猪F-box基因家族部分基因的分子特征、SNP检测与性状关联分析暨FBXO40基因的功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分猪F-box基因家族部分基因的分子特征、SNP检测与性状关联分析
     从早期追求猪生产性能的提高到现在生产性能与免疫抗性并重,人们已经认识到单纯的提高猪的生产性能会导致抗性降低。一般来说,动物的免疫力决定了动物的健康状况,它与动物的生产性能是密切相关的。这就使得研究者们相继提出了在分子水平揭示疾病发生的原因,并利用现代生物技术从遗传本质上提高动物对病原的抗性,增强动物自身的抵抗力。
     E3泛素连接酶F-box基因家族参与众多的生物学过程,包括信号转导、细胞周期、细胞凋亡、转录激活和MHCⅠ类抗原提呈等(Bai et al,1996;Craig and Tyers,1999),与肿瘤的发生和机体免疫密切相关,已逐渐成为一个新研究热点。本研究采用生物信息学、群体遗传学和分子生物学等相结合的方法,对E3泛素连接酶F-box基因家族中3个基因进行了深入的研究,取得了如下结果:
     1)利用猪EST数据库的信息,分离了猪E3泛素连接酶F-box基因家族中FBXO5和FBXO7基因的完整的编码区(coding sequence,CDS)和部分基因组序列,并进行了蛋白质序列的推导和基因组结构的初步分析,所有的内含子和外显子的拼接位点都符合“GT-AG”规则;分离了猪FBXO40基因的大部分cDNA序列。
     2)利用IMpRH(The INRA-University of Minnesota porcine radiation hybrid panel)克隆板,对猪FBXO40基因进行了染色体定位,将其定位于SSC13q4.1-4.6,与微卫星S0075和SW1876连锁,连锁的LOD值分别为12.99和7.12。
     3)采用ClustalW2程序分析了FBXO5、FBXO7两个基因编码氨基酸序列的保守性及FBXO40基因F-box结构域氨基酸序列的保守性,并根据氨基酸序列信息构建了不同物种间的进化树,进行了序列的分子进化分析。
     4)采用半定量PCR的方法分析了猪FBXO5,FBXO7和FBXO40三个基因在成年五指山猪心脏、骨骼肌、淋巴、脾脏和胸腺等组织中的表达情况。FBXO5、FBXO7和FBXO40基因分别在胸腺、甲状腺和骨骼肌中高表达。
     5)采用半定量PCR的方法分别检测了猪FBXO5,FBXO7和FBXO40三个基因在正常肾脏组织和癌化的PK15细胞中的表达变化。猪FBXO5基因仅在正常肾脏组织中可检测到表达,猪FBXO40基因仅在PK15细胞中检测到表达,猪FBXO7基因在二者之间基本无差异。
     6)对上述3个基因进行了SNPs检测,发现如下5个可用PCR-RELP检测的多态位点:FBXO5基因第三内含子第160位碱基的PstⅠ-RFLP(T/C~(160))和第四内含子第56位碱基的TaqⅠ-RFLP(A/G~(56));FBXO7基因第三内含子第71位碱基的XbaⅠ-RFLP(T/C~(71))和第七外显子第113位碱基的NruⅠ-RFLP(T/C~(113));FBXO40基因第四外显子第299位碱基的HindⅡ(HincⅡ)-RFLP(A/C~(299))。
     7)对上述5个SNPs用PCR-RFLP方法在五指山、巴马、莱芜、贵州、通城、大白猪和长白猪中进行群体遗传学分析,结果表明,所有基因座的基因型频率在不同的品种中存在较大差异。
     8)在我室与温氏集团合作的温氏群体中,对上述SNPs(除XbaⅠ-RFLP位点)与部分免疫相关性状(如:白细胞数、红细胞数和血红蛋白浓度、猪瘟抗体阻断率和血小板分布宽度等)进行了初步关联分析,结果发现,FBXO5基因pstⅠ-RFLP(T/C~(160))和TaqⅠ-RFLP(A/G~(56))两个位点FBXO5基因pstⅠ(T/C~(160))和TaqⅠ(A/G~(56))两个位点不同基因型的个体都与部分红细胞指标和血小板分布宽度显著相关;FBXO7基因NruⅠ-RFLP(T/C~(113))多态与32日龄时白细胞数(P<0.05)和猪瘟抗体阻断率(P<0.05)在不同基因型的个体间差异显著;FBXO40基因HindⅡ-RFLP(A/C~(299))不同基因型个体在17日龄时白细胞数(P<0.01)和淋巴细胞绝对值(P<0.01)差异极显著。
     9)在我室与湖北省通城县畜牧局合作组建的通城群体中,对上述SNPs(除NruⅠ-RFLP位点)与部分生产性状(如:初生至上市平均日增重、达90kg(75kg)日龄、屠宰率、肌肉颜色和肌肉pH值等)和部分免疫相关性状(如:白细胞数、红细胞数和血红蛋白浓度等)进行了初步关联分析,结果显示,FBXO40基因HindⅡ(HincⅡ)-RFLP(A/C~(299))位点,血红蛋白浓度(P<0.01)、平均血细胞血红蛋白浓度(P<0.01)、肌肉颜色评分(P<0.05)和达90kg(75kg)日龄(P<0.05)在三种基因型个体间存在极显著差异。
     第二部分FBXO40基因的功能初探
     肌萎缩是临床上较为常见的一种疾病,去神经支配、禁食、糖尿病和癌症等都可以引起肌肉萎缩。当蛋白质降解速率超过合成速率时,肌肉发生萎缩,已有越来越多的实验发现与泛素-蛋白酶体途径有着紧密的联系。同时,诸多重要的信号通路网络业已被证实彼此交织发挥着不可替代的作用。阐明肌萎缩过程中一些分子代谢调节机制的基本概况就显得尤为重要,这不仅可以加深对肌萎缩类疾病的认识,也可以为治疗该类疾病提供新的依据和促进新的药物靶点的筛选。
     FBXO40基因是一个与肌肉疾病相关的基因,在去神经肌萎缩中表达上调。探讨研究该基因在肌萎缩中的具体作用具有重要意义。本研究采用生物信息学和分子生物学相结合的手段,初步得到以下结果:
     1) mFBXO40基因编码一个较大的F-box蛋白,是一个骨骼肌特异性表达的基因,具有一个未知功能的Zinc finger TRAF-type结构域。
     2)生物信息学预测,mFBXO40蛋白没有发现信号肽和线粒体定位信号,但发现明显的内质网信号锚定序列,推测该蛋白定位在内质网。
     3)成功构建了该基因的荧光融合蛋白表达载体、超表达载体和功能域缺失超表达载体。
     4)利用融合蛋白表达技术完成了mFBXO40蛋白的亚细胞定位,脂质体包裹转染C2C12细胞并染色后通过激光共聚焦显微镜观察,发现该蛋白集中分布在靠近核外膜的细胞质区域。
People have been conscious of boosting the porcine performance traits merely decreased its disease resistance traits from seeking the high growth rate et al over the past long periods to emphasize the performance traits and immune resistance together. Generally speaking,animal's immune capability,which has closely relation with its performance traits,determines its disease resistance.Thus,the researchers want to explore the molecular mechanism underlying the development of diseases,therefore to improve the disease resistance using the genetic methods.
     Increasing reports indicated that F-box gene families,members of E3 ubiquitin ligases,are involved in many biological processes,including signal transduction,cell cycle,apoptosis,transcriptional activation,MHC classⅠantigens presentation et al(Bai et al,1996;Craig and Tyers,1999),and tightly correlated with tumorigenesis and individual immunity.Researches on these gene families have become a new hot spot gradually.Combining of the bioinformatics,population genetics and the biotechnology, three genes which including FBXO5(F-box protein 5),FBXO7 and FBXO40 gene were analyzed deeply.The main results are listed as follows:
     1) Utilizing the porcine EST(Expressed sequence tag) database information,complete CDS and partial genomic sequences of pig FBXO5 and FBXO7 gene were obtained, and then the deduced amino acid sequences and the genomic structure were analyzed. All splice sites of the exon/intron conformed to the GT/AG rule;in addition,we also isolated partial cDNA sequence of pig FBXO40 gene.
     2) IMpRH was employed to determine the precise location of FBXO40 gene.Statistical analysis showed that FBXO40 gene is located to SSC13q4.1-4.6 and closely linked to the microsatellites S0075 and SW1876 with LOD scores of 12.99 and 7.12 respectively.
     3) The ClustalW2 program was used to analyze the amino acid sequences' conservation of FBXO5,FBXO7 gene and FBXO40 gene F-box domain,and inferred the phylogenetic relationship of them among different species respectively.
     4) Semi-QPCR(semi-quantitative PCR) was employed to estimate the expression level of the three genes among different tissues,such as heart,skeletal muscle,lymphonode, spleen,thymus et al,from adult wuzhishan pigs.These three genes FBXO5、FBXO7 and FBXO40 have different tissue distribution,which are relatively high in thymus, thyroid gland and skeletal muscle,respectively.
     5) Semi-QPCR was employed to analyze the difference of the three genes between the normal kidney tissue and PK15 cells.The results demonstrated that FBXO5 gene was merely detected in the normal kidney tissue,FBXO40 gene only in PK15 cells,and no difference for FBXO7 gene.
     6) Detection of SNPs(single nucleotide polymorphisms) in the amplified fragments of these three genes was carried out and five SNPs were identified for further genotype by PCR-RFLP(PCR-restriction fragment length polymorphism),these loci are as follows:Pst I-RFLP(T/C~(160)) in the third intron and Taq I-RFLP(A/G~(56)) in the fourth intron of porcine FBXO5 gene;Xba I-RFLP(T/C~(71)) and Nru I-RFLP(T/C~(113)) site in the third intron and seventh exon of porcine FBXO7 gene respectively; HindⅡ(HincⅡ)-RFLP(A/C~(299)) in the fourth exon of FBXO40 gene.
     7) The population genetics analysis of these five SNPs were performed by PCR-RFLP method in Wuzhishan,Bama,Laiwu,Guizhou,Tongcheng,Large White and Landrace pigs,and showed that all genotype frequencies of all the loci were significant difference among the different populations.
     8) These four polymorphism sites except Xba I-RFLP(T/C~(71)) site were analyzed in wens experimental population with some immune associated traits.The association analysis results revealed that these two sites of FBXO5 gene have the effects on partial erythrocyte indexes and platelet distribution width.The polymorphism of the FBXO7 gene(Nru I-RFLP(T/C~(113)) site) prominently has the effects on leukocyte counts (P<0.05,32 days) and blockade rate of swine plague antibody(P<0.05,32 days).The different genotypes of FBXO40 HindⅡ-RFLP(A/C~(299)) site have the very significant difference on leukocyte counts(P<0.01,days) and Lymphocyte modulus(P<0.01,17 days).
     9) The four SNPs(except the Nru I-RFLP(T/C~(113)) site) were genotyped in the tongcheng experimental population which constructed by our lab.The association analysis between these SNPs and some traits,partial economic traits(including Avg. daily gain from birth to market,days of age at an ideal market weight,dressing percent,meat color score et al) and partial immune associated traits(leukocyte counts, total erythrocytes,hemoglobin et al),were performed.The results indicated that the different genotypes of FBXO40 locus have the significant difference on hemoglobin (P<0.01),mean corpuscular volume hemoglobin concentration(P<0.01),Avg.daily gain from birth to market(P<0.05) and meat color score(P<0.05).
     Muscle atrophy,caused by denervation,fasting,diabetes and cancer et al,is a fairly frequent disease clinically and also characterized that the rate of speed for protein degradation exceeds that of protein synthesis.Increasing experiment evidences indicated that the ubiquitin-proteasome pathway would participate in muscle atrophy;meanwhile, numerous signal pathways play an essential role through interacting with each other.It is especially important to elucidate the molecular mechanism of muscle atrophy processes, which not only could facilitate to deeply understand these diseases of muscle atrophy,but also provide foundation for therapeutics and promote the screening of new drug targets.
     FBXO40,a muscle disease related gene,is up-regulated in muscle atrophy.It is significant to study the concrete effects of FBXO40 gene in muscle atrophy.In our research,the bioinformatics and molecular biology methods were utilized to study this gene;the main results are listed as follows:
     1) mFBXO40,encoding a large F-box protein and possessing unknown function of Zinc finger TRAF-type domain,is a muscle-specific expression gene.
     2) By bioinformatics,the prediction results of mFBXO40 protein showed that the protein didn't have signal peptide and mitochondrial signal peptide,but the endoplasmic reticulum signal anchor sequence could be obviously found.On the basis of the forecast results,we presumed that the mFBXO40 protein may localize in endoplasmic reticulum.
     3) Successfully constructed the mFBXO40 gene eukaryotic expression vector:the vector for subcellular localization pEGFP-N1-FBXO40,the vector for overexpression (complete CDS):pcDNA3.1(+)-FBXO40,the vector for overexpression(functional domain-depleted):pcDNA3.1(+)-FBXO40DF and pcDNA3.1(+)-FBXO40DT.
     4) The intracellular distribution of mFBXO40 protein in C2C12 cells was analyzed by the confocal analysis of transiently transfected with pEGFP-N1-FBXO40.After stained with Hoechst33342 and MitoTracker Red CM-H2Xros,the fusion proteins were obviously detected in cytoplasm surrounding the perinuclear membrane.
引文
1.陈建明,余应年.真核泛素缀合途径研究进展,中国病理生理杂志,2000,16(2):175-178.
    2.邓跃林,冯定远.影响猪肉品质的因素及营养调控.畜禽业,2001,7:26-28.
    3.邓树勋,王健.高级运动生理学[M].北京:高等教育出版社,2003:419-422.
    4.黄骥,张红生,曹雅君,钱晓茵,杨金水.水稻功能基因的电子克隆策略.中国水稻科学,2002,16(4):295-298.
    5.胡韶楠,徐建光,顾玉东,李继峰.不同部位骨骼肌失神经支配后超微结构变化的实验研究.中国修复重建外科杂志,2002,16(1):44-47.
    6.姜勋平,刘永刚,熊远著,邓昌彦.猪FUT1基因对肉质和胴体性状的影响[J].遗传,2005,27(4):566-570.
    7.姜广良,顾玉东,沈丽英,张丽银,徐建光.用纤颤电位波幅衡量失神经肌肉萎缩程度的临床研究.中华手外科杂志,1998,14(4):218-221.
    8.李红伟,连林生.影响猪肉质性状的基因.黑龙江畜牧兽医,2003,3:41-44.
    9.李华,张亚平,邱祥聘.中国部分猪种SLA-DQB外显子2遗传多样性.遗传,2005,27(2):173-180.
    10.林元震,张志毅,林善枝,张谦,刘纯鑫,郭海.运用基因组和EST数据库进行电子克隆分离杨树功能基因的策略.分子植物育种,2007,5(4):583-587.
    11.刘榜,杨金娥,樊斌,钟强,徐三平,杜亚球,彭中镇,李奎.一个新的猪SLA-DRB 等位基因的分离与分析.农业生物技术学报,2004,12(2):228-229.
    12.刘榜,张庆德,李奎,樊斌,杜翔,高辉,唐中林,彭中镇.猪部分免疫性状与生产性状间的相关关系研究.华中农业大学学报,2005,24(5):480-484.
    13.刘鑫,施启顺,柳小春,蒋隽,黄生强.不同猪种肠毒性大肠杆菌(ETEC)F4受体的微卫星标记遗传效应分析[J].遗传,2006,28(8):945-948.
    14.李小白,崔海瑞,张明龙.EST分子标记开发及在比较基因组学中的应用.生物多样性,2006,14(6):541-547.
    15.莫德林.猪PNAS-4基因的结构与功能研究及α1,3-GT基因敲除载体的构建.博士研究生学位论文2006.
    16.彭章华,苗向阳,郑鸿培,潘清琴.猪防御素PBD-1基因的克隆及其表达载体构建.中国畜牧兽医,2005,32(11):38-40.
    17.祁得林,李军祥.猪遗传育种研究进展.当代畜牧,1997,5:2-3.
    18.孙利平,李岩,张宁,姜乃佳,付伟,薛一雪.MDM2基因扩增和蛋白表达与胃癌相关性的研究[J].世界华人消化杂志,2003,11(11):1800-1801.
    19.孙鲁宁,徐岩,董贵章,张海鹏.我国粘多糖贮积症IH型患者α-L艾杜糖苷酶基因的一种同义突变.中国病理生理杂志,2002,18(4):421-422.
    20.孙华林,梅晓云,王晓冬,何江虹,丁斐.双向电泳分析失神经支配大鼠腓肠肌蛋白的表达变化.中国交通医学杂志,2005,19(3):199-203.
    21.田涛,吴朝晖,金惠铭,顾玉东.大鼠臂丛神经损伤后骨骼肌萎缩时肌细胞凋亡的研究.中华医学杂志,2000,80(7):530-533.
    22.吴建忠.猪遗传育种技术研究进展.畜禽业,2004,3:59-60.
    23.王庆敏,戴建新,孙树汉.泛素系统及其功能研究,生物工程进展,2001,21(6):66-69.
    24.吴朝晖,金惠铭,顾玉东.大鼠臂丛神经损伤后萎缩骨骼肌基因表达谱的变化.中华创伤杂志,2002,18(6):357-360.
    25.徐雷,顾玉东,徐建光,贾林芝,张志鸿.人体失神经萎缩骨骼肌蛋白质组学的初步研究.中华手外科杂志,2005,21(4):236-240.
    26.张微,魏国生,张索坤.影响猪肉品质的主要因素.黑龙江畜牧兽医,2004,2:22-23.
    27.张守焰,杨钧国,康彩练,李歧爱,陈志坚,胡骏,李裕舒,王秋芬,应康.先天性长QT间期综合征KVLQT1基因新的同义突变位点.临床心血管病杂志,2002,14(4):145-147.
    28.Asano A,Ko J H,Morozumi T,Hamashima N,Watanabe T.Polymorphisms and the antiviral property of porcine Mxl protein.J Vet Med Sci,2002,64(12):1085-1089.
    29.Bernis C,Vigneron S,Burgess A,LabbeJ-C,Fesquet D,Castro A,Lorca T.Pinl stabilizes Emi I during G2 phase by preventing its association with SCFβtrcp.EMBO reports,2007,8(1):91-98.
    30.Bartel D P.MicroRNAs:Genomics,biogenesis,mechanism,and function.Cell,2004,116(2):281-297.
    31.Bai C,Sen P,Hofmann K,Ma L,Goebl M,Harper J W,Elledge S J.SKP1 connects cell cycle regulators to the ubiqutin proteolysis machinery through a novel motif.Cell,1996,86(2):263-274.
    32.Bolognese F,Lmbriano C,Caretti G,Mantovani R.Cloning and characterization of historic-fold proteins YBL1 and YCL1.Nucleic Acids research,2000,28(19):3830-3838.
    33.Bodine S C,Latres E,Baumhueter S,Lai V K,Nunez L,Clarke B A,Poueymirou W T,Panaro F J,Na E,Dharmarajan K,Pan Z Q,Valenzuela D M,DeChiara T M,Stitt T N,Yancopoulos G.D,and Glass D J.Identification of ubiquitin ligases required for skeletal muscle atrophy.Science,2001,294:1704-1708.
    34.Bodine S C,Stitt T N,Gonzalez M,Kline W O,Stover G L,Bauerlein R,Zlotchenko E,Scrimgeour A,Lawrence J C,Glass D J,Yancopoulos G D.Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo.Nat Cell Biol,2001,(11):1014-1019.
    35.Bodine-Fowler S C,Allsing S,Botte M J.Time course of muscle atrophy and recovery following a phenol-induced nerve block.Muscle Nerve,1996,19(4):497-504.
    36.Bockowski L,Gorski J.Metabolic changes in denervated skeletal muscles.Postepy Hig Med Dosw,1996,50:191-204.
    37.Chang Y F,Cheng C M,Chang L K,Jong Y J,Yuo C Y.The F-box protein Fbxo7interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1ubiquitination.Biochem Biophys Res Commun,2006,342(4):1022-1026.
    38.Christian L L.Halothane test for PSS-field application[A].Proc American Association of Swine Practitioners Conference[C].Des Moines,IA,1974,6-13.
    39.Clavel S,Coldefy A S,Kurkdjian E,Salles J,Margafitis I,Derijard B.Atrophy-related ubiquitin ligases,atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle.Mech Ageing Dev,2006,127(10):794-801.
    40. Chakravarti A. Population genetics--making sense out of sequence. Nat Genet, 1999, 21:56-60.
    41. Chardon P, Renard C, Gaillard C R, Vaiman M. The porcine major histocompatibility complex and related paralogous regions: a review [J]. Genet Sel Evol, 2000, 32:109-128.
    42. Chung H K, Lee J H, Kim S H, Chae C. Expression of interferon-alpha and Mxl protein in pigs acutely infected with porcine reproductive and respiratory syndrome virus (PRRSV). J Comp Pathol. 2004, 130(4): 299-305.
    43. Cenciarelli C, Chiaur D S, Guardavaccaro D, Parks W, Vidal M, Pagano M. Identification of a family of human F-box proteins. Curr Biol, 1999,9(20): 1177-1179.
    44. Craig KL, Tyers M. he F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol, 1999, 72(3): 299-328.
    45. Dick T P, Ruppert T, Groettrup M, Kloetzel P M, Kuehn L, Koszinowski U H, Stevanovi(?) S, Schild H, Rammensee H G Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell, 1996, 86(2): 253-262.
    46. Di Fiore B, Pines J. Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J Cell Biol, 2007, 177(3): 425-437.
    47. Edfors-Lilja I, Wattrang E, Marklund L, Moller M, Andersson-Eklund L, Andersson L, Fossum C. Mapping quantitative trait loci for immune capacity in the pig. J Immunol, 1998, 161(2): 829-835.
    48. Engels B M, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene, 2006,25(46): 6163-6169.
    49. Fujii Y, Yada M, Nishiyama M, Kamura T, Takahashi H, Tsunematsu R, Susaki E, Nakagawa T, Matsumoto A, Nakayama K I. Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation. Cancer Sci, 2006, 97(8): 729-736.
    50. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O'Brien PJ, MacLennan D H. Identification of a mutation in porcine ryanadine receptor associated with malignant hypenherinia [J]. Science, 1991,253: 448-451.
    51. Flick K M, Spielewoy N, Kalashnikova T I, Guaderrama M, Zhu Q, Chang H C, Wittenberg C. Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell., 2003, 14(8): 3230-3241.
    52. Faulkner J A, Brooks S V. Muscle fatigue in old animals. Adv Exp Med Biol, 1995, 384:471-480.
    53. Geffrotin C, Popescu C P, Cribiu E P, Boscher J, Renard C h, Chardon P and Vaiman M. Assignment of MHC in swine to chromosome 7 by in situ hybridization and serological typing. Annales de Genetiques, 1984,27:213-219.
    54. Gill RW, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs). Biotechnol Annu Rev, 2000, 5: 25-44.
    55. Grange P A, Mouricout M A, Levery S B, Francis D H, Erickson A K. Evaluation of receptor binding specificity of Escherichia coli K88 (F4) fimbrial adhesion variants using porcine serum transferrin and glycosphingolipids as model receptors. Infect Immun, 2002, 70(5): 2336- 2343.
    56. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik H D, Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 1997, 386(6624): 463-471.
    57. Groettrup M, Soza A, Eggers M, Kuehn L, Dick T P, Schild H, Rammensee H G, Koszinowski U H, Kloetzel P M. A role for the proteasome regulator PA28α in antigen presentation. Nature, 1996,381(6578): 166-168.
    58. Gomes M D, Lecker S H, Jagoe R T, Navon A, Goldberg A L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci, USA, 2001,98(25): 14440-14445.
    59. Hart M, Concordet J P, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol, 1999, 9(4): 207-210.
    60. Hansen D V, Loktev A V, Ban K H, Jackson P K. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell, 2004, 15(12): 5623-5634.
    61. Hendil K B, Khan S, Tanaka K. Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem J, 1998, 332 (3): 749-754.
    62. Hsu J Y, Reimann J D, S(?)rensen C S, Lukas J, Jackson P K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC (Cdh1). Nat Cell Biol, 2002,4(5): 358-366.
    63. Hsu J M, Lee Y C, Yu C T, Huang C Y. Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J Biol Chem, 2004,279(31): 32592-32602.
    64. Husom A D, Peters E A, Kolling E A, Fugere N A, Thompson L V, Ferrington D A. Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys,2004,421: 67-76.
    65. Ingham R J, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture [J]. Oncogene, 2004, 23(11): 1972-1984.
    66. Joazeiro C A, Wing S S, Huang H, Leverson J D, Hunter T, Liu Y C. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999,286(5438): 309-312.
    67. Jakupiec P A. Changes in myosin and actin filaments in fast skeletal muscle after denervation and self2reinnervation. Comp Biochem Physiol Comp Physiol, 1992, 102: 93-98.
    68. Kipreos E T, Pagano M. The F-box protein family. Genome Biol, 2000, 1(5): Reviews3002.
    69. Laman H, Funes J M, Ye H, Henderson S, Galinanes-Garcia L, Hara E, Knowles P, McDonald N, Boshoff C. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J, 2005,24(17): 3104-3116.
    70. Latres E, Amini A R, Amini A A, Griffiths J, Martin F J, Wei Y, Lin H C, Yancopoulos G D, Glass D J. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem, 2005, 280(4): 2737-2744.
    71. Laman H. Fbxo7 gets proactive with cyclin D/cdk6. Cell Cycle, 2006, 5(3) :279-282.
    72. Lehman N L, Verschuren E W, Hsu J Y, Cherry A M, Jackson P K. Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle, 2006, (14): 1569-1573.
    73. Lee H, Lee D J, Oh S P, Park H D, Nam H H, Kim J M, Lim D S. Mouse emil has an essential function in mitotic progression during early embryogenesis. Mol Cell Biol., 2006,26(14): 5373-5381.
    74. Li F N, Johnston M. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J, 1997, 16(18): 5629-5638.
    75. Li H H, Kedar V, Zhang C, McDonough H, Arya R, Wang D Z, Patterson C. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest, 2004, 114(8): 1058-1071.
    76. Liu C W, Corboy M J, DeMartino G N, Thomas P J. Endoproteolytic Activity of the Proteasome. Science, 2003,299: 408-411.
    77. Lunney J K, and Butler J E. Immunogenetics In: Rothschild M F and Ruvinsdy A (eds) The genetics of the pig. CAB international Wallingford. UK. 1998. pp. 163-197.
    78. Lytle J R, Yario T A, Steitz J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA, 2007, 104(23): 9667-9672.
    79. Machida Y J, Dutta A. The APC/C inhibitor, Emil, is essential for prevention of rereplication. Genes Dev, 2007,21(2): 184-194.
    80. Mao M, Fu G, Wu J S, Zhang Q H, Zhou J, Kan L X, Huang Q H, He K L, Gu W, Han Z G, Shen Y, Gu J, Yu Y P, Xu S H, Wang Y X, Chen S J, Chen Z . Identification of gene expressed in human CD34 (+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Proc Natl Acad Sci USA, 1998, 95(14): 8175-8180.
    81. Marangos P, Verschuren E W, Chen R, Jackson P K, Carroll J. Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APC (Cdh1). J Cell Biol, 2007,176(1): 65-75.
    82. Mayer R J. From neurodegeneration to neurohomeostasis: the role of ubiquitin [J]. Drug News Pers pect, 2003,16 (2): 103-108.
    83. Morris C A, Morris L D, Kennedy A R, Sweeney H L. Attenuation of skeletal muscle atrophy via protease inhibition. J Appl Physiol, 2005, 99(5): 1719-1727.
    84. Mallard B A, Wilkie B N, Kennedy B W. Influence of major histocompatibility genes on serum hemolytic complement activity in miniature swine. Am J Vet Res, 1989, 50 (3): 359-363.
    85. Miller J J, Summers M K, Hansen D V, Nachury M V, Lehman N L, Loktev A, Jackson P K. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev, 2006, 20(17): 2410-2420.
    86. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J. IMpRH server: an RH mapping server available on the Web. Bioinformatics, 2000, (16): 558-559.
    87. Morozumi T, Sumantri C, Nakajima E, Kobayashi E, Asano A, Oishi T, Mitsuhashi T, Watanabe T, Hamasima N. Three types of polymorphisms in exon 14 in porcine Mx1 gene. Biochemical Genetics, 2001, 39(7-8): 251-260.
    88. Medina R, Wing S S, Goldberg A L. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem J, 1995, 307(Pt3): 631-637.
    89. Nakashima K and Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem, 2007, 71(7): 1650-1656.
    90. Ogunjimi A A, Briant D J, Pece-Barbara N, Le Roy C, Di Guglielmo G M, Kavsak P, Rasmussen R K, Seet B T, Sicheri F, Wrana J L. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell, 2005, 19(3): 297-308.
    91. Passmore L A, Booth C R, Vénien-Bryan C, Ludtke S J, Fioretto C, Johnson L N, Chiu W, Barford D. Structural analysis of the anaphase promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol Cell, 2005, 20(6): 855-866.
    92. Peelman L J, Chardon P, Vaiman M. Mattheeuws M, Van Zereren A, Van de Weghe A, Bouquet Y and Campbell P D. A detailed physical map of the porcine major histocompatibility complex (MHC) class Ⅲ region: comparison with human and mouse MHC class Ⅲ regions. Mammalian Genome, 1996, 7: 363-367.
    93. Preckel T, Fung-Leung W-P, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe T G, Herrath M V, Angulo A, Ghazal P, Lee J-D, Fourie A M, Wu Y, Pang J, Ngo K, Peterson P A, Früh K, Yang Y. Impaired immunoproteasome assembly and immune responses in PA28~(-/-) mice. Science, 1999,286: 2162-2165.
    94. Paulsen S R, Rubink D S, Winder W W. AMP-activated protein kinase activation prevents denervation-induced decline in gastrocnemius GLUT-4. J Appl Physiol, 2001, 91(5): 2102-2108.
    95. Qiu X B, Goldberg A L. Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc NatlAcadSci, USA, 2002, 99(23):14843-14848.
    96. Qiu X B, Markant S L, Yuan J, Goldberg A L. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J, 2004, 23(4): 800-810.
    97. Ravid T, Heidinger J M, Gee P, Khan E M, Goldkorn T. c-Cbl mediated ubiquitinylation is required for EGF receptor exit from the early endosomes. J Biol Chem, 2004,279(35): 37153-37162.
    
    98. Rabin M, Fries R, Singer D S and Ruddle F H. Assignment of the porcine major histocompatibility complex to chromosome 7 by in situ hybridization. Cytogenetics and cell Genetics. 1985, 39:206-209.
    
    99. Reimann J D, Gardner B E, Margottin-Goguet F, Jackson P K. Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev, 2001,15(24): 3278-3285.
    
    100.Rothschild M F, Jacobson C, Vaske D, Tuggle C, Wang L, Short T, Eckardt G, Sasaki S, Vincent A, McLaren D, Southwood O, van der Steen H, Mileham A and Plastow G. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc Natl Acad Sci USA, 1996,93(1): 201-205.
    101.Rock K L, York I A, Saric T and Goldberg A L. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol, 2002, 80:1-70.
    102.Rothschild M F, Chen H L, Christian L L, Lie W R, Venier L, Cooper M, Briggs C, Warner C M. Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with B.bronchiseptica. Journal of Animal Science, 1984b.59: 643-649.
    103.Rommel C, Bodine S C, Clarke B A, Rossman R, Nunez L, Stitt T N, Yancopoulos G D, Glass D J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol, 2001, 3(11): 1009-1013.
    104.Rodrigues A de C, Schmalbruc. Satellite cells and myonuclei in long term denervated rat muscles. Anat Rec, 1995,243:430-437.
    105.Scheffher M, Huibregtse J M, Vierstra R D, Howley P M. The HPV-16 E6 and E6-AP complex functions as an ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993, 75(3): 495-505.
    106.Schmalbruch H. Natural killer cells and macrophages in immature denervated rat muscles. J Neuropathol Exp Neurol, 1996,55(3): 310-319.
    107.Sacheck J M, Hyatt J P, Raffaello A, Jagoe R T, Roy R R, Edgerton V R, Lecker S H, Goldberg A L. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J, 2007, 21(1): 140-155.
    108.Su N Y, Flick K, Kaiser P. The F-box protein Met30 is required for multiple steps in the budding yeast cell cycle. Mol Cell Biol, 2005,25(10): 3875-3885.
    109.Shen W H, Balajee A S, Wang J, Wu H, Eng C, Pandolfi P P, Yin Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell, 2007,128(1): 157-170.
    110.Tesseraud S, Métayer-Coustard S, Boussaid S, Crochet S, Audouin E, Derouet M, Seiliez I. Insulin and amino acid availability regulate atrogin-1 in avian QT6 cells. Biochem Biophys Res Commun, 2007, 357(1): 181-186.
    111.Shia Y C, Bradshaw M, Rutherford M S, Lewin H A, Schook L B. Polymerse chain reaction based genotyping for characterization of SLA-DQB and SLA-DRB alleles in domestic pigs. Anim Genet, 1995,26: 91-100.
    112.Stitt T N,Drujan D,Clarke B A,Panaro F,Timofeyva Y,Kline W O,Gonzalez M,Yancopoulos G D,Glass D J.The IGF-1/PI3FK/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.Mol Cell,2004,14(3):395-403.
    113.Trotman L C,Wang X,Alimonti A,Chen Z,Teruya-Feldstein J,Yang H,Pavletieh N P,Carver B S,Cordon-Cardo C,Erdjument-Bromage H,Tempst P,Chi S G,Kim H J,Misteli T,Jiang X,Pandolfi P P.Ubiquitination regulates PTEN nuclear import and tumor suppression.Cell,2007,128(1):141-156.
    114.Toes R E,Nussbaum A K,Degermann S,Schirle M,Emmerieh N P,Kraft M,Laplace C,Zwinderman A,Dick T P,Mailer J,Schonfiseh B,Schmid C,Fehling H J,Stevanovie S,Rammensee H G,Sehild H.Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products.J Exp Med,2001,194(1):1-12.
    115.Tews D S,Goebel H H,Schneider I,Gunkel A,Stennert E,Neiss W F.DNA fragmentation and expression of apoptosisrelated proteins in experimentally denervated and reinnervated rat facial muscle.Neuropathol Appl Neurobiol,1997,(23)2:141-149.
    116.Warner C M and Rothschild M F.The swine major histocompatibility complex (SLA).In:srivastara R,Ram B and Tyle P.(eds).Immunogenetics of the major histocompatability complex.VCH publishers.New York.1991,pp:368-397.
    117.Wang Y F,Yu M,te Pas M F W,Yerle M,Liu B,Fan B,Xiong T A,Li K.Sequence characterization,polymorphism and chromosomal location of the porcine PSME1 and PSME2 genes,Animal Genetics,2004a,35:361-366.
    118.Wang Y F,Yu M,Liu B,Fan B,Wang H,Zhu M J,Li K.Full length cDNA,genomic organizations and expression profiles of the porcine proteasomal ATPases PSMC5gene,Asia-Australasian Journal of Animal Science,2004b,17(7):897-902.
    119.Wu X,Yu M,Liu B,Yerle M,Zhao SH,Wang YF,Fan B,Li K.Mapping of three porcine 20S proteasome genes using the IMpRH panel.Cytogenet Genome Res,2004,106(1):142.
    120.Wu X.,Zhao S.H.,Yu M.,Zhu Z.M.,Wang H.,Wang H.L.,Li K.Physical mapping of four porcine 20S proteasome core complex genes(PSMA1,PSMA2,PSMA3 and PSMA6).Cytogenet Genome Res,2005,108(4):3631.
    121.Wu X,Yang S H,Yerle M,Zhu Z,Li K.Genomic organization,localization and polymorphism studies of porcine PSMB10,a gene encoding the third beta-type proteasome subunit of 26S proteasome complex J Anita Breed Genet,2006,123:331-336.
    122.Wang X,Trotman L C,Koppie T,Alimonti A,Chen Z,Gao Z,Wang J,Erdjument-Bromage H,Tempst P,Cordon-Cardo C,Pandolfi P P,Jiang X.NEDD4-1is a proto-oncogenic ubiquitin ligase for PTEN.Cell,2007,128(1):129-139.
    123.Winston J T,Koepp D M,Zhu C,Elledge S J,Harper J W.A family of mammalian F-box proteins.Curt Biol,1999,9:1180-1182.
    124.Winston J T,Strack P,Beer-Romero P,Chu C Y,Elledge S J,Harper J W.The SCF beta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro.Genes Dev,1999,13(3):270-283.
    125.Wing S S,Haas A L,Goldberg A L.Increase in ubiquitin protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation.Biochem J,1995,307:639-645.
    126.Xiong Yuanzhu.Swine Production in China[C]Procl of International Conference on Pig Production,Beijing,International Academic Publishers,1998,27-30.
    127.Yano H,Kobayashi I,Onodera Y,Luton F,Franco M,Mazaki Y,Hashimoto S,Iwai K,Ronai Z,Sabe H.Fbx8 Makes Arf6 Refractory to Function via Ubiquitination.Mol Biol Cell,2008,19(3):822-832.
    128.Ye J,Zhang Y,Xu J,Zhang Q,Zhu D.FBXO40,a gene encoding a novel muscle-specific F-box protein,is upregulated in denervationrelated muscle atrophy.Gene,2007,404(1-2):53-60.
    129.Yerle M,Pinton P,Robic A,Alfonso A,Palvadeau Y,Delcros C,Hawken R,Alexander L,Beattie C,Schook L,Milan D,Gellin J.Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs.Cytogenet Cell Genet,1998,82(3-4):182-188.
    130.Yu M,Wang Y,te Pas M F W,Yerle M,Liu B,Fan B,Xiong T,Li K.Investigation of porcine PA28 activator γ-subunit(PSME3) gene:isolation,polymorphism and its chromosomal localization.Animal Breeding and Genetics,2004,121:142-148.
    131.Zhang X,Shin J,Molitor TW,Schook LB,Rutherford MS.Molecular responses of macrophages to porcine reproduc-tive and respiratory syndrome virus infection.Virology,1999,262(1):152-162.
    132.Zealear D L,Hamdan A L,Rainey C L.Effects of denervation on posterior cricoarytenoid muscle physiology and histochemistry.Ann Otol Rhinol Laryngol,1994,103(10):780-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700