Ⅱ型EPSP合酶的功能域鉴定及大肠杆菌在草甘膦冲击下的基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草甘膦是农业应用最广泛的除草剂之一,主要作用于植物和微生物等的5-烯醇氏丙酮酰莽草酸-3-磷酸(EPSP)合酶,阻断莽草酸代谢途径,导致芳香族氨基酸及其衍生物合成受阻。来自于微生物的II型EPSP合酶对草甘膦不敏感,目前已广泛应用于抗除草剂草甘膦的转基因作物中。尽管我国已初步建立转基因作物的基因资源平台,但是目前仍缺乏具有自主知识产权并用于转基因作物的抗除草剂功能基因。挖掘高抗草甘膦新基因、开展抗草甘膦基因的功能域研究、寻找抗草甘膦新基因中的专利保护位点以及改造,对于培育新型抗草甘膦转基因作物在理论和应用上具有积极意义。本研究在II型EPSP合酶中鉴定了保守的RPMXR功能域。定点突变结果表明四个严格保守的氨基酸残基:Arg127、Pro128、Met129和Arg131替换后导致酶完全失活,而非保守位点Asn130氨基酸残基的替换强烈影响了草甘膦抗性(依据A1501 EPSP合酶序列编写序号)。这些实验结果,结合RPMXR功能域的位置和磷酸烯醇式丙酮酸(PEP)及莽草酸-3-磷酸(S3P)互作的3D模建,证明此功能域对II型EPSP合酶的活性和草甘膦抗性至关重要。因此,本工作研究了新的X位点与抑制剂草甘膦/底物PEP的互作方式,及新功能域在酶分子结构上的作用。为进一步明确II型EPSP合酶催化机理奠定基础。
     我国抗草甘膦作物一旦广泛应用,田间耕作方式将发生革命性的变革,同时,草甘膦的大量施用对农田土壤微生物群落结构产生重要影响。本研究首先用基因组芯片分析A1501 EPSP合酶基因异源表达对大肠杆菌基因表达谱的影响。结果表明:共161个基因表达差异显著(变化倍数大于2倍)。上调基因19个,下调基因142个,其中所占比例最大(65%)的是功能不明确的基因。表达差异显著的基因主要与丝氨基酸代谢和转运机制相关。分析表明A1501 EPSP合酶作为功能基因,其异源表达对大肠杆菌表达谱影响并不显著。其次,研究了200 mM草甘膦冲击对大肠杆菌莽草酸途径阻断后的基因表达影响。结果表明:共127个基因表达差异显著,其中58个显著上调,69个显著下调。在表达差异显著并且功能已知的基因中,氨基酸合成和转运基因占最大比例。涉及到显著下调的芳香族氨基酸(Tyr、Trp和Phe)合成相关基因、支链氨基酸(Thr、Leu和Ile)合成、Leu转运基因等等。
     综上所述,这些实验结果将为提高EPSP合酶的草甘膦抗性和催化效率和田间施用草甘膦对土壤微生物群落影响的深入研究奠定了基础。
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is an attractive target for drugs and herbicides. Here we identified a novel RPMXR motif that is strictly conserved among class II EPSP synthases. Site-directed mutational analysis of this motif showed that substitutions of the four strictly conserved amino acid residues, Arg127, Pro128, Met129, and Arg131, resulted in complete loss of enzymatic activity, whereas changes in the non-conserved Asn130 residue strongly influenced glyphosate resistance (all numbering according to Pseudomonas stutzeri A1501 EPSP synthase). These experimental results, combined with 3D structure modeling of the location and interaction of the RPMXR motif with phosphoenolpyruvate (PEP) and shikimate-3-phosphate (S3P), demonstrate that the novel motif is required for enzymatic activity and glyphosate resistance of class II EPSP synthases.
     Glyphosate is one of the most widely used herbicides in cereal-growing regions worldwide. Noted for its broad effectiveness on competing vegetation, mild effect on conifers, rapid inactivation in soil, and low mammalian toxicity. Benefits of herbicide use must be viewed cautiously, however, environmental risks in effects of glyphosate shock on soil microbes has remained obscure. Firstly, there is a lack of knowledge on the class II EPSP synthase expression patterns in Escherichia coli. Here, we investigate the transcriptome using Affymetrix GeneChip. Expression profling revealed 19 up-regulated and 142 down-regulated genes. Class II aroA, a functional gene, which is essential for the synthesis of aromatic amino acids and many secondary metabolites, did not invasive expression changing. The microarray results, combined with free amino acid assay and BioLog results, suggested that a number of Serine involved in synthesis and transportor were significantly regulated by the expression of class II aroA gene. Secondly, a need exists to analyze the glyphosate-induced expression profiling changes in Escherichia coli, in order to gain a better understanding of the positive responses of glyphosate-responsive expression for future studies. A total of 127 differentially expressed genes were identified from the glyphosate shock sample, wherein 58 were up-regulated and 69 were down-regulated. Among the differentially expressed genes of known function, those encoding amino acid metabolism and transportor accounted for the largest proportion, consistent with observation that glyphosate blocks the shikimate pathway.
     In this work, we found a new conservative motif, and identified the functional motif, enzyme activity and glyphosate resistance which related to develop the commercial application of this enzyme . The gene expression profiling of E. coli exposed to glyphosate was analyzed to investigate the alternative effects of glyphosate on E. coli genome. The response mechanisms of glyphosate provide an important basis for effects of glyphosate application on soil microbes.
引文
曹琳辉. 2007.银山铅锌矿酸性矿坑水微生物群落结构分析.硕士学位论文.中南大学
    池晓菲,舒庆尧. 2001.生物芯片技术的原理与应用.遗传. 23, 370-374.
    冯永强,阎小君,苏成芝. 2000.基因芯片技术.国外医学:分子生物学分册. 22, 1-5.
    府伟灵. 2002.生物芯片概述.第三军医大学学报. 24, 1-2.
    霍金龙,苗永旺,曾养志. 2007.基因芯片技术及其应用.生物技术通讯. 18, 329-332.
    李金霞,程池,姚粟,胡海蓉. 2006. Biolog微生物自动分析系统.
    李谨. 2007.基因芯片技术的发展与应用.中国兽医杂志. 43, 87-89.
    刘谦,朱鑫泉. 2001.生物安全.科学出版社,北京.
    刘旭光, 2004.苏云金芽孢杆菌cry基因芯片检测方法的研究及应用.硕士学位论文.中国农业科学院
    聂呈荣,骆世明,王建武,冯远娇. 2003. GMO生物安全评价研究进展.生态学杂志. 22, 43-48.
    时途. 2008.粮食安全潜在风险不容忽视.中国经贸. 17, 46-46
    王秀君,郎志宏,陆伟,林敏,单安山,黄大昉. 2008.利用花粉管通道法将耐草甘膦基因mG2-epsps导入玉米自交系的研究初报.中国农业科技导报. 10, 56-62.
    王磊,徐建国,郭玺. 2007.用于SARS冠状病毒检测与分型的基因芯片、方法及试剂盒.中国专利.申请号/专利号: 200510132119
    杨崇良,李长松. 2000.农业转基因工程及其产品安全性检测研究现状.山东农业科学. 48-51.
    朱守一. 1999.生物安全与防止污染.化学工业出版社,北京.
    周卫平. 1999.过期专利农药的创制与发展.农药译丛. 21(3), 38-43.
    Adams, H., Teertstra, W., Demmers, J., Boesten, R., and Tommassen, J. 2003. Interactions between phage-shock proteins in Escherichia coli. J Bacteriol. 185, 1174.
    Adams, H., Teertstra, W., Koster, M., and Tommassen, J. 2002. PspE (phage-shock protein E) of Escherichia coli is a rhodanese. FEBS Lett. 518, 173-176.
    Adams, M. D., Wagner, L. M., Graddis, T. J., Landick, R., Antonucci, T. K., Gibson, A. L., and Oxender, D. L. 1990. Nucleotide sequence and genetic characterization reveal six essential genes for the Liv-I and LS transport systems of Escherichia coli. J Biol Chem. 265, 1436-11443.
    Ahmed, S. I. and Giles, N. H. 1969. Organization of enzymes in the common aromatic synthetic pathway: evidence for aggregation in fungi. J Bacteriol. 99, 231-237.
    Ahsan, N., Lee, D. G., Lee, K. W., Alam, I., Lee, S. H., Bahk, J. D., and Lee, B. H. 2008. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem. 46, 1062-1070.
    Anonymous. 2003. Summary information format. Roundup ready sugar beet, 2003a, according to council regulation 2002/812/ec: Web page: Http://gmoinfo.Jrc.It/csnifs/c-be-99-01.Pdf.
    Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129, 1265-1275.
    Barry, G., Kishore, G., Padgette, S., and Stallings, W. 1997. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. US Patent 5627061.
    Barry, G. and Padgette, S. 1992. Glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthases. WIPO Patent WO 92/04449.
    Barry, G. F. and Kishore, G. M. 1995. Glyphosate tolerant plants. US Patents 5463175.
    Barry, G. F., Kishore, G. M., and Padgette, S. R. 1991, posting date. Glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthases.WIPO Patent WO 91/04323.
    Barry, G. F., Kishore, G. M., Padgette, S. R., and Stallings, W. C. 2006. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. US Patent 0227966.
    Berlyn, M. B., Ahmed, S. I., and Giles, N. H. 1970. Organization of polyaromatic biosynthetic enzymes in a variety of photosynthetic organisms. J Bacteriol. 104, 768-774.
    Berlyn, M. B. and Giles, N. H. 1969. Organization of enzymes in the polyaromatic synthetic pathway: Separability in bacteria. J Bacteriol. 99, 222-230.
    Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., and Shao, Y. 1997. The complete genome sequence of Escherichia coli K-12. Science. 277, 1453-1474.
    Bohler, S., Bagard, M., Oufir, M., Planchon, S., Hoffmann, L., Jolivet, Y., Hausman, J. F., Dizengremel, P., and Renaut, J. 2007. A dige analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics. 7, 1584-1599.
    Boles, E. and Miosga, T. 1995. A rapid and highly efficient method for PCR-based site-directed mutagenesis using only one new primer. Curr Genet. 28, 197-198.
    Brissette, J. L., Weiner, L., Ripmaster, T. L., and Model, P. 1991. Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol. 220, 35-48.
    Brown, J. M. and Shaw, K. J. 2003. A novel family of Escherichia coli toxin-antitoxin gene pairs. J Bacteriol. 185, 6600-6608.
    Buzzola, F. R., Barbagelata, M. S., Caccuri, R. L., and Sordelli, D. O. 2006. Attenuation and persistence of and ability to induce protective immunity to a Staphylococcus aureus aroA mutant in mice. Infect Immun. 74, 3498-3506.
    Cadwell, R. C. and Joyce, G. F. 1992. Randomization of genes by PCR mutagenesis. Genome Res. 2, 28.
    Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winkler, J., Lockhart, D. J., Morris, M. S., and Fodor, S. P. 1996. Accessing genetic information with high-density DNA arrays. Science. 274, 610-614.
    Cheung, K. J., Badarinarayana, V., Selinger, D. W., Janse, D., and Church, G. M. 2003. Amicroarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res. 13, 206-215.
    Coco, W. M., Levinson, W. E., Crist, M. J., Hektor, H. J., Darzins, A., Pienkos, P. T., Squires, C. H., and Monticello, D. J. 2001. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nature Biotech. 19, 354-359.
    Crosa, J. H. and Walsh, C. T. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Micr M B R. 66, 223.
    Darwin, A. J. 2005. The phage-shock-protein response. Mol Microb. 57, 621-628.
    de Maria, N., de Felipe, M. R., and Fernandez-Pascual, M. 2005. Alterations induced by glyphosate on lupin photosynthetic apparatus and nodule ultrastructure and some oxygen diffusion related proteins. Plant Physiol Biochem. 43, 985-996.
    Della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T., and Kishore, G. M. 1986. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc Natl Acad Sci U S A.. 83, 6873.
    Della-Cioppa, G. B., SC, Taylor, ML, Rochester, DE, Klein, BK, Shah, DM, Fraley, RT, Kishore, GM. 1987. Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Biotechnology. 5, 579-584.
    Dewick, P. M. 1998. The biosynthesis of shikimate metabolites. Nat Prod Rep. 15, 17-58.
    Duke, S. O., Hoagland, R. E., and Elmore, C. D. 2006. Effects of glyphosate on metabolism of phenolic compounds. Physl Plant. 46, 307-317.
    Duke, S. O., Rimando, A. M., Pace, P. F., Reddy, K. N., and Smedas, R. J. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 51, 340-344.
    Duncan, K., Lewendon, A., and Coggins, J. R. 1984. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett. 165, 121-127.
    Dworkin, J., Jovanovic, G., and Model, P. 2000. The PspA protein of Escherichia coli is a negative regulator of sigma 54-dependent transcription. J Bacteriol. 182, 311.
    Eichhorn, E., van der Ploeg, J. R., and Leisinger, T. 1999. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem. 274, 26639-26646.
    Elderkin, S., Jones, S., Schumacher, J., Studholme, D., and Buck, M. 2002. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol. 320, 23-37.
    Eschenburg, S., Healy, M. L., Priestman, M. A., Lushington, G. H., and Sch?nbrunn, E. 2002. How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvyl shikimate-3-phosphate synthase from Escherichia coli. Planta. 216, 129-135.
    Eschenburg, S., Priestman, M. A., Abdul-Latif, F. A., Delachaume, C., Fassy, F., and Sch?nbrunn, E. 2005. A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamineenolpyruvyl transferase (MurA). J Biol Chem. 280, 14070.
    Eschenburg, S. and Sch?nbrunn, E. 2000. Comparative X-ray analysis of the un-liganded fosfomycin-target MurA. Proteins. 40, 290-298.
    Ferreras, J. A., Ryu, J. S., Di Lello, F., Tan, D. S., and Quadri, L. E. N. 2005. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Bl. 1, 29-32.
    Forlani, G., Pavan, M., Gramek, M., Kafarski, P., and Lipok, J. 2008. Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol. 49, 443-456.
    Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Uptake, transport and metabolism of glyphosate in plants. Glyphosate: a unique global herbicide. Washington: American Chemical Society. 143-181.
    Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., and Sch?nbrunn, E. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci U S A. 103, 13010-13015.
    Funke, T., Healy-Fried, M. L., Han, H., Alberg, D. G., Bartlett, P. A., and Schanbrunn, E. 2007. Differential inhibition of class I and class II 5-enolpyruvylshikimate-3-phosphate synthases by tetrahedral reaction intermediate analogues. Biochemistry. 46, 13344-13351.
    Funke, T., Yang, Y., Han, H., Healy-Fried, M. L., Olesen, S., Becker, A., and Schanbrunn, E. 2009. Structural basis of glyphosate tolerance resulting from the double mutation Thr97Ala and Pro101Ser in 5-enolpyruvyl-shikimate-3-phosphate synthase from Escherichia coli. J Biol Chem.
    Ganduri, Y. L., Sadda, S. R., Datta, M. W., Jambukeswaran, R. K., and Datta, P. 1993. TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol Gen Genet. 240, 395-402.
    Gasser, C. S., Winter, J. A., Hironaka, C. M., and Shah, D. M. 1988. Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of Petunia and tomato. J Biol Chem. 263, 4280.
    Geiger, D. R., Kapitan, S. W., and Tucci, M. A. 1986. Glyphosate inhibits photosynthesis and allocation of carbon to starch in sugar beet leaves. Plant Physiol. 82, 468-472.
    Green, R. C. and Darwin, A. J. 2004. PspG, a new member of the Yersinia enterocolitica phage shock protein regulon. J Bacteriol. 186, 4910.
    Hagewood, B. T., Ganduri, Y. L., and Datta, P. 1994. Functional analysis of the tdcABC promoter of Escherichia coli: Roles of TdcA and TdcR. J Bacteriol. 176, 6214-6220.
    Hahn, E., Wild, P., Hermanns, U., Sebbel, P., Glockshuber, R., Haner, M., Taschner, N., Burkhard, P., Aebi, U., and Muller, S. A. 2002. Exploring the 3D molecular architecture of Escherichia coli type I pili. J Mol Biol. 323, 845-857.
    Hall, L. and Emery, D. C. 1991. A rapid and efficient method for site-directed mutagenesis by PCR, using biotinylated universal primers and streptavidin-coated magnetic beads. Protein Eng. 4,601.
    Hansson, L. O. and Mannervik, B. 2000. Use of chimeras generated by DNA shuffling: probing structure-function relationships among glutathione transferases. Meth Enzym. 328, 463-477.
    He, M., Yang, Z. Y., Nie, Y. F., Wang, J., and Xu, P. 2001. A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochim Biophys Acta. 1568, 1-6.
    Healy-Fried, M. L., Funke, T., Priestman, M. A., Han, H., and Sch?nbrunn, E. 2007. Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. J Biol Chem. 282, 32949-32955.
    Herrmann, K. M. and Weaver, L. M. 1999. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol. 50, 473-503.
    Hewett-Emmett, D. and Tashian, R. E. 1996. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol. 5, 50-77.
    Hobert, E. H. and Datta, P. 1983. Synthesis of biodegradative threonine dehydratase in Escherichia coli: role of amino acids, electron acceptors, and certain intermediary metabolites. J Bacteriol. 155, 586-592.
    Hudson, G. S., Rellos, P., and Davidson, B. E. 1991. Two promoters control the aroH gene of Escherichia coli. Gene. 102, 87-91.
    Igarashi, K. and Kashiwagi, K. 1999. Polyamine transport in bacteria and yeast. Biochem J. 344 Pt 3, 633-642.
    James, C. 2009. Global status of biotech crops 1996 to 2008. International Service for the Acquisition of Agri-Biotech Applications (ISAAA).
    James, C. 2010. Global status of commercialized biotech/GM crops: 2009. International Service for the Acquisition of Agri-Biotech Applications (ISAAA).
    Jaworski, E. G. 1972. Mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthsis. J. Agric. Food Chem. 20, 1195-1198.
    Jovanovic, G., Weiner, L., and Model, P. 1996. Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol. 178, 1936-1945.
    Kahan, F. M., Kahan, J. S., Cassidy, P. J., and Kropp, H. 1974. The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad. 235, 364.
    Kahrizi, D., Salmanian, A. H., Afshari, A., Moieni, A., and Mousavi, A. 2007. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (K12) and transformation of rapeseed (Brassica napus l.) in order to make tolerance to glyphosate. Plant Cell Rep. 26, 95-104.
    Kaplan, W. and Littlejohn, T. G. 2001. Swiss-pdb viewer (deep view). Brief Bioinform. 2, 195.
    Keeling, P. J., Palmer, J. D., Donald, R. G., Roos, D. S., Waller, R. F., and McFadden, G. I. 1999.Shikimate pathway in apicomplexan parasites. Nature. 397, 219-220.
    Kessler, N., Ferraris, O., Palmer, K., Marsh, W., and Steel, A. 2004. Use of the DNA flow-thru chip, a three-dimensional biochip, for typing and subtyping of influenza viruses. J Clin Micr. 42, 2173. Kishore, G. M. and Shah, D. M. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem. 57, 627-663.
    Klemm, P. 1992. FimC, a chaperone-like periplasmic protein of Escherichia coli involved in biogenesis of type I fimbriae. Res Microbiol. 143, 831-838.
    Klemm, P. and Christiansen, G. 1990. The fimD gene required for cell surface localization of Escherichia coli type I fimbriae. Mol Gen Genet. 220, 334-338.
    Kobayashi, H., Yamamoto, M., and Aono, R. 1998. Appearance of a stress-response protein, phage-shock protein A, in Escherichia coli exposed to hydrophobic organic solvents. Microbiology. 144 ( Pt 2), 353-359.
    Komo a, D., Gennity, I., and Sandermann, H. 1992. Plant metabolism of herbicides with C-P bonds: glyphosate. Pest Bioch. 43, 85-94.
    Kumamoto, A. A., Miller, W. G., and Gunsalus, R. P. 1987. Escherichia coli tryptophan repressor binds multiple sites within the aroH and trp operators. Gene Dev. 1, 556.
    Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 100, 95-97.
    Li, J. W., Zheng, J. L., Wang, X. W., Jin, M., and Chao, F. H. 2007. Directed molecular evolution of nitrite oxido-reductase by DNA-shuffling. Biomed Environ Sci. 20, 113-118.
    Liang, A., Sha, J., Lu, W., Chen, M., Li, L., Jin, D., Yan, Y., Wang, J., Ping, S., Zhang, W., Wang, Y., and Lin, M. 2008. A single residue mutation of 5-enoylpyruvylshikimate-3-phosphate synthase in Pseudomonas stutzeri enhances resistance to the herbicide glyphosate. Biotechnol Lett. 30, 1397-1401.
    Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., and Brown, E. L. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 14, 1675-1680.
    Lowe, M. A., Holt, S. C., and Eisenstein, B. I. 1987. Immunoelectron microscopic analysis of elongation of type I fimbriae in Escherichia coli. J Bacteriol. 169, 157-163.
    Macnab, R. M., Neidhardt, F. C., Curtiss, R., Ingraham, J. L., Lin, E. C. C., Low, K. B., and Magasanik, B. 1996. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: Am. Soc. Microbiol. 123–145.
    Mannerl f, M., Tuvesson, S., Steen, P., and Tenning, P. 1997. Transgenic sugar beet tolerant to glyphosate. Euphytica. 94, 83-91.
    Marques, M. R., Pereira, J. H., Oliveira, J. S., Basso, L. A., de Azevedo, W. F., Jr., Santos, D. S., and Palma, M. S. 2007. The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets. 8, 445-457.
    McArthur, J. D., West, N. P., Cole, J. N., Jungnitz, H., Guzmán, C. A., Chin, J., Lehrbach, P. R.,Djordjevic, S. P., and Walker, M. J. 2006. An aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica is attenuated and immunogenic in a mouse model of infection. FEMS Micro Lett. 221, 7-16.
    McDevitt, D., Payne, D. J., Holmes, D. J., and Rosenberg, M. 2002. Novel targets for the future development of antibacterial agents. Symp Ser Soc Appl Microbiol. 28S-34S.
    McFall, E. and Heincz, M. C. 1983. Identification and control of synthesis of the DsdC activator protein. J Bacteriol. 153, 872-877.
    Nafziger, E. D., Widholm, J. M., Steinrucken, H. C., and Killmer, J. L. 1984. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76, 571-574.
    Nap, J. P., Metz, P. L. J., Escaler, M., and Conner, A. J. 2003. The release of genetically modified crops into the environment. Plant J. 33, 1-18.
    Nazos, P. M., Mayo, M. M., Su, T. Z., Anderson, J. J., and Oxender, D. L. 1985. Identification of LivG, a membrane-associated component of the branched-chain amino acid transport in Escherichia coli. J Bacteriol. 163, 1196-1202.
    Neuhierl, B., Thanbichler, M., Lottspeich, F., and Bock, A. 1999. A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem. 274, 5407-5414.
    Nida, D. L., Kolacz, K. H., Buehler, R. E., Deaton, W. R., Schuler, W. R., Armstrong, T. A., Taylor, M. L., Ebert, C. C., Rogan, G. J., and Padgette, S. R. 1996. Glyphosate-tolerant cotton: genetic characterization and protein expression. J. Agric. Food Chem. 44, 1960-1966.
    O'Callaghan, D., Maskell, D., Liew, F. Y., Easmon, C. S., and Dougan, G. 1988. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun. 56, 419-423.
    O'Connell, C., Pattee, P. A., and Foster, T. J. 1993. Sequence and mapping of the aroA gene of Staphylococcus aureus 8325-4. Microbiology. 139, 1449.
    Ogawa, W., Kayahara, T., Tsuda, M., Mizushima, T., and Tsuchiya, T. 1997. Isolation and characterization of an Escherichia coli mutant lacking the major serine transporter, and cloning of a serine transporter gene. J Biochem. 122, 1241-1245.
    Park, H., Hilsenbeck, J. L., Kim, H. J., Shuttleworth, W. A., Park, Y. H., Evans, J. N., and Kang, C. 2004. Structural studies of Streptococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate-bound state and S3P-GLP-bound state. Mol Microbiol. 51, 963-971.
    Penaloza-Vazquez, A., Mena, G. L., Herrera-Estrella, L., and Bailey, A. M. 1995. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol. 61, 538-543.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. 2004. Ucsf chimera--a visualization system for exploratory research and analysis. J Comput Chem. 25, 1605-1612.
    Polissi, A., De Laurentis, W., Zangrossi, S., Briani, F., Longhi, V., Pesole, G., and Deho, G. 2003.Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol. 154, 573-580.
    Pomposiello, P. J., Bennik, M. H., and Demple, B. 2001. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol. 183, 3890-3902.
    Powell, S. K., Kaloss, M. A., Pinkstaff, A., McKee, R., Burimski, I., Pensiero, M., Otto, E., Stemmer, W. P., and Soong, N. W. 2000. Breeding of retroviruses by DNA shuffling for improved stability and processing yields. Nat Biotech. 18, 1279-1282.
    Priestman, M. A., Funke, T., Singh, I. M., Crupper, S. S., and Sch?nbrunn, E. 2005. 5-enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett. 579, 728-732.
    Reddy, K. N., Rimando, A. M., and Duke, S. O. 2004. Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 52, 5139-5143.
    Remaut, H., Tang, C., Henderson, N. S., Pinkner, J. S., Wang, T., Hultgren, S. J., Thanassi, D. G., Waksman, G., and Li, H. 2008. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell. 133, 640-652.
    Richmond, C. S., Glasner, J. D., Mau, R., Jin, H., and Blattner, F. R. 1999. Genome-wide expression profiling in Escherichia coli k-12. Nucleic Acids Res. 27, 3821-3835.
    Roberts, F., Roberts, C. W., Johnson, J. J., Kyle, D. E., Krell, T., Coggins, J. R., Coombs, G. H., Milhous, W. K., Tzipori, S., Ferguson, D. J., Chakrabarti, D., and McLeod, R. 1998. Evidence for the shikimate pathway in apicomplexan parasites. Nature. 393, 801-805.
    Russell, P. W. and Orndorff, P. E. 1992. Lesions in two Escherichia coli type I pilus genes alter pilus number and length without affecting receptor binding. J Bacteriol. 174, 5923-5935.
    Ryu, K., Hwang, S. Y., Kim, K. H., Kang, J. H., and Lee, E. K. 2008. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. J Biot. 133, 110-115.
    Sawers, G. 2001. A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon. Mol Microbiol. 39, 1285-1298.
    Sch?nbrunn, E., Eschenburg, S., Krekel, F., Luger, K., and Amrheins, N. 2000. Role of the loop containing residue 115 in the induced-fit mechanism of the bacterial cell wall biosynthetic enzyme MurA. Biochemistry. 39, 2164-2173.
    Sch?nbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A. 98, 1376-1380.
    Sch?nbrunn, E., Svergun, D. I., Amrhein, N., and Koch, M. H. 1998. Studies on the conformational changes in the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamineenolpyruvyltransferase (MurA). FEBS. 253, 406.
    Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. 2003. Swiss-model: an automated protein homology-modeling server. Nucl Acid R. 31, 3381.
    Selinger, D. W., Cheung, K. J., Mei, R., Johansson, E. M., Richmond, C. S., Blattner, F. R., Lockhart, D. J., and Church, G. M. 2000. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotech. 18, 1262-1268.
    Sergiev, I. G., Alexieva, V. S., Ivanov, S. V., Moskova, II, and Karanov, E. N. 2006. The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pest Bioch. 85, 139-146.
    Servaites, J. C., Tucci, M. A., and Geiger, D. R. 1987. Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar beet leaves. Plant Physiol. 85, 370-374.
    Shinabarger, D. L. and Braymer, H. D. 1986. Glyphosate catabolism by Pseudomonas sp. Strain PG2982. J Bacteriol. 168, 702-707.
    Shizuta, Y. and Hayaishi, O. 1970. Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate. J Biol Chem. 245, 5416-5423.
    Sirisattha, S., Momose, Y., Kitagawa, E., and Iwahashi, H. 2004. Genomic profile of Roundup treatment of yeast using DNA microarray analysis. Environ Sci. 11, 313.
    Spie, G. E. L.杨政文2009.转基因来了——中国在粮食战争中的抉择:谁能满足中国的粮食饥渴?财经文摘. 28-31.
    Stalker, D. M., Hiatt, W. R., and Comai, L. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem. 260, 4724-4728.
    Stallings, W. C., Abdel-Meguid, S. S., Lim, L. W., Shieh, H. S., Dayringer, H. E., Leimgruber, N. K., Stegeman, R. A., Anderson, K. S., Sikorski, J. A., Padgette, S. R., and Kishore, G. M. 1991. Structure and topological symmetry of the glyphosate target
    5-enolpyruvylshikimate-3-phosphate synthase: A distinctive protein fold. Proc Natl Acad Sci U S A. 88, 5046-5050.
    Stauffer, M. E., Young, J. K., and Evans, J. N. 2001. Shikimate-3-phosphate binds to the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase. Biochemistry. 40, 3951-3957.
    Stauffer, M. E., Young, J. K., Helms, G. L., and Evans, J. N. 2001. Chemical shift mapping of shikimate-3-phosphate binding to the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase. FEBS Lett. 499, 182-186.
    Steinrucken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun. 94, 1207-1212.
    Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 370, 389. Suh, H., Hepburn, A. G., Kriz, A. L., and Widholm, J. M. 1993. Structure of the amplified5-enolpyruvylshikimate-3-phosphate synthase gene in glyphosate-resistant carrot cells. Plant Mol Biol. 22, 195-205.
    Sumantran, V. N., Schweizer, H. P., and Datta, P. 1990. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J Bacteriol. 172, 4288-4294.
    Tang, S. Y., Le, Q. T., Shim, J. H., Yang, S. J., Auh, J. H., Park, C., and Park, K. H. 2006. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J. 273, 3335-3345.
    Thanbichler, M., Neuhierl, B., and Bock, A. 1999. S-methylmethionine metabolism in Escherichia coli. J Bacteriol. 181, 662-665.
    Timm Wolf, J. K. 2008. Genetically modified plants. Nova Science Publishers.
    Tucker, D. L., Tucker, N., and Conway, T. 2002. Gene expression profiling of the pH response in Escherichia coli. J Bacteriol. 184, 6551-6558.
    Unver, T., Bakar, M., Shearman, R. C., and Budak, H. 2010. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomics. 283, 397-413.
    Urban, A., Neukirchen, S., and Jaeger, K. E. 1997. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 25, 2227-2228.
    van Der Ploeg, J. R., Iwanicka-Nowicka, R., Bykowski, T., Hryniewicz, M. M., and Leisinger, T. 1999. The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl. J Biol Chem. 274, 29358-29365.
    Weidhase, R., Albrecht, B., Stock, M., and Weidhase, R. A. 1990. Glyphosate utilization by Pseudomonas spec. Gs. Zentralbl Mikrobiol. 145, 433-438.
    Weiner, L., Brissette, J. L., and Model, P. 1991. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on Sigma 54 and modulated by positive and negative feedback mechanisms. Genes Dev. 5, 1912-1923.
    Weiner, L., Brissette, J. L., Ramani, N., and Model, P. 1995. Analysis of the proteins and cis-acting elements regulating the stress-induced phage shock protein operon. Nucleic Acids Res. 23,
    2030-2036. Weiner, L. and Model, P. 1994. Role of an Escherichia coli stress-response operon in stationary-phase
    survival. Proc Natl Acad Sci U S A. 91, 2191-2195. Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y., and Zhao, J. Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science. 321, 1676.
    Wu, L., Thompson, D. K., Li, G., Hurt, R. A., Tiedje, J. M., and Zhou, J. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Envir. 67, 5780.
    Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Zhang, W., Yao, Z., Li, H., Liu, W., He, S., Geng, L., Zhang, X., Yang, F., Yu, H., Zhan, Y., Li, D., Lin, Z., Wang, Y., Elmerich, C.,Lin, M., and Jin, Q. 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A. 105, 7564-7569.
    Ye, R. W., Tao, W., Bedzyk, L., Young, T., Chen, M., and Li, L. 2000. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol. 182, 4458-4465.
    Yu, W., Zhang, R., Li, R., and Guo, S. 2007. Isolation and characterization of glyphosate-regulated genes in soybean seedlings. Plant Sci. 172, 497-504.
    Yuan, J. S., Tranel, P. J., and Stewart, C. N., Jr. 2007. Non-target-site herbicide resistance: a family business. Trends Plant Sci. 12, 6-13.
    Zakataeva, N. P., Aleshin, V. V., Tokmakova, I. L., Troshin, P. V., and Livshits, V. A. 1999. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett. 452, 228-232.
    Zheng, M., Wang, X., Templeton, L. J., Smulski, D. R., LaRossa, R. A., and Storz, G. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol. 183, 4562-4570.
    Zhou, J. and Thompson, D. 2002. Microarrays: applications in environmental microbiology. Encyclopedia of environmental microbiology. 4, 1968-1979.
    Zhou, J. and Thompson, D. K. 2002. Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol. 13, 204-207.
    Zhu, J., Patzoldt, W. L., Shealy, R. T., Vodkin, L. O., Clough, S. J., and Tranel, P. J. 2008. Transcriptome response to glyphosate in sensitive and resistant soybean. J Agric Food Chem. 56, 6355-6363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700