铜离子在朊蛋白聚集过程及其致病机理中所发挥作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朊蛋白是一类能侵染动物并在宿主细胞内复制的无免疫性疏水蛋白质。目前对于朊病毒疾病比较公认的致病机制是正常的富含α螺旋细胞型朊蛋白(PrPc)构象发生转变,形成富含β折叠片层结构并具有蛋白酶抗性的感染型朊蛋白(PrPSc)聚集。
     许多证据证明大脑中淀粉样蛋白沉积与朊病毒疾病有关。有研究已经利用重组的PrP得到淀粉样纤维。除了淀粉样纤维聚集外,天然细胞型PrPc还能转变成为一种稳定的富含β折叠结构的寡聚体形态,并且这种来自于PrPSc的非纤维状的寡聚体具有较强的毒性。近年的证据表明可溶性寡聚体在神经退行性疾病中造成细胞功能的损伤。
     已有的实验表明PrP能够特异地和铜离子结合并在体内可能作为一种铜离子结合蛋白存在。其中四个组氨酸残基结合位点位于60到91位的氨基酸残基区域,而最近的研究表明第96和111位的组氨酸残基也在PrP与铜离子结合过程中起到重要作用。证据表明铜离子能够调节朊病毒疾病的病理过程。
     我们的研究结果发现铜离子是PrP寡聚过程中的关键因子。圆二色谱以及外源荧光实验结果揭示在弱酸性条件下铜离子促进的了PrP向富含β折叠的结构发生转变,而在偏中性条件下铜离子促进PrP形成无定型沉淀。通过分子筛色谱分离得到了PrP可溶性寡聚体并且利用原子力显微镜观察了寡聚体的大小及形态。寡聚体的平均直径为39±7nm。MTT实验和流式细胞术显示PrP的可溶性寡聚体对神经瘤母细胞SK-N-SH具有较强毒性并能诱导使其发生凋亡。荧光共聚焦显微镜显示PrP的可溶性寡聚体能够导致细胞内生的PrP发生聚集并转运到溶酶体中,并可能由此引发细胞凋亡信号。这些结果证明在生理酸性环境中,铜离子能够促进PrP形成具细胞毒性的可溶性寡聚体,并诱使神经细胞发生凋亡。
     此外,铜离子还对PrP淀粉样纤维的形成起到调节作用。在接近生理的温和实验条件下,铜离子抑制了PrP淀粉样纤维的形成。光散射实验表明在铜离子参与情况下,PrP能够更快的形成较大颗粒的聚集。而ThT实验显示只有在pH7.0的中性环境中没有铜离子参与的条件下,PrP能够形成淀粉样纤维。铜离子的存在抑制了该条件下PrP纤维的形成。而在弱酸性条件下ThT荧光没有升高,表明没有淀粉样纤维形成。利用原子力显微镜观察了PrP纤维样聚集,其直径大约15nm,长度为300nm左右。
     通过以上的研究,我们证明铜离子在PrP的聚集过程中起到重要作用。一方面铜离子能够促进PrP形成神经毒性的可溶性寡聚体,另一方面铜离子又能抑制体外典型PrP淀粉样纤维的形成。我们的研究结果提示铜离子可能在朊病毒疾病不同的病理过程中发挥不同的作用,并且为研究朊病毒疾病以及其它蛋白质构象病的发病机理提供有益的思路。
Prion is a kind of hydrophobic protein without imunity, which can infect human and animals and replicate in host cells. All of the prion diseases are accepted to share a common pathogenic mechanism, which based on the conversion of normal highα-helix containing PrPc into infectious and pathogenic PrPSc, which is the highly stable andβ-sheet rich isoform [1-3].
     Accumulation of amyloid deposits in brains has been related to the prion diseases. It has been shown that aggregated amyloid fibrils derived from recombinant PrP in vitro caused disease in animal models [4]. Other than amyloid fibrils, the native state of PrPc is able to be converted into stable nonnative states with highβ-sheet content such as theβ-oligomer [5,6]. Also certain non-amyloidal oligomeric forms of PrP derived from PrPSc have been demonstrated toxicity [7]. Sufficient evidences accumulated over the last few years indicate that soluble oligomers are toxic species, which damage the cell functions in neurodegenerative diseases.
     Earlier in vitro experiments revealed that the PrP specifically binds Cu2+[8-10] and this led to the proposal that PrP may function as a cuproprotein in vivo. The four histidine-containing octarepeats region of the PrP located between residues 60 and 91 was found binding Cu2+ in a cooperative manner [11], while recent researches indicated that residues 96 and 111 play important roles in binding Cu2+[12-14]. Accumulating evidences demonstrated that copper was able to modulate the pathogenesis of prion disease.
     Our researches indicated that Cu2+ is a vital factor involved in the formation of PrP oligomers. Cu2+ triggered structural conversion of PrP (90-231) to P-sheet isoform was revealed by CD (circular dichroism) spectra and fluorescence measurement. Moreover, we obtained deposition of PrP at higher pH and isolated soluble oligomers by size exclusion chromatography at physiological acidic pH. AFM (atomic force microscope) images showed the morphology of oligomers with diameters of 39±7 nm. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Flow Cytometry (FCM) demonstrated that oligomeric PrP induced significant damage and apoptosis of S-KN-SH cells. Using confocal microscopic techniques we found that oligomer induces the aggregation of endogenetic PrP, which is compartmentalized into the lysosomes where it might trigger pro-apoptotic cell death signals. This indicates that at physiological acidic environment Cu2+ promotes the formation of soluble PrP oligomers, which are cytotoxic and induce the apoptosis of neuron cells.
     In addition, Cu2+ also modulates the PrP aggregation into amloidic fibrils. Cu2+ suppressed the fibration of PrP in physiological conditions. Scattering experiment showed that Cu2+ promoted the formation of larger PrP particles. But the fluorescence of ThT demonstrated that only in the neutral pH 7.0 condition free of Cu2+, PrP aggregated into amyloidic fibrils. While the presence of Cu2+ restrained the formation of PrP fibrils in the same condition. However in other weakly acidic conditions, the fluorescence of ThT did not increase, which indicated that the there was no PrP amyloidic fibrils. AFM confirmed the existence of PrP amyloid fibrils and showed the morphology with a diameter of about 15 nm and a length of about 300nm.
     Our researches confirmed that Cu2+is a key factor in PrP aggregation. One hand, it promotes the formation of toxic soluble oligomers; on the other hand, Cu2+ suppresses the fibration of PrP. These results may indicate that Cu2+ plays different roles in different phases of the PrP pathogenesis, which may be beneficial for the pathogenesis of prion and other protein construction diseases.
引文
[1]Donne, D.G et al. (1997). Structure of the recombinant full-length hamster prion protein PrP(29-231):the N terminus is highly flexible. Proc Natl Acad SciUSA94,13452-7.
    [2]James, T.L. et al. (1997). Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94,10086-91.
    [3]Prusiner, S.B. (1998). Prions. Proc Natl Acad Sci U S A 95,13363-83.
    [4]Legname, G., Baskakov, I.V., Nguyen, H.O., Riesner, D., Cohen, F.E., DeArmond, S.J. and Prusiner, S.B. (2004). Synthetic mammalian prions. Science 305,673-6.
    [5]Baskakov, I.V., Legname, G., Baldwin, M.A., Prusiner, S.B. and Cohen, F.E. (2002). Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277,21140-8.
    [6]Lu, B.Y. and Chang, J.Y. (2001). Isolation of isoforms of mouse prion protein with PrP(SC)-like structural properties. Biochemistry 40,13390-6.
    [7]Silveira, J.R., Raymond, GJ., Hughson, A.G., Race, R.E., Sim, V.L., Hayes, S.F. and Caughey, B. (2005). The most infectious prion protein particles. Nature 437,257-61.
    [8]Hornshaw, M.P., McDermott, J.R., Candy, J.M. and Lakey, J.H. (1995). Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein:structural studies using synthetic peptides. Biochem Biophys Res Commun 214,993-9.
    [9]Qin, K., Yang, Y., Mastrangelo, P. and Westaway, D. (2002). Mapping Cu(Ⅱ) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 277,1981-90.
    [10]Whittal, R.M., Ball, H.L., Cohen, F.E., Burlingame, A.L., Prusiner, S.B. and Baldwin, M.A. (2000). Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 9,332-43.
    [11]Viles, J.H., Cohen, F.E., Prusiner, S.B., Goodin, D.B., Wright, P.E. and Dyson, H.J. (1999). Copper binding to the prion protein:structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A 96,2042-7.
    [12]Berti, F. et al. (2007). Structural and dynamic characterization of copper(II) binding of the human prion protein outside the octarepeat region. Chemistry 13,1991-2001.
    [13]Klewpatinond, M., Davies, P., Bowen, S., Brown, D.R. and Viles, J.H. (2008). Deconvoluting the Cu2+binding modes of full-length prion protein. J Biol Chem 283,1870-81.
    [14]Osz, K., Nagy, Z., Pappalardo, G., Di Natale, G, Sanna, D., Micera, G, Rizzarelli, E. and Sovago, I. (2007). Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain:speciation, stability constants and binding details. Chemistry 13, 7129-43.
    [15]Jones, C.E., Abdelraheim, S.R., Brown, D.R. and Viles, J.H. (2004). Preferential Cu2+ coordination by His96 and His 111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem 279,32018-27.
    [16]Delasnerie-Laupretre, N., Poser, S., Pocchiari, M., Wientjens, D.P. and Will, R. (1995). Creutzfeldt-Jakob disease in Europe. Lancet 346,898.
    [17]Aguzzi, A. and Polymenidou, M. (2004). Mammalian prion biology:one century of evolving concepts. Cell 116,313-27.
    [18]Gajdusek, D.C. (1977). Unconventional viruses and the origin and disappearance of kuru. Science 197,943-60.
    [19]Gajdusek, D.C., Gibbs, C.J., Jr., Asher, D.M. and David, E. (1968). Transmission of experimental kuru to the spider monkey (Ateles geoffreyi). Science 162,693-4.
    [20]Griffith, J.S. (1967). Self-replication and scrapie. Nature 215,1043-4.
    [21]Prusiner, S.B. (1982). Novel proteinaceous infectious particles cause scrapie. Science 216,136-44.
    [22]Bueler, H. et al. (1992). Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356,577-82.
    [23]Bueler, H., Aguzzi, A., Sailer, A., Greiner, R.A., Autenried, P., Aguet, M. and Weissmann, C. (1993). Mice devoid of PrP are resistant to scrapie. Cell 73, 1339-47.
    [24]Wickner, R.B. (1994). [URE3] as an altered URE2 protein:evidence for a prion analog in Saccharomyces cerevisiae. Science 264,566-9.
    [25]Bolton, D.C., Meyer, R.K. and Prusiner, S.B. (1985). Scrapie PrP 27-30 is a sialoglycoprotein. J Virol 53,596-606.
    [26]Meyer, R.K., McKinley, M.P., Bowman, K.A., Braunfeld, M.B., Barry, R.A. and Prusiner, S.B. (1986). Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A 83,2310-4.
    [27]Basler, K. et al. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46,417-28.
    [28]Prusiner, S.B. (1988). Molecular structure, biology, and genetics of prions. Adv Virus Res 35,83-136.
    [29]Soto, C. and Castilla, J. (2004). The controversial protein-only hypothesis of prion propagation. Nat Med 10 Suppl, S63-7.
    [30]Brown, D.R. and Sassoon, J. (2002). Copper-dependent functions for the prion protein. Mol Biotechnol 22,165-78.
    [31]van Rheede, T., Smolenaars, M.M., Madsen, O. and de Jong, W.W. (2003). Molecular evolution of the mammalian prion protein. Mol Biol Evol 20, 111-21.
    [32]Gasset, M., Baldwin, M.A., Lloyd, D.H., Gabriel, J.M., Holtzman, D.M., Cohen, F., Fletterick, R. and Prusiner, S.B. (1992). Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci U S A 89,10940-4.
    [33]Huang, Z., Gabriel, J.M., Baldwin, M.A., Fletterick, R.J., Prusiner, S.B. and Cohen, F.E. (1994). Proposed three-dimensional structure for the cellular prion protein. Proc Natl Acad Sci U S A 91,7139-43.
    [34]Zhang, H., Kaneko, K., Nguyen, J.T., Livshits, T.L., Baldwin, M.A., Cohen, F.E., James, T.L. and Prusiner, S.B. (1995). Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J Mol Biol 250,514-26.
    [35]Riek, R., Hornemann, S., Wider, G, Billeter, M., Glockshuber, R. and Wuthrich, K. (1996). NMR structure of the mouse prion protein domain PrP(121-321). Nature 382,180-2.
    [36]Riek, R., Hornemann, S., Wider, G, Glockshuber, R. and Wuthrich, K. (1997). NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413,282-8.
    [37]Riek, R., Wider, G, Billeter, M., Hornemann, S., Glockshuber, R. and Wuthrich, K. (1998). Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci U S A 95,11667-72.
    [38]Liu, H. et al. (1999). Solution structure of Syrian hamster prion protein rPrP(90-231). Biochemistry 38,5362-77.
    [39]Lopez Garcia, F., Zahn, R., Riek, R. and Wuthrich, K. (2000). NMR structure of the bovine prion protein. Proc Natl Acad Sci U S A 97,8334-9.
    [40]Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K. and Yee, V.C. (2001). Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8,770-4.
    [41]Brown, D.R. et al. (1997). The cellular prion protein binds copper in vivo. Nature 390,684-7.
    [42]Brown, D.R., Schulz-Schaeffer, W.J., Schmidt, B. and Kretzschmar, H.A. (1997). Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146,104-12.
    [43]Wong, B.S. et al. (2001). Aberrant metal binding by prion protein in human prion disease. J Neurochem 78,1400-8.
    [44]Wong, B.S. et al. (2000). Prion disease:A loss of antioxidant function? Biochem Biophys Res Commun 275,249-52.
    [45]Moore, R.C. et al. (2001). Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci U S A 98,15288-93.
    [46]Kuwahara, C. et al. (1999). Prions prevent neuronal cell-line death. Nature 400,225-6.
    [47]Walz, R., Amaral, O.B., Rockenbach, I.C., Roesler, R., Izquierdo, I., Cavalheiro, E.A., Martins, V.R. and Brentani, R.R. (1999). Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40, 1679-82.
    [48]Graner, E. et al. (2000). Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76,85-92.
    [49]Li, R. et al. (2001). The expression and potential function of cellular prion protein in human lymphocytes. Cell Immunol 207,49-58.
    [50]Pietri, M., Caprini, A., Mouillet-Richard, S., Pradines, E., Ermonval, M., Grassi, J., Kellermann, O. and Schneider, B. (2006). Overstimulation of PrPC signaling pathways by prion peptide 106-126 causes oxidative injury of bioaminergic neuronal cells. J Biol Chem 281,28470-9.
    [51]Krebs, B., Dorner-Ciossek, C., Schmalzbauer, R., Vassallo, N., Herms, J. and Kretzschmar, H.A. (2006). Prion protein induced signaling cascades in monocytes. Biochem Biophys Res Commun 340,13-22.
    [52]Graner, E., Mercadante, A.F., Zanata, S.M., Martins, V.R., Jay, D.G. and Brentani, R.R. (2000). Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett 482,257-60.
    [53]Pauly, P.C. and Harris, D.A. (1998). Copper stimulates endocytosis of the prion protein. J Biol Chem 273,33107-10.
    [54]Lee, K.S., Magalhaes, A.C., Zanata, S.M., Brentani, R.R., Martins, V.R. and Prado, M.A. (2001). Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J Neurochem 79, 79-87.
    [55]Jackson, G.S., Murray, I., Hosszu, L.L., Gibbs, N., Waltho, J.P., Clarke, A.R. and Collinge, J. (2001). Location and properties of metal-binding sites on the
    human prion protein. Proc Natl Acad Sci U S A 98,8531-5.
    [56]Brown, P. (2001). The pathogenesis of transmissible spongiform encephalopathy:routes to the brain and the erection of therapeutic barricades. Cell Mol Life Sci 58,259-65.
    [57]Montagna, P., Gambetti, P., Cortelli, P. and Lugaresi, E. (2003). Familial and sporadic fatal insomnia. Lancet Neurol 2,167-76.
    [58]Goldfarb, L.G et al. (1992). Fatal familial insomnia and familial Creutzfeldt-Jakob disease:disease phenotype determined by a DNA polymorphism. Science 258,806-8.
    [59]Monari, L. et al. (1994). Fatal familial insomnia and familial Creutzfeldt-Jakob disease:different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci U S A 91,2839-42.
    [60]Hsiao, K. et al. (1989). Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338,342-5.
    [61]Pedersen, N.S. and Smith, E. (2002). Prion diseases:epidemiology in man. Apmis110,14-22.
    [62]Mallucci, G and Collinge, J. (2004). Update on Creutzfeldt-Jakob disease. Curr Opin Neurol 17,641-7.
    [63]Sy, M.S., Gambetti, P. and Wong, B.S. (2002). Human prion diseases. Med Clin North Am 86,551-71, vi-vii.
    [64]Will, R.G et al. (1996). A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347,921-5.
    [65]Brown, P., Gibbs, C.J., Jr., Rodgers-Johnson, P., Asher, D.M., Sulima, M.P., Bacote, A., Goldfarb, L.G. and Gajdusek, D.C. (1994). Human spongiform encephalopathy:the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35,513-29.
    [66]Weissmann, C. (2004). The state of the prion. Nat Rev Microbiol 2,861-71.
    [67]Hornemann, S. and Glockshuber, R. (1998). A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc Natl Acad Sci U S A 95,6010-4.
    [68]Swietnicki, W., Petersen, R., Gambetti, P. and Surewicz, W.K. (1997). pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J Biol Chem 272,27517-20.
    [69]Vanik, D.L. and Surewicz, W.K. (2002). Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form. J Biol Chem 277,49065-70.
    [70]Foguel, D. and Silva, J.L. (2004). New insights into the mechanisms of protein misfolding and aggregation in amyloidogenic diseases derived from pressure studies. Biochemistry 43,11361-70.
    [71]Morillas, M., Vanik, D.L. and Surewicz, W.K. (2001). On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry 40,6982-7.
    [72]Sekijima, M., Motono, C., Yamasaki, S., Kaneko, K. and Akiyama, Y. (2003). Molecular dynamics simulation of dimeric and monomeric forms of human prion protein:insight into dynamics and properties. Biophys J 85,1176-85.
    [73]Ma, J. and Lindquist, S. (2002). Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298,1785-8.
    [74]Ma, J., Wollmann, R. and Lindquist, S. (2002). Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298,1781-5.
    [75]Borchelt, D.R., Scott, M., Taraboulos, A., Stahl, N. and Prusiner, S.B. (1990). Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 110,743-52.
    [76]Hill, A.F., Joiner, S., Linehan, J., Desbruslais, M., Lantos, P.L. and Collinge, J. (2000). Species-barrier-independent prion replication in apparently resistant species. Proc Natl Acad Sci U S A 97,10248-53.
    [77]Hill, A.F. and Collinge, J. (2003). Subclinical prion infection. Trends Microbiol 11,578-84.
    [78]Mallucci, G.R., Ratte, S., Asante, E.A., Linehan, J., Gowland, I., Jefferys, J.G. and Collinge, J. (2002). Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. Embo
    J 21,202-10.
    [79]Kitamoto, T. et al. (2002). Follicular dendritic cell of the knock-in mouse provides a new bioassay for human prions. Biochem Biophys Res Commun 294,280-6.
    [80]Safar, J.G. et al. (2002). Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nat Biotechnol 20,1147-50.
    [81]Dabaghian, R.H., Mortimer, P.P. and Clewley, J.P. (2004). Prospects for the development of pre-mortem laboratory diagnostic tests for Creutzfeldt-Jakob disease. Rev Med Virol 14,345-61.
    [82]Soto, C. (2004). Diagnosing prion diseases:needs, challenges and hopes. Nat Rev Microbiol 2,809-19.
    [83]Serban, D., Taraboulos, A., DeArmond, S.J. and Prusiner, S.B. (1990). Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40,110-7.
    [84]Zhou, H., Fisher, R.J. and Papas, T.S. (1993). Universal immuno-PCR for ultra-sensitive target protein detection. Nucleic Acids Res 21,6038-9.
    [85]Biffiger, K. et al. (2002). Validation of a luminescence immunoassay for the detection of PrP(Sc) in brain homogenate. J Virol Methods 101,79-84.
    [86]Supattapone, S. et al. (2001). Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75,3453-61.
    [87]Weissmann, C. and Aguzzi, A. (2005). Approaches to therapy of prion diseases. Annu Rev Med 56,321-44.
    [88]Horiuchi, M., Baron, G.S., Xiong, L.W. and Caughey, B. (2001). Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J Biol Chem 276,15489-97.
    [89]Pattison, I.H. and Jebbett, J.N. (1971). Histopathological similarities between scrapie and cuprizone toxicity in mice. Nature 230,115-7.
    [90]Kim, J.I., Choi, S.I., Kim, N.H., Jin, J.K., Choi, E.K., Carp, R.I. and Kim, Y.S. (2001). Oxidative stress and neurodegeneration in prion diseases. Ann N Y Acad Sci 928,182-6.
    [91]Watt, N.T. and Hooper, N.M. (2005). Reactive oxygen species (ROS)-mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem Soc Trans 33,1123-5.
    [92]Lehmann, S. (2002). Metal ions and prion diseases. Curr Opin Chem Biol 6, 187-92.
    [93]Hill, A.F., Antoniou, M. and Collinge, J. (1999). Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80 (Pt 1), 11-4.
    [94]Kocisko, D.A., Come, J.H., Priola, S.A., Chesebro, B., Raymond, GJ., Lansbury, P.T. and Caughey, B. (1994). Cell-free formation of protease-resistant prion protein. Nature 370,471-4.
    [95]Supattapone, S. (2004). Prion protein conversion in vitro. J Mol Med 82, 348-56.
    [96]Legname, G, Nguyen, H.O., Baskakov, I.V., Cohen, F.E., Dearmond, S.J. and Prusiner, S.B. (2005). Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci U S A 102,2168-73.
    [97]Westergard, L., Christensen, H.M. and Harris, D.A. (2007). The cellular prion protein (PrP(C)):its physiological function and role in disease. Biochim Biophys Acta 1772,629-44.
    [98]Martins, V.R., Linden, R., Prado, M.A., Walz, R., Sakamoto, A.C., Izquierdo, I. and Brentani, R.R. (2002). Cellular prion protein:on the road for functions. FEBS Lett 512,25-8.
    [99]Linden, R., Martins, V.R., Prado, M.A., Cammarota, M., Izquierdo, I. and Brentani, R.R. (2008). Physiology of the prion protein. Physiol Rev 88, 673-728.
    [100]Schmitt-Ulms, G. et al. (2001). Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314,1209-25.
    [101]Perini, F., Vidal, R., Ghetti, B., Tagliavini, F., Frangione, B. and Prelli, F. (1996). PrP27-30 is a normal soluble prion protein fragment released by
    human platelets. Biochem Biophys Res Commun 223,572-7.
    [102]Gatti, J.L., Metayer, S., Moudjou, M., Andreoletti, O., Lantier, F., Dacheux, J.L. and Sarradin, P. (2002). Prion protein is secreted in soluble forms in the epididymal fluid and proteolytically processed and transported in seminal plasma. Biol Reprod 67,393-400.
    [103]Manson, J.C., Clarke, A.R., Hooper, M.L., Aitchison, L., McConnell, I. and Hope, J. (1994).129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8,121-7.
    [104]Weissmann, C. and Flechsig, E. (2003). PrP knock-out and PrP transgenic mice in prion research. Br Med Bull 66,43-60.
    [105]Whittington, M.A., Sidle, K.C., Gowland, I., Meads, J., Hill, A.F., Palmer, M.S., Jefferys, J.G. and Collinge, J. (1995). Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat Genet 9,197-201.
    [106]Watt, N.T. and Hooper, N.M. (2003). The prion protein and neuronal zinc homeostasis. Trends Biochem Sci 28,406-10.
    [107]White, A.R. et al. (1999). Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol 155,1723-30.
    [108]Brown, L.R. and Harris, D.A. (2003). Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J Neurochem 87,353-63.
    [109]Perera, W.S. and Hooper, N.M. (2001). Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11,519-23.
    [110]Kuwahara, C. et al. (1999). Prions prevent neuronal cell-line death. Nature 400,225-6.
    [111]Pushie, M.J., Ross, A.R. and Vogel, H.J. (2007). Mass spectrometric determination of the coordination geometry of potential copper(Ⅱ) surrogates for the mammalian prion protein octarepeat region. Anal Chem 79,5659-67.
    [112]Pan, K.M., Stahl, N. and Prusiner, S.B. (1992). Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci 1,1343-52.
    [113]Choi, C.J., Kanthasamy, A., Anantharam, V. and Kanthasamy, A.G (2006). Interaction of metals with prion protein:possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 27,777-87.
    [114]Basu, S., Mohan, M.L., Luo, X., Kundu, B., Kong, Q. and Singh, N. (2007). Modulation of proteinase K-resistant prion protein in cells and infectious brain homogenate by redox iron:implications for prion replication and disease pathogenesis. Mol Biol Cell 18,3302-12.
    [115]Thackray, A.M., Knight, R., Haswell, S.J., Bujdoso, R. and Brown, D.R. (2002). Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J 362,253-8.
    [116]Sigurdsson, E.M. et al. (2003). Copper chelation delays the onset of prion disease. J Biol Chem 278,46199-202.
    [117]Imrie, C.E., Korre, A. and Munoz-Melendez, G. (2009). Spatial correlation between the prevalence of transmissible spongiform diseases and British soil geochemistry. Environ Geochem Health 31,133-45.
    [118]Millhauser, G.L. (2007). Copper and the prion protein:methods, structures, function, and disease. Annu Rev Phys Chem 58,299-320.
    [119]Davies, P. and Brown, D.R. (2008). The chemistry of copper binding to PrP:is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 410,237-44.
    [120]Miura, T., Hori-i, A., Mototani, H. and Takeuchi, H. (1999). Raman spectroscopic study on the copper(Ⅱ) binding mode of prion octapeptide and its pH dependence. Biochemistry 38,11560-9.
    [121]Kramer, M.L., Kratzin, H.D., Schmidt, B., Romer, A., Windl, O., Liemann, S., Hornemann, S. and Kretzschmar, H. (2001). Prion protein binds copper within the physiological concentration range. J Biol Chem 276,16711-9.
    [122]Cereghetti, G.M., Schweiger, A., Glockshuber, R. and Van Doorslaer, S. (2001). Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein. Biophys J 81,516-25.
    [123]Walter, E.D., Chattopadhyay, M. and Millhauser, GL. (2006). The affinity of copper binding to the prion protein octarepeat domain:evidence for negative cooperativity. Biochemistry 45,13083-92.
    [124]Inanami, O. et al. (2005). Conformational change in full-length mouse prion:a site-directed spin-labeling study. Biochem Biophys Res Commun 335, 785-92.
    [125]Gustiananda, M., Haris, P.I., Milburn, P.J. and Gready, J.E. (2002). Copper-induced conformational change in a marsupial prion protein repeat peptide probed using FTIR spectroscopy. FEBS Lett 512,38-42.
    [126]Qin, K. et al. (2000). Copper(Ⅱ)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275,19121-31.
    [127]Bull, P.C., Thomas, GR., Rommens, J.M., Forbes, J.R. and Cox, D.W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5,327-37.
    [128]Chelly, J., Turner, Z., Tonnesen, T., Petterson, A., Ishikawa-Brush, Y., Tommerup, N., Horn, N. and Monaco, A.P. (1993). Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3,14-9.
    [129]McKenzie, D., Bartz, J., Mirwald, J., Olander, D., Marsh, R. and Aiken, J. (1998). Reversibility of scrapie inactivation is enhanced by copper. J Biol Chem 273,25545-7.
    [130]Yang, S., Thackray, A.M., Fitzmaurice, T.J. and Bujdoso, R. (2008). Copper-induced structural changes in the ovine prion protein are influenced by a polymorphism at codon 112. Biochim Biophys Acta 1784,683-92.
    [131]Liu, M.L., Li, Y.X., Zhou, X.M. and Zhao, D.M. (2008). Copper(Ⅱ) inhibits in vitro conformational conversion of ovine prion protein triggered by low pH. J Biochem 143,333-7.
    [132]Wadsworth, J.D., Hill, A.F., Joiner, S., Jackson, GS., Clarke, A.R. and
    Collinge, J. (1999). Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol 1,55-9.
    [133]Todorova-Balvay, D., Simon, S., Creminon, C., Grassi, J., Srikrishnan, T. and Vijayalakshmi, M.A. (2005). Copper binding to prion octarepeat peptides, a combined metal chelate affinity and immunochemical approaches. J Chromatogr B Analyt Technol Biomed Life Sci 818,75-82.
    [134]Cereghetti, G.M., Schweiger, A., Glockshuber, R. and Van Doorslaer, S. (2003). Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases. Biophys J 84,1985-97.
    [135]Bocharova, O.V., Breydo, L., Salnikov, V.V. and Baskakov, I.V. (2005). Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry 44,6776-87.
    [136]Rachidi, W., Vilette, D., Guiraud, P., Arlotto, M., Riondel, J., Laude, H., Lehmann, S. and Favier, A. (2003). Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278,9064-72.
    [137]Maynard, C.J. et al. (2002). Overexpression of Alzheimer's disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277,44670-6.
    [138]Hegde, R.S., Tremblay, P., Groth, D., DeArmond, S.J., Prusiner, S.B. and Lingappa, V.R. (1999). Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402,822-6.
    [139]Armendariz, A.D., Gonzalez, M., Loguinov, A.V. and Vulpe, C.D. (2004). Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20,45-54.
    [140]Brown, D.R., Schmidt, B. and Kretzschmar, H.A. (1996). Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345-7.
    [141]Varela-Nallar, L., Toledo, E.M., Larrondo, L.F., Cabral, A.L., Martins, V.R. and Inestrosa, N.C. (2006). Induction of cellular prion protein gene expression
    by copper in neurons. Am J Physiol Cell Physiol 290, C271-81.
    [142]Toni, M., Massimino, M.L., Griffoni, C., Salvato, B., Tomasi, V. and Spisni, E. (2005). Extracellular copper ions regulate cellular prion protein (PrPC) expression and metabolism in neuronal cells. FEBS Lett 579,741-4.
    [143]Martins, S.M., Frosoni, D.J., Martinez, A.M., De Felice, F.G and Ferreira, S.T. (2006). Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the C-terminal domain of recombinant murine prion protein mPrP-(121-231). J Biol Chem 281,26121-8.
    [144]Borchelt, D.R., Taraboulos, A. and Prusiner, S.B. (1992). Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267, 16188-99.
    [145]Caughey, B. and Lansbury, P.T. (2003). Protofibrils, pores, fibrils, and neurodegeneration:separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26,267-98.
    [146]York, S.S., Lawson, R.C., Jr. and Worah, D.M. (1978). Binding of recrystallized and chromatographically purified 8-anilino-l-naphthalenesulfonate to Escherichia coli lac repressor. Biochemistry 17,4480-6.
    [147]Naiki, H., Higuchi, K., Hosokawa, M. and Takeda, T. (1989). Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177,244-9.
    [148]Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300,486-9.
    [149]Walsh, D.M. and Selkoe, D.J. (2004). Oligomers on the brain:the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11, 213-28.
    [150]Lu, B.Y. and Chang, J.Y. (2002). Isolation and characterization of a polymerized prion protein. Biochem J 364,81-7.
    [151]Rezaei, H., Eghiaian, F., Perez, J., Doublet, B., Choiset, Y., Haertle, T. and Grosclaude, J. (2005). Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities. J Mol Biol 347,665-79.
    [152]Nadal, R.C., Abdelraheim, S.R., Brazier, M.W., Rigby, S.E., Brown, D.R. and Viles, J.H. (2007). Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals. Free Radic Biol Med 42,79-89.
    [153]Zou, W.Q. and Cashman, N.R. (2002). Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem 277, 43942-7.
    [154]Alonso, D.O., DeArmond, S.J., Cohen, F.E. and Daggett, V. (2001). Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc Natl Acad Sci U S A 98,2985-9.
    [155]Chiovitti, K. et al. (2007). Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects. J Neurochem 103,2597-609.
    [156]Ross, C.A. and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl, S10-7.
    [157]Campana, V., Sarnataro, D. and Zurzolo, C. (2005). The highways and byways of prion protein trafficking. Trends Cell Biol 15,102-11.
    [158]Kovacs, GG, Gelpi, E., Strobel, T., Ricken, G, Nyengaard, J.R., Bernheimer, H. and Budka, H. (2007). Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 66,628-36.
    [159]Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R. and Singh, S. (2005). Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151,229-38.
    [160]Rachidi, W., Mange, A., Senator, A., Guiraud, P., Riondel, J., Benboubetra, M., Favier, A. and Lehmann, S. (2003). Prion infection impairs copper binding of cultured cells. J Biol Chem 278,14595-8.
    [161]Hijazi, N., Shaked, Y., Rosenmann, H., Ben-Hur, T. and Gabizon, R. (2003). Copper binding to PrPC may inhibit prion disease propagation. Brain Res 993, 192-200.
    [162]Stockel, J., Safar, J., Wallace, A.C., Cohen, F.E. and Prusiner, S.B. (1998). Prion protein selectively binds copper(II) ions. Biochemistry 37,7185-93.
    [163]Aronoff-Spencer, E. et al. (2000). Identification of the Cu2+binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39,13760-71.
    [164]Lu, X., Wintrode, P.L. and Surewicz, W.K. (2007). Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104,1510-5.
    [165]Sun, Y, Breydo, L., Makarava, N., Yang, Q., Bocharova, O.V. and Baskakov, I.V. (2007). Site-specific conformational studies of prion protein (PrP) amyloid fibrils revealed two cooperative folding domains within amyloid structure. J Biol Chem 282,9090-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700