. Ferritin. Uptake, storage, and release of iron[J]. Met. Ions Biol. Syst, 1998,35: 479-514.
    [234] Theil EC. Ferritin: at the crossroads of iron and oxygen metabolism[J]. J. Nutr. 2003,133: 1549S-1553S.
    [235] Carrondo M.A. Ferritins, iron uptake and storage from the bacterioferritin viewpoint[J]. EMBO J. 2003,22 :1959-1968.
    [236] Su M, Cavallo S, Stefanini S, Chiancone E, Chasteen ND. The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties[J]. Biochemistry, 2005,44:5572-5578.
    [237] Bou-Abdallah F, Lewin AC, Le Brun NE, Moore GR, Chasteen ND. Iron detoxification properties of Escherichia coli bacterio ferritin. Attenuation of oxyradical chemistry[J]. J. Biol. Chem. 2002,277: 37064-37069.
    [238] Mehdy MC. Active oxygen species in plant defense against pathogens[J]. Plant Physiol, 1994,105: 467-472
    [239]张晓雯.蓝藻信号转导系统的比较基因组学分析及重要基因功能的验证[D].中国科学院海洋研究所&中国科学院研究生院,2008:70-74
    [240]赵文超,薛永常.杨树木质素合成酶CCR基因的序列分析及蛋白结构预测[J].生物信息学, 2009, 7(2):81-84.
    [241]蒋彦,王小行,曹毅.基础生物信息学及应用[M].北京:清华大学出版社,2003:170.
    [242] Kytc J, Doolittle RF. A simple method for displaying the hydropathic character of a protein[J]. J Moleculur Biol, 1982,157:105.
    [243]麻鹏达,张晓英,李海云,马瑞.大肠杆菌Top10甘露醇-1-磷酸脱氢酶基因克隆及生物信息学分析[J].分子植物育种,2008,6(5):980-986.
    [244]宋东杰,杨平,李朝晖,陈全战,任源浩,秦春.贯叶金丝桃查尔酮合成酶基因的生物信息学分析[J].时珍国医国药,2009,20(10):2514-2516.
    [245]解筱,杨波,陈月辉.基于神经网络的蛋白质二级结构预测[J].济南大学学报(自然科学版), 2008,22(2):111-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700