氢醌对HepG2细胞的遗传毒性及氧化性DNA损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:氢醌(1,4-dihydroxybenzene, HQ)被广泛应用于各种工业领域,也被用于非处方药(OTC)中,还可作为皮肤美白剂的成分;它又是一种天然成分,存在于许多植物源性产品中。HQ可通过环境、职业、饮食和香烟烟雾等方式暴露于人体,也可来源于苯的暴露。2001年,欧盟国家禁止将HQ用于化妆品的美白配方中,而HQ的类似物熊果苷和植物源性的HQ仍可继续使用。
     早在1999年,国际癌症研究机构(International Agency for Research on Cancer, IARC)就将HQ归为第三类致癌物,即现有证据尚不能就其对人类致癌性进行分类。体外实验表明,HQ可引起染色体突变。HQ通过多种途径代谢,肝脏是HQ代谢的最初部位,其代谢过程中可产生活性氧(ROS)。因此,我们试探论HQ的遗传毒性,是否与ROS引起的氧化性DNA损伤有关。本研究选用一种代谢完全的人类来源的肝肿瘤细胞株HepG2细胞,它不仅保持了人正常肝实质细胞的许多功能,还保留了一系列生物转化过程中的I相和II相酶,是检测外来化合物遗传毒性的理想细胞系。
     本研究选用HepG2细胞,研究HQ的遗传毒性及氧化性DNA损伤的机制,为评估HQ对人类的危害提供实验室资料。
     方法:以HepG2细胞作为试验系统。通过标准的以及改良的蛋白酶K单细胞凝胶电泳(SCGE)试验检测细胞DNA链损伤,微核试验(MNT)检测细胞染色体损伤情况。为探讨遗传毒性的可能机制,以2',7'—二氢二氯荧光素(DCFH)法和苯二醛(OPT)分别测定细胞内ROS以及谷胱甘肽(GSH)水平,还通过免疫组化方法测定8-羟脱氧鸟苷(8-OHdG)在细胞内的表达水平。
     结果:6.25、12.5、25、50μM的HQ作用HepG2细胞1h后,DNA链断裂细胞形成彗星样拖尾,尾长、尾DNA含量及尾距增大,与未用HQ处理的细胞比较,其差异有统计学意义(P<0.01)。低浓度HQ(6.25~25μM)处理的细胞,DNA的迁移距离明显增加,且呈剂量依赖关系,而当较高浓度HQ(50μM)处理的细胞,DNA的迁移距离与HQ在25μM时的最大迁移量相比明显缩短。接受较高浓度HQ(50μM)作用的细胞,经蛋白酶K处理后与未经蛋白酶K处理的细胞相比,DNA的迁移距离明显增加。这些结果提示,HQ在较低浓度引起细胞DNA链断裂,而在较高浓度导致DNA-蛋白质交联(DPC)的形成。HepG2细胞与12.5~50μM?的HQ接触24h后,细胞微核率明显高于未用HQ处理细胞(P<0.01)。HQ作用于HepG2细胞1h,其浓度为25~50μM和6.25~50μM,可分别引起细胞内ROS表达水平的明显增加以及细胞内GSH的耗竭。12.5~50μM?的HQ作用于HepG2细胞3h后,细胞内8-OHdG水平的表达增强,与对照组比较,其差别具有统计学意义。
     结论:HQ可引起HepG2细胞DNA链断裂和染色体损伤,表明HQ对HepG2细胞具有遗传毒性。HQ对HepG2细胞的遗传毒效应,可能与ROS的增高,细胞内GSH的耗竭及8-OHdG形成的增加而造成的氧化性DNA损伤和DPC有关。
Objective: Hydroquinone (1, 4-dihydroxybenzene, HQ) is widely used in various industrial fields. HQ and products containing HQ are used in over-the-counter (OTC) drugs as an ingredient in skin lighteners and also a natural ingredient in many plant-derived products. Human exposure to HQ can occur by environmental, occupational, dietary and cigarette smoke exposure and from exposure to benzene, which can be metabolized to HQ. In 2001, HQ was banned in cosmetic skin lightening formulations in European Union countries although products containing arbutin being an analogue of HQ and botanicals including plants that naturally contain HQ and arbutin, continued to remain available in European countries.
     In 1999 the International Agency for Research on Cancer (IARC), assessed Sudan I as a Group 3 carcinogen. HQ was mutagenic in many mammalian cells in vitro using a variety of end- points. HQ is metabolized by several routes, reactive oxygen species (ROS) are produced. The liver is the initial site of HQ metabolism. The aim of this study was to assess the genotoxic effects of HQ in vitro and to elucidate the mechanism of oxidative DNA damage. In this study, we selected a metabolically competent human hepatoma line (HepG2), which retains many of the functions of normal liver cells and expresses the activities of several phase I and phase II xenobiotic metabolising enzymes. HepG2 cells have been shown to be a suitable system for genotoxicity testing.
     The purpose of this study was to assess the genotoxic effects of HQ in vitro and to illuminate the mechanisms in HepG2 cells. Thus it may provide some information for occupational hazard assessment to humans on HQ.
     Methods: HepG2 cells were selected as test system. Genotoxicity of HQ was assessed by standard and proteinase K-modified alkaline single cell gel electrophoresis (SCGE) and micronucleus test (MNT). To further investigate the mechanism of genotoxicity of HQ in HepG2 cells, we used the 2, 7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH). We analyzed the oxidative DNA damage in HQ-treated cells by immunocytochemistry staining of 8-hydroxydeoxyguanosine (8-OHdG).
     Results: The damage to DNA-strand of HepG2 cells significantly increased after exposure to 6.25, 12.5, 25, 50μM HQ for 1h. A significant dose-dependent increment in DNA migration was detected at lower concentrations of HQ (6.25 - 25μM); but at the higher tested concentrations (50μM), a reduction in the migration compared to the maximum migration at 25μM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50μM). These results indicated that HQ caused DNA strand breaks at lower concentrations of HQ (6.25 - 25μM) and DNA-protein crosslinks (DPC) formation at higher concentrations. Frequencies of micronuclei significantly increased in HepG2 cells after treatment with 12.5-50μM ?HQ for 24h. The present study showed that ?HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50μM and 6.25-50μM, respectively. Moreover, HQ significantly caused 8-OHdG formation in HepG2 cells at concentrations from 12.5 to 50μM.
     Conclusion: The data suggest that HQ caused DNA strand breaks and chromosome breaks, which indicate that HQ induced genotoxic effects in HepG2 cells. HQ exerts genotoxic effects in HepG2 cells, probably through the formation of ROS, depletion of GSH and increase of 8-OHdG formation, which cause oxidative DNA damage and DPC.
引文
1. DeCaprio AP, The toxicology of hydroquinone--relevance to occupational and environmental exposure. Crit. Rev. Toxicol. 1999, 29(3):283-330.
    2. IARC, Monographs on the evaluation of carcinogenic risks to humans:Re-evaluation of some organic chemicals,hydrazine and hydrogen peroxide,IARC Monogr 1999, 71:691-719.
    3. Florin I, Rutberg L, Curvall M, Enzell CR. Screening of tobacco smoke constituents for mutagenicity using the Ames' test, Toxicology 1980, 15(3):219-232.
    4. Gocke E, King MT, Eckhardt K, Wild D. Mutagenicity of cosmetics ingredients licensed by the European communities. Mutat Res . 1981, 90(2):91-109.
    5. Galloway SM, Armstrong MJ, Reuben C, Colman S, Brown B, Cannon C, Bloom AD, Nakamura F, Ahmed M, Duk S. Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. Environ. Mol. Mutagen 1987, 10 (10):1-175.
    6. Takayama S, Hirohashi M, Kato M, Shimada H. Toxicity of quinolone antimicrobial agents. J. Toxicol. Environ. Health. 1995, 45(1):1-45.
    7. Fabiani R, De Bartolomeo A, Rosignoli P, Scamosci M, Lepore L, Morozzi G. Influence of culture conditions on the DNA-damaging effect of benzene and its metabolites in human peripheral blood mononuclear cells. Environ. Mol. Mutagen 2001, 37(1):1-6.
    8. Andreoli C, Leopardi P, Crebelli R. Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites. Mutat Res. 1997, 377(1):95-104.
    9. Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation in HL-60 cells treated with trans, trans-muconaldehyde, hydroquinone and their mixtures. Int. J. Toxicol. 2001, 20 (2):69-80.
    10. Tsutsui T, Hayashi N, Maizumi H, Huff J, Barrett JC. Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat Res. 1997, 373(1):113-123.
    11. Eastmond DA, Mondrala ST, Hasegawa L. Topoisomerase II inhibition by myeloperoxidase-activated hydroquinone: a potential mechanism underlying the genotoxic and carcinogenic effects of benzene. Chem. Biol. Interact. 2005, 153-154:207-16.
    12. Jagetia GC, Menon KS, Jain V. Genotoxic effect of hydroquinone on the cultured mouse spleenocytes. Toxicol. Lett. 2001, 121(1):15-20.
    13. Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line, Nature 1979, 282(5739):615-616.
    14. Duverger-van Bogaert M, Dierickx PJ, Stecca C, Crutzen MC. Metabolic activation by a supernatant from human hepatoma cells: a possible alternative in mutagenic tests. Mutat Res. 1993, 292(2):199-204.
    15. Doostdar H, Grant MH, Melvin WT, Wolf CR, Burke MD. The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HePG2 hepatoma cells. Biochem. Pharmacol. 1993, 46(4):629-635.
    16. Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res. 1998, 402(1-2):185-202.
    17. Dearfield KL, Jacobson-Kram D, Brown NA, Williams JR. Evaluation of a human hepatoma cell line as a target cell in genetic toxicology. Mutat Res. 1983, 108(1-3):437-449.
    18. Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge, Toxicology 2004, 198 (1-3):315-328.
    19. Singh NP, Stephens RE. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res. 1997,383 (2):167-175.
    20. Merk O, Reiser K, Speit G. Analysis of chromate-induced DNA-protein crosslinks with the comet assay. Mutat Res 2000,471 (1-2):71-80.
    21. Natarajan AT, Darroudi F. Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens, Mutagenesis 1991, 6 (5):399-403.
    22. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Lorge E, Norppa H, Surrallés J, von der Hude W, Wakata A. Report from the In Vitro Micronucleus Assay Working Group. Environ. Mol. Mutagen. 2000, 35 (3):167-72.
    23. Sohn JH, Han KL, Lee SH, Hwang JK. Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol. Pharm. Bull. 2005, 28(6):1083-1086.
    24. Diamond L, Kruszewski F, Aden DP, Knowles BB, Baird WM. Metabolic activation of benzo[a]pyrene by a human hepatoma cell line, Carcinogenesis 1980, 1(10):871-875.
    25. Yarborough A, Zhang YJ, Hsu TM, Santella RM. Immunoperoxidase detection of 8-hydroxydeoxyguanosine in aflatoxin B1-treated rat liver and human oral mucosal cells. Cancer Res. 1996, 56(4):683-688.
    26. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74 (1):214-226.
    27. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 1984; 123(1):291-298.
    28. Tsutsui T, Hayashi N, Maizumi H, Huff J, Barrett JC. Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat Res. 1997, 373(1):113-123.
    29. Shibata MA, Hirose M, Tanaka H. Induction of renal cells tumors in rats and mice, and enhancement of hepatocellular tumor development in mice after long-term hydroquinone treatment. Jpn. J. Cancer Res. 1991, 82: 1211-1219.
    30. Uhl M, Helma C, Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (HepG2) cells. Mutat Res. 2000, 468(2):213-225.
    31. Yusuf AT, Vian L, Sabatier R, Cano JP. In vitro detection of indirect-acting genotoxins in the comet assay using HepG2 cells. Mutat Res. 2000, 468(2):227-234.
    32. Darroudi F, Meijers CM, Hadjidekova V, Natarajan AT. Detection of aneugenic and clastogenic potential of X-rays, directly and indirectly actingchemicals in human hepatoma (HepG2) and peripheral blood lymphocytes, using the micronucleus assay and fluorescent in situ hybridization with a DNA centromeric probe, Mutagenesis 1996, 11(5):425-433.
    33. M?ller P, Wallin H. Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat Res. 2000, 462(1):13-30.
    34.景亚武,易静,高飞。活性氧:从毒性分子到信号分子--活性氧与细胞的增殖、分化和凋亡及其信号转导途径。细胞生物学杂志,2003,4:2-7。
    35. Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem. Pharmacol. 1998, 55(11):1747-1758.
    36. Shigenaga MK, Ames BN. Assays for 8-hydroxy-2'-deoxyguanosine: a biomarker of in vivo oxidative DNA damage. Free Radic. Biol. Med. 1991, 10(3-4): 211-216.
    37. Kaneko T, Tahara S, Matsuo M. Non-linear accumulation of 8-hydroxy- 2’-deoxyguannsine, a marker of oxidative DNA damage during aging. Toxicol. Appol. Pharmacol. 1997, 147(1): 9-14.
    38. Cheng KC, Cahill DS, Kasai H. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J. Biol. Chem. 1992, 267(1): 166-172.
    39. Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G ? C→T ? A transversions in simian kidney cells. Proc. Natl. Acad. Sci. 1993, 90(3): 1122–1126.
    40. Kasai H. Analysis of a form of oxidative DNA damage , 8-hydroxy-2'-deoxyguanosine , as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997, 387(3): 147–163.
    41. Henle ES, Linn S. Formation prevention and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 1997, 272(31): 19095–19098.
    1.吴向东,龚梓初,郑卫东。氢醌遗传危害的研究。职业卫生与应急救援,1997,15(4):172-174。
    2.吴向东。氢醌的毒理学研究。国外医学卫生学分册,1994,21(6):321-323。
    3.邓鹤玉。氢醌毒理学研究进展。中华医学与健康,2005,(4):119-121。
    4.吴小芹,张德明,范美明。氢醌对作业工人健康的影响。劳动医学, 1995,12(1):6-9。
    5.黄磊,吴小芹,陈志明。氢醌对职业接触人群健康的影响。中华预防医学杂志,1997,31(3):117-120。
    6.潘琪,陈志明,严阵。氢醌的职业危害调查。安徽预防医学杂志,2000,6( 2):9l-92。
    7.严阵,潘琪,陈志明。车间空气氢醌接触情况调查研究。中国职业医学,2000,27(1):20-22。
    8. WHO, Hydroquinone. Environ Health Criteria N0.157 World Health Organization, Geneva 1994, 157-161.
    9. Subrahmanyam VV, Ross D, Eastmond DA, Smith MT. Potential role of radicals in benzene-induced myelotoxicity and leukemia. Free radical Biol. Med. 1991, 11(5):495-515.
    10.吴向东,龚梓初。氢醌急性毒性和蓄积毒性的实验研究。职业卫生与应急救援,1997,15(2):60-62。
    11.吴向东,龚梓初。氢醌对皮肤和眼刺激作用的实验研究。职业卫生与应急救援,1997,15(2):63-65。
    12.夏昭林。苯对骨髓造血细胞和造血微环境的毒作用。国外医学卫生分册,1994,21(2):75。
    13.高雪芹。苯的免疫毒性研究进展。国外医学卫生分册,1994,l7(3):132。
    14. Kalf GF, Post GB, Snyder R. Solvent toxicology: recent advances in the toxicology of benzene, the glycol ethers, and carbon tetrachloride. Annu. Rev. Pharmacol. Toxicol. 1987,27:399-427.
    15. Schlosser MJ, Shurina RD, Kalf GF. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Environ. Health. Perspect 1989, 82:229-237.
    16. Thomas DJ, Sadler A, Subrahmanyam VV, Siegel D, Reasor MJ, Wierda D, Ross D. Bone marrow stromal cell bioactivation and detoxification of the benzenemetabolite hydroquinone: comparison of macrophages and fibroblastoid cells. Mol. Pharmacol. 1990, 37(2):255-262.
    17. Li Yunbo. Characterization of quinone reductase glutathione and glutathione s-transferees in human myeloid eel induction by 1, 2-dlthiole-3-thione and effects on hydroquinone inducted cytotoxicity, Life Science 1994,54(13):901.
    18. Florin I, Rutberg L, Curvall M, Enzell CR. Screening of tobacco smoke constituents for mutagenicity using the Ames' test, Toxicology 1980 ; 15(3):219-232.
    19. Ciranni R, Adler ID. Clastogenic effects of hydroquinone: induction of chromosomal aberrations in mouse germ cells. Mutat. Res. 1991, 263(4) : 223-229.
    20. Leanderson P, Tagesson C. Cigarette smoke-induced DNA damage in cultured human lung cells: role of hydroxyl radicals and endonuclease activation. Chem. Biol. Interact. 1992, 81(1-2):197-208.
    21. Blacker AM, Schroeder RE, English JC, Murphy SJ, Krasavage WJ, Simon GS. A two-generation reproduction study with hydroquinone in rats. Fundam. Appl. Toxicol. 1993, 21(4):420-424.
    22. Ames SR, Harris PL, Ludwig MI, Swanson WJ. Effect of DPPD, methylene blue, BHT, and hydroquinone on reproductive process in the rat. Proc. Soc. Exp. Biol. Med. 1956, 93(1):39-42.
    23. Krasavage WJ, Blacker AM, English JC, Murphy SJ. Hydroquinone: a developmental toxicity study in rats. Fundam. Appl. Toxicol. 1992, 18(3):370-375.
    24. Murphy SJ, Schroeder RE, Blacker AM, Krasavage WJ, English JC. A study of developmental toxicity of hydroquinone in the rabbit. Fundam. Appl. Toxicol. 1992, 19(2):214-221.
    25. Frenk E, Loi-Zedda P. Occupational depigmentation due to a hydroquinone-containing photographic developer , Contact Dermatitis 1980 , 6(3) : 238-239.
    26. GB7919—87(化妆品安全性评价程序与方法),1987:3-9。
    27.吴小芹,吴向东。氢醌对作业接触工人健康影响。劳动医学,1995,12(1):6。
    28. Smith MT, Zhang L, Jeng M, Wang Y, Guo W, Duramad P, Hubbard AE, Hofstadler G, Holland NT. Hydroquinone, a benzene metabolite, increases the level of aneusomy of chromosomes 7 and 8 in human CD34-positive bloodprogenitor cells. Carcinogenesis 2000, 21(8):1485-1490.
    29. Stillman WS, Varella-Garcia M, Irons RD. The benzene metabolite, hydroquinone, selectively induces 5q31- and -7 in human CD34+CD19- bone marrow cells. Exp. Hematol. 2000, 28(2):169-176.
    30. Andreoli C, Leopardi P, Crebelli R. Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites. Mutat. Res. 1997, 377(1):95-104.
    31. Andreoli C, Rossi S, Leopardi P, Crebelli R. DNA damage by hydroquinone in human white blood cells: analysis by alkaline single-cell gel electrophoresis. Mutat. Res. 1999, 438(1):37-45.
    32.李芳红,杨杏芬。氢醌/ Cu2对小鼠骨髓细胞线粒体氧化损伤的研究。中华劳动卫生职业病杂志,2001,19(1):53-55。
    33. Soucek P, Ivan G, Pavel S. Effect of the microsomal system on interconversions between hydroquinone, benzoquinone, oxygen activation, and lipid peroxidation. Chem. Biol. Interact. 2000, 126(1):45-61.
    34.申东晓,史须,王应。硫氧还蛋白对氢醌细胞毒性的抑制。中国药理学与毒理学杂志,2003,17(1):55-60。
    35. Silva M do C, Gaspar J, Duarte Silva I, Faber A, Rueff J. GSTM1, GSTT1, and GSTP1 genotypes and the genotoxicity of hydroquinone in human lymphocytes. Environ. Mol. Mutagen. 2004, (4):258-264.
    36. Lindsey RH Jr, Bender RP, Osheroff N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem. Res. Toxicol. 2005, 18(4):761-770.
    37. Turteltaub KW, Mani C. Benzene metabolism in rodents at doses relevant to human exposure from urban air. Res. Rep. Health. Eff. Inst. 2003, (113):1-26.
    38. Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation in HL-60 cells treated with trans, trans-muconaldehyde, hydroquinone and their mixtures. Int. J. Toxicol. 2001, 20(2):69-80.
    39.龚梓初。氢醌在体内的代谢活化及其骨髓毒性。职业卫生与应急救援,1996,14(1):28-30。
    40. Zheng JH, Pyatt DW, Gross SA, Le AT, Kerzic PJ, Irons RD. Hydroquinone modulates the GM-CSF signaling pathway in TF-1 cells. Leukemia 2004, 18(7):1296-1304.
    41.陈怡,俞康,吴建波。体外培养下氢醌诱导骨髓单个核细胞凋亡的研究。中华劳动卫生职业病杂志,2004,22(3):161-164。
    42.张玲。苯致白血病的分子机制。湖北预防医学杂志,2002,13(3):21-22。
    43. Li Q, Geiselhart L, Mittler JN, Mudzinski SP, Lawrence DA, Freed BM. Inhibition of human T lymphoblast proliferation by hydroquinone. Toxicol. Appl. Pharmacol. 1996, 139(2):317-323.
    44.李习艺,庄志熊,刘建军。利用蛋白质组学技术研究氢醌刺激后人胚肺成纤维细胞蛋白质表达改变。卫生研究,2004;6(33):654-656。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700