多功能纳米磁性粒子的合成及其在细胞富集和质粒DNA纯化中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质粒DNA (plasmid DNA)是基因工程的重要载体,从细胞内提取质粒已成为实验室中经常性的基础工作,构建快捷、简单、经济、易于自动化和环境友好型的供体细胞富集和质粒DNA纯化方法具有重大意义。建立在磁性固相载体基础上的纯化方法可使细胞或DNA直接从液体粗原料中钓出,免去了离心、沉淀等纷繁复杂的中间步骤,因而自二十世纪90年代以来得到重大发展,但已报道的磁性载体对核酸的纯化能力普遍偏低,使其应用受到限制。对于细胞富集,免疫磁性分离法虽行之有效但却受制于样品制备、生产成本和储藏寿命,不适于批量菌体分离,而基于非特异性吸附反应富集细胞的磁性分离手段却鲜见文献报道。同时,已报道的磁性分离法从大肠杆菌中提取质粒DNA时仍需两次以上离心操作:一次是从液体培养基中回收细胞,另一次是去除变性的基因组DNA/蛋白质复合体。而离心是个耗时、劳动密集型操作,对生物大分子的剪切力较大,离心介入后不易实现高通量样品分析的自动化、微型化和集成化。
     针对以上问题,本研究提出了制备高吸附容量、pH敏感型、多功能羧基功能化磁性纳米粒子(carboxyl-functionalized magnetic nanoparticles, CMNPs)的技术;利用其构建集细胞捕获、变性基因组DNA/蛋白质复合体去除和质粒DNA捕获于一体的技术路线;提出基于共絮凝行为富集微生物和核酸的思路;建立无RNase介入分离质粒DNA的方法,主要工作及结果如下:
     1.以FeCl3, FeSO4, NaOH为原料,采用化学共沉法制备了Fe304磁性纳米粒子。分别以Bis[2-(methacryloyloxy) ethyl] phosphate为偶联剂、甲基丙烯酸为功能单体、过硫酸钾为引发剂,控制反应温度,通过超声辐照原位聚合技术制备了羧基功能化磁性纳米粒子。结果表明超声空化作用下铁氧体可以成为聚合反应的活性中心,超声功率越大则产物的粒径越小,在400、600和800W超声功率下产物的平均粒径分别为96.87、55.97749.61nm; TEM和XRD表明产物为尖晶石铁氧体,粒径约7nm; FTIR分析证明聚甲基丙烯酸对铁氧体纳米粒子的成功包覆;TGA-DTG分析表明包覆层含量为7-12%;VSM测试表明包覆后饱和磁化强度为47emu/g,具有较强磁响应性;对pH敏感,在中性环境中5min内可悉数回收,而在酸性条件下达到相同的回收率则小于
     2.以“捕获率”和捕获后“菌体/CMNPs复合体在管壁上吸附的牢固程度”为指标,对有潜力使CMNPs与大肠杆菌结合的20种化学试剂进行了筛选鉴定,发现酸、钙盐和锌盐是有效的“偶联剂”。对表现最好的盐酸和氯化钙辅助CMNPs捕获大肠杆菌的条件进行了优化。结果表明,大肠杆菌的捕获效率随pH降低而急剧升高,在pH 5左右达到较平稳的值。细胞浓度越高,CMNPs用量越多,磁分离时间越长,则相同条件下捕获率也越高。在较优的条件组合下(细胞OD600大于0.2,粒子用量为0.85mg,磁分离时间3min, pH值3.5-1.5)可以捕获90%以上的大肠杆菌。以氯化钙作为“结合液”时,钙离子与菌体浓度的比值决定了大肠杆菌的捕获效率,二者之间关系可用Logistic模型函数拟合,并受CMNPs用量和磁分离时间的影响。在捕获行为中,钙离子可能起到离子桥作用,通过与纳米粒子的羧基和菌体表面的活性基团发生配位,形成菌体/CMNPs复合体。
     3.以CMNPs为固相载体,基于SPRI(solid phase reversible immobilization, SPRI)法对大肠杆菌粗裂解液中的质粒DNA进行了纯化研究。结果表明:质粒DNA回收量与结合液浓度之间存在临界关系,当PEG8000>0.15g/mL, NaCl浓度>0.5mol/L时才能获得稳定的质粒DNA收率。质粒DNA回收量随着CMNPs用量的增加而增加,超过最佳值后因不可逆吸附或妨碍洗脱收率反而下降。质粒DNA在纳米粒子表面的吸附与解吸附是快速过程,所需平衡时间分别为150s和40s。0-70℃之间,温度升高对质粒DNA在CMNPs表面吸附影响不大而RNA吸附量急剧下降。利用温度“调谐”差示吸附DNA和RNA的现象,建立了不需要RNase预处理而提取较纯质粒DNA的方法。
     4.建立了基于CMNPs快速、小量制备质粒DNA的方案。该法整合大肠杆菌捕获、裂解液去杂和质粒DNA富集于一体,操作简单,无需离心,对仪器的依赖性较低且不涉及有毒试剂;质粒DNA质量高,主要以超螺旋构象存在,A260/A280比值大于1.75,可满足酶切等一般的分子生物学实验要求。产量和质量同QIAGEN公司的标准提取试剂盒法相当但成本只有其1/5,整个过程用时不到20min,短于试剂盒法和醇沉淀法。本法特别适用于高通量、自动化、微型化和集成化样品提取和分析平台的构建。
     5.现已报道的磁性载体核酸分离方法,对常规盐离子含量较低(折合NaCl浓度<0.5mol/L)的样品(如PCR产物),要么用到高浓度高离液序列盐(chaotropic)创造吸附或洗脱条件,对核酸具有损伤作用并造成体积放大;要么用高系黏度结合液,降低了磁性粒子的可控性,且生产成本高、环境不友好。针对以上问题,本研究提出了以生物相容性极强的精胺和亚精胺作为CMNPs/核酸“结合液”,以脱盐质粒DNA/RNA为核酸供体,构建了一种新的核酸富集方法。结果表明:精胺和亚精胺作为结合液时,CMNPs对质粒DNA和RNA选择吸附性不显著。以亚精胺为结合液时,质粒DNA在1~2mmol/L亚精胺浓度内在CMNPs表面吸附;而RNA在0.5-5.5mmol/L之间具有普遍的吸附能力,但最大吸附同样在1~2mmol/L浓度范围。以精胺为“结合液”,CMNPs对质粒DNA的吸附率在1~7mmol/L浓度内达100%;而对RNA吸附率在1.5~5mmol/L浓度之间接近90%,约10%小分子RNA不能被吸附。延长时间可提高核酸的回收率,孵育5min之内可达到100%吸附。凝聚试剂被充分剔除后核酸的解吸附率可达100%。精胺辅助CMNPs富集核酸的能力远强于亚精胺,以其作为结合液时CMNPs对核酸饱和吸附量可达2pg核酸/μg载体。
     6.对于低盐浓度核酸溶液,降低pH也可驱使其在CMNPs表面高效吸附。在碱性溶液中(pH>8.0), CMNPs几乎不吸附核酸;而在酸性溶液中,CMNPs对核酸的吸附率可达100%。可见,DNA/RNA在羧基纳米粒子表面的吸附与否,可通过pH调控迅速开启或关闭。
Because plasmid DNA (pDNA) is routinely used as an important genetic engineering vector, the development of a rapid, simple, cost-effective and environmental-friendly bacteria enrichment and pDNA extraction method amenable for automation is of considerable advantage. Conventional pDNA extraction techniques requiring centrifugation, precipitation are not easily adapted to automated systems. In contrast, magnetic nanoparticle extraction methods demonstrate remarkable simplicity owing to the nature of the particles, which can fish bioentities directly out of biological matrices, and received considerable attention since 1990'. However, the present magnetic adsorbents and related protocols are limited in terms of binding capacity. Although considered as an important cell enrichment method, the immunomagnetic separation of cells are limited in terms of sample preparation, cost and shelf life, and especially not suitable for large-scale cell separation purpose. Nevertheless, there are few successful cell enrichment methods based on nonspecific adsorption between cells and magnetic particles. Second, most magnetic solid phase procedures involve two centrifugation steps:the first to harvest cells from liquid culture and the second to pellet denatured genomic DNA/protein complexes after cell disruption and neutralization. These centrifugation procedures are both time-and labor-intensive; moreover, this step was not amenable to the miniaturization and automation required of high-throughput biological sample preparation. Furthermore, the potential for shearing damage to biomacromolecules during extensive centrifugation is unavoidable.
     In view of above-mentioned reasons, the present study prepared multifunctional carboxylated magnetic nanoparticles (CMNPs) with high binding capacities. With the help of the nanoparticles, a facile method was constructed for plasmid DNA extraction by integration of bacteria capture, lysate clearance and DNA purification. A new idea for enrichment of microorganisms and nucleic acid based on co-agglomeration with magnetic nanoparticles was also proposed. Even without digestion of RNA primarily by RNase, plasmid can be separated selectively from DNA/RNA mixture by carful tune of temperature.
     1. Iron oxide nanocrystals were prepared by coprecipitating di and trivalent Fe ions in alkaline solution. The as-prepared iron oxide was then coated by ultrasound assisted in situ polymerization method by using Bis[2-(methacryloyloxy) ethyl] phosphate as coupling agent, methacrylic acid as functional monomer and potassium persulfate as initiator. The results indicated iron oxide could act as polymerization center. When the ultrasound power increased from 400w to 600w and then 800W, the related hydrodynamic size was 96.87,55.97 and 49.61 nm, respectively. The spinel crystalline with size 7 nm was indicated by transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterization. The fourier transform infrared spectroscopy (FTIR) study and thermogravimetric analyses (TGA-DTG) confirmed the successful functionalization of carboxyl groups on the surface of magnetic nanocrystals with organic content 7-12%. The saturation magnetization value for coated particles obtained by vibrating sample magnetometer (VSM) measuring was 47 emu/g. The coated particles were sensitive to environmental pH. When flocculated on addition of acid, the particles are easily separated within 30 s, while it generally needs 5 min to reach a recovery of nearly 100%under neutral condition.
     2. Using "cell capture efficiency" and the "firmness of immobilized cell/CMNPs on the wall" after magnetic separation as index, we found acid, calcium salt and zinc salt were effective CMNPs-E.coli cell coupling agents, of which HCI and CaCI2 were the best choice. The performance of HCI and CaCl2 was studied sufficiently to optimize best conditions. The results indicated that capture of cells with CMNPs increased sharply when pH was below 5.0, then achieving steady value of upward 90%capture. The cells capture efficiency increase with elevating of cell density, more addition of CMNPs amount and elongated separation time. Under optimized condition (0.85 mg of CMNPs, pH 3.5-1.5), typically, more than 90%of E.coli cells could be recovered within 3 min from 1.5 ml of overnight culture with OD6oo higher than 0.2. When CaCl2 was used as binding agent, the cell capture efficiency was controlled by ratio of [ca2+] vs. OD600, and also affected by CMNPs amount and separation time, which fit Logistic model equation perfectly. In this event, Ca2+ might act as salt bridge between CMNPs and E.coli cells.
     3. A rapid protocol for extraction and purification of high quality plasmid DNA from bacteria with CMNPs was reported using solid phase reversible immobilization method (SPRI). In this case, a more expressive DNA adsorption was achieved at a PEG800>0.15 g/mL and an NaCl concentration>0.5 mol/L. The recoveries of plasmid DNA increase with more addition of CMNPs, while decrease when used too much. The adsorption and elution of plasmid DNA was rapid, with equilibrium time of 150 and 40 s, respectively. Below 70℃, plasmid DNA adsorption was not affected while RNA recoveries decrease dramatically with increase of temperature. Hence, an RNase-free method will work for purification of pDNA by carful modulation of temperature.
     4. By using pH sensitive multifunctional magnetic nanoparticles, a facile, centrifugation-free and small-scale plasmid DNA extraction method was established by integration of bacteria capture, lysate clearance and DNA purification. This method was simple without involvement of expensive apparatus and hazard agents; the recovered pDNA was mainly composed of supercoli form with A260/A280>1.75 generally. The biological quality of pDNA was validated by restriction enzyme digestion. The quality and quantity of pDNA were comparable with that extracted by QIAGEN Kit, yet, the cost associated with the current method was only 1/5 of the commercial one. The entire procedure took less than 20 min, whereas the other method took at least 30 min.
     5. To generate adsorption or elution conditions, the present magnetic-particle-based purification method usually employ high concentration chaotropic salts which are damage to nucleic acid, or vicious agents which make particles difficult to disperse or recover. Besides, these agents are expensive and not environmental-friendly, and large volume consumption of these agents inevitably increased the handle volume. For samples with low salt concentration (e.g. PCR product), the present methods suffer one or more of above mentioned problems. In view of these considerations, a new method was constructed for DNA/RNA enrichment by using high biocompatible spermine or spermidine as binding buffer. The results showed neither of the two compaction agent could generate a selectivity for pDNA or RNA. Only when spermidine concentration was 1-2 mmol/L can pDNA adsorb to CMNPs'surface, and that for RNA was 0.5-5.5 mmol/L. When spermine is 1-7 mmol/L,100%of pDNA can be recovered, while RNA was around 90%when spermine was 1.5-5 mmol/L, leaving 10%of small RNA in supernatant. DNA and RNA could completely elute when compaction agents were scripted. The saturation binding capacity was 2μg DNA/μg particle when spermine was used as binding agent, which was higher than other methods ever reported.
     6. Low pH could also produce driving fore for the binding of nucleic acid to the surface of CMNPs. In solutions with pH higher than 8.0, the adsorption was nearly zero, while in acidic solutions,100%DNA and RNA could be fished out of solution with slight degradation of DNA.
引文
1. Niemeyer, C.M., Nanoparticles, Proteins, and Nucleic Acids:Biotechnology Meets Materials Science. Angewandte Chemie-International Edition,2001.40(22):4128.
    2.Lu, A.H., et al., Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application. Angewandte Chemie-International Edition,2007.46(8):1222.
    3.Pankhurst, Q.A., et al., Applications of Magnetic Nanoparticles in Biomedicine. Journal of Physics D: Applied Physics,2003.36(13):167.
    4. Berry, C.C., et al., Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine. Journal of Physics D:Applied Physics,2003.36(13):198.
    5. Willard, M.A., et al., Chemically Prepared Magnetic Nanoparticles. International Materials Reviews,49, 2004.3(4):125.
    6. Safafik, I., et al., Magnetic Nanoparticles and Biosciences. Monatshefte fur Chemie/Chemical Monthly, 2002.133(6):737.
    7.Mornet, S., et al., Magnetic Nanoparticle Design for Medical Diagnosis and Therapy. Journal of Materials Chemistry,2004.14(14):2161.
    8.Ito, A., et al., Medical Application of Functionalized Magnetic Nanoparticles. Journal of bioscience and bioengineering,2005.100(1):1.
    9.Tartaj, P., et al., The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. Journal of Physics D:Applied Physics,2003.36(13):182.
    10.Gu, H., et al., Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles. Journal of the American Chemical Society,2004.126(18): 5664.
    11.Sun, S., et al., Synthesis of Monodisperse Cobalt Nanocrystals and Their Assembly into Magnetic Superlattices (Invited). Journal of Applied Physics,1999.85:4325.
    12.Batlle, X., et al., Finite-Size Effects in Fine Particles:Magnetic and Transport Properties. Journal of Physics D:Applied Physics,2002.35:R15.
    13.Neuberger, T., et al., Superparamagnetic Nanoparticles for Biomedical Applications:Possibilities and Limitations of a New Drug Delivery System. Journal of Magnetism and Magnetic Materials,2005.293(1): 483.
    14.Gupta, A.K., et al., Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials,2005.26(18):3995.
    15.Shan, Z., et al., Preparation of Magnetic Nanoparticles and Application to Isolation of Cells and Extraction of Biomacromolecules from Biological Samples. Book chapter in, Editors:Chris Thomas Frisiras, Nova Publishers,2008. chapter 2:57.
    16.Shan, Z., et al., Preparation and Characterization of Carboxyl-Group Functionalized Superparamagnetic Nanoparticles and T He Potential for Bio-Applications. Journal of the Brazilian Chemical Society,2007.18:1329.
    17.Gu, H., et al., Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection. Chemical Communications,2006.2006(9):941.
    18.Hiitten, A., et al., New Magnetic Nanoparticles for Biotechnology. Journal of biotechnology,2004. 112(1-2):47.
    19.Tartaj, P., et al., Advances in Magnetic Nanoparticles for Biotechnology Applications. Journal of Magnetism and Magnetic Materials,2005.290:28.
    20.Lewin, M., et al., Tat Peptide-Derivatized Magnetic Nanoparticles Allow in Vivo Tracking and Recovery of Progenitor Cells. Nature Biotechnology,2000.18(4):410.
    21.Langer, R., New Methods of Drug Delivery. Science,1990.249(4976):1527.
    22.Cushing, B.L., et al., Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev,2004.104(9):3893.
    23.Lin, X.M., et al., Synthesis, Assembly and Physical Properties of Magnetic Nanoparticles. Journal of Magnetism and Magnetic Materials,2006.305(1):100.
    24.Zaitsev, V.S., et al., Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions. Journal of colloid and interface science,1999.212(1): 49.
    25.Bee, A., et al., Synthesis of Very Fine Maghemite Particles. Journal of Magnetism and Magnetic Materials,1995.149(1-2):6.
    26.Murray, C.B., et al., Synthesis and Characterization of Nearly Monodisperse CdE(E= S, Se, Te) Semiconductor Nanocrystallites. Journal of the American Chemical Society,1993.115(15):8706.
    27.Rockenberger, J., et al., A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides. Journal of the American Chemical Society,1999.121(49): 11595.
    28.Park, S.J., et al., Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres. Journal of the American Chemical Society,2000.122(35):8581.
    29.Hyeon, T., et al., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society,2001.123(51):12798.
    30.Sun, S., et al., Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society,2002.124(28):8204.
    31.Park, J., et al., Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nature materials,2004. 3(12):891.
    32.Li, Z., et al., Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone:Mechanism Leading to Fe3O4*. Angew. Chem. Int. Ed,2005.44:123.
    33.Li, Z., et al., One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles. Advanced Materials(FRG),2005.17(8):1001.
    34.Langevin, D., Micelles and Microemulsions. Annual Review of Physical Chemistry,1992.43(1):341.
    35.Liu, C, et al., Reverse Micelle Synthesis and Characterization of Superparamagnetic Mnfe2o4 Spinel Ferrite Nanocrystallites. J. Phys. Chem. B,2000.104(6):1141.
    36.Pileni, M.P., The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals. Nature materials,2003.2(3):145.
    37.Lopez-Quintela, M.A., et al., Chemical Reactions in Microemulsions:A Powerful Method to Obtain Ultrafine Particles. Journal of colloid and interface science,1993.158(2):446.
    38.Carpenter, E.E., Iron Nanoparticles as Potential Magnetic Carriers. Journal of Magnetism and Magnetic Materials,2001.225(1-2):17.
    39.Kosak, A., et al., Preparation of Mnzn-Ferrite with Microemulsion Technique. Journal of the European Ceramic Society,2004.24(6):959.
    40. Wang, X., et al., A General Strategy for Nanocrystal Synthesis. NATURE-LONDON-,2005.7055:121.
    41.Deng, H., et al., Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angewandte Chemie, 2005.117(18):2842.
    42.Hamdeh, H.H., et al., Structural and Magnetic Characterization of Aerogel-Produced Ge0.5fe2. Soy Nanoparticles. Journal of Magnetism and Magnetic Materials,2000.212(1-2):112.
    43.Gun 択 o, Y.K., et al., Magnetic Nanoparticles and Nanoparticle Assemblies from Metallorganic Precursors. Journal of Materials Science:Materials in Electronics,2001.12(4):299.
    44.刘常坤,Cofe2o4超细微粒催化剂的制备,性能与表征.1997.28(004):427.
    45.Liu, Q., et al., A Novel Two-Step Silica-Coating Process for Engineering Magnetic Nanocomposites. Chemistry of materials,1998.10(12):3936.
    46.王显祥,et al.,超声合成Fe3O4@SiO2复合纳米磁性粒子用于质粒dna的提纯.化学学报,2009(1).
    47.Xu, Z.Z., et al., Synthesis of Superparamagnetic Fe3O/SiO2 Composite Particles Via Sol-Gel Process Based on Inverse Miniemulsion. Journal of Materials Science,2005.40(17):4667.
    48.Ma, M., et al., Preparation and Characterization of Magnetite Nanoparticles Coated by Amino Silane. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003.212(2-3):219.
    49.Viau, G, et al., Nucleation and Growth of Bimetallic Coni and Feni Monodisperse Particles Prepared in Polyols. Solid State Ionics,1996.84(3-4):259.
    50.Pascal, C, et al., Electrochemical Synthesis for the Control of [Gamma]-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. Chem. Mater,1999.11(1):141.
    51.Bilecka, I., et al., One-Minute Synthesis of Crystalline Binary and Ternary Metal Oxide Nanoparticles. Chemical Communications,2008.2008(7):886.
    52.Hong, R.Y., et al., Microwave Synthesis of Magnetic Fe3O4 Nanoparticles Used as a Precursor of Nanocomposites and Ferrofluids. Journal of Magnetism and Magnetic Materials,2006.303(1):60.
    53.Pecharroman, C., et al., The Infrared Dielectric Properties of Maghemite, Gamma-Fe2O3, from Reflectance Measurement on Pressed Powders. Physics and Chemistry of Minerals,1995.22:21.
    54.Veintemillas-Verdaguer, S., et al., Continuous Production of Fe2O3 Ultrafine Powders by Laser Pyrolysis. Materials Letters,1998.35(3-4):227.
    55.Li, D., et al., Characterization of Fe/N Nanoparticles Synthesized by the Chemical Vapor Condensation Process. Journal of Magnetism and Magnetic Materials,2004.277(1-2):64.
    56.Ohayon, E., et al., The Application of Ultrasound Radiation to the Synthesis of Nanocrystalline Metal Oxide in a Non-Aqueous Solvent. Ultrasonics-Sonochemistry,2010.17(1):173.
    57.Peters, D., Ultrasound in Materials Chemistry. Journal of material chemistry,1996.6(10):1605.
    58.Huan-Ming, X., et al., Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(Ii). Angewandte Chemie International Edition,2009:2727.
    59.Mason, T.J., et al., Applied Sonochemistry:Uses of Power Ultrasound in Chemistry and Processing. 2002, Wiley-VCH Verlag, GmbH & Co. KgaA, ISBN.
    60.Flint, E.B., et al., The Temperature of Cavitation. Science,1991.253(5026):1397.
    61.Mason, T.J., Advances in Sonochemistry.1996:Jai press.
    62.Henglein, A., Makromol.Chem.,1954(14):128.
    63.Kruus, P., et al., Initiation of Polymerization with Ultrasound in Methyl Methacrylate. The Journal of Physical Chemistry,1985.89(15):3379.
    64.Price, G.J., et al., Polymerization of Methyl Methacrylate Initiated by Ultrasound. Macromolecules, 1992.25(24):6447.
    65.Rong Huei, C, et al., Effects of Ultrasonic Conditions and Storage in Acidic Solutions on Changes in Molecular Weight and Poly dispersity of Treated Chitosan. Carbohydrate Research,1997.299(4):287.
    66.Suslick, K.S., et al., Applications of Ultrasound to Materials Chemistry. Annual Review of Materials Science,1999.29(1):295.
    67.Koda, S., et al., Ultrasonic Degradation of Water-Soluble Polymers. Polymer(Guildford),1994.35(1): 30.
    68.Taghizadeh, M.T., et al., Ultrasonic Degradation of Solutions of Poly (Vinyl Acetate) in Tetrahydrofuran. Journal of Applied Polymer Science,2005.96(6):2373.
    69.Anandan, S., et al., Sonochemical Synthesis of Au-TiO2 Nanoparticles for the Sonophotocatalytic Degradation of Organic Pollutants in Aqueous Environment. Ultrasonics Sonochemistry,2009.16(3): 316.
    70.Yang, G.W., et al., Sonochemical Synthesis of Highly Monodispersed and Size Controllable Ag Nanoparticles in Ethanol Solution. Materials Letters,2008.62(14):2193.
    71.Fard-Jahromi, M.J.S., et al., Sonochemical Synthesis of Nanoscale Mixed-Ligands Lead(Ii)
    Coordination Polymers as Precursors for Preparation of Pb(2)(SO(4))O and PbO Nanoparticles; Thermal, Structural and X-Ray Powder Diffraction Studies. Ultrason Sonochem.17(2):435.
    72.Wu, Y.D., et al., A Novel Sonochemical Synthesis and Nanostructured Assembly of Polyvinylpyrrolidone-Capped Cds Colloidal Nanoparticles. Journal of Non-Crystalline Solids,2008. 354(26):2993.
    73.Yu, C.C., et al., Facile Sonochemical Synthesis and Photoluminescent Properties of Lanthanide Orthophosphate Nanoparticles. Journal of Solid State Chemistry,2009.182(2):339.
    74.Suslick, K.S., et al., Sonochemical Synthesis of Iron Colloids. Journal of the American Chemical Society, 1996.118(47):11960.
    75.Kumar, R.V., et al., Fabrication of Magnetite Nanorods by Ultrasound Irradiation. Journal of Applied Physics,2001.89:6324.
    76.Gedanken, A., Using Sonochemistry for the Fabrication of Nanomaterials. Ultrasonics-Sonochemistry, 2004.11(2):47.
    77.Xiong, H.M., et al., Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(Ii).. Angewandte Chemie-International Edition,2009.48(15):2727.
    78.Korotchenkov, O.A., et al., Doped Zns:Mn Nanoparticles Obtained by Sonochemical Synthesis. Nanotechnology,2005.16:2033.
    79.Xie, R.G., et al., Surface Synthesis of Pbs Nanoparticles on Silica Spheres by a Sonochemical Approach. Journal of Materials Science,2007.42(4):1376.
    80.Wu, W., et al., Sonochemical Gold Coating of Fe3O4 Nanoparticles and Its Characterizations. Acta Chimica Sinica,2007.65(13):1273.
    81.Mizukoshi, Y., et al., Sonochemical Immobilization of Noble Metal Nanoparticles on the Surface of Maghemite:Mechanism and Morphological Control of the Products. Ultrasonics Sonochemistry,2008. 15(5):875.
    82.Lubbe, A.S., et al., Clinical Applications of Magnetic Drug Targeting. Journal of Surgical Research, 2001.95(2):200.
    83.Alexiou, C, et al., Magnetic Drug Targeting-Biodistribution of the Magnetic Carrier and the Chemotherapeutic Agent Mitoxantrone after Locoregional Cancer Treatment. Journal of drug targeting, 2003.11(3):139.
    84.Alexiou, C, et al., Magnetic Drug Targeting:Biodistribution and Dependency on Magnetic Field Strength. Journal of Magnetism and Magnetic Materials,2002.252:363.
    85.Alexiou, C, et al., Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Research, 2000.60(23):6641.
    86.Joubert, J.C. Magnetic Microcomposites as Vectors for Bioactive Agents:The State of Art.1997: Springer-Verlag Ib閞ica.
    87.Lubbe, A.S., et al., Physiological Aspects in Magnetic Drug-Targeting. Journal of Magnetism and Magnetic Materials,1999.194:149.
    88.Kubo, T., et al., Targeted Delivery of Anticancer Drugs with Intravenously Administered Magnetic Liposomes in Osteosarcoma-Bearing Hamsters. International journal of oncology,2000.17(2):309.
    89.Pulfer, S.K., et al., Enhanced Brain Tumor Selectivity of Cationic Magnetic Polysaccharide Microspheres. Journal of drug targeting,1998.6(3):215.
    90.Lubbe, A.S., et al., Clinical Experiences with Magnetic Drug Targeting:A Phase I Study with 4'-Epidoxorubicin in 14 Patients with Advanced Solid Tumors. Cancer Research,1996.56(20):4686.
    91.叶辉,et al.,纳米磁性干扰素脂质体在裸鼠移植性人肝癌靶向治疗过程中对vegf和caspase-3表达的影啦.中国药理学通报,2008.24(6):730.
    92.Xie, J., et al., Ultrasmall C (Rgdyk)-Coated Fe3O4 Nanoparticles and Their Specific Targeting to Integrin V 3-Rich Tumor Cells. Journal of the American Chemical Society,2008.130(24):7542.
    93.Friedmann, T., The Development of Human Gene Therapy.1999:Cold Spring Harbor Laboratory Pr.
    94.Scherer, F., et al., Magnetofection:Enhancing and Targeting Gene Delivery by Magnetic Force in Vitro and in Vivo. Gene therapy(Basingstoke),2002.9(2):102.
    95.Plank, C., et al., Magnetofection:Enhancing and Targeting Gene Delivery with Superparamagnetic Nanoparticles and Magnetic Fields. Journal of Liposome Research,2003.13(1):29.
    96. Wu, H.C., et al., Novel Magnetic Hydroxyapatite Nanoparticles as Non-Viral Vectors for the Glial Cell Line-Derived Neurotrophic Factor Gene. Advanced Functional Materials,2009.20(1):67.
    97.Hughes, C, et al., Streptavidin Paramagnetic Particles Provide a Choice of Three Affinity-Based
    Capture and Magnetic Concentration Strategies for Retroviral Vectors. Molecular Therapy,2001.3(4):
    623.
    98.向娟娟,et al.,用氧化铁磁性纳米颗粒作为基因载体的研究.癌症,2001.20(10):1009.
    99.曹正国,et al.,超顺磁性葡聚糖氧化铁纳米颗粒的制备及其作为基因载体的可行性研究.癌症,2004.23(10):1105.
    100.Hafeli, U.O., et al., In Vitro and in Vivo Toxicity of Magnetic Microspheres. Journal of Magnetism and Magnetic Materials,1999.194(1):76.
    101.Kooi, M.E., et al., Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by in Vivo Magnetic Resonance Imaging. Circulation,2003. 107(19):2453.
    102.Gilchrist, R.K., et al., Selective Inductive Heating of Lymph Nodes. Annals of Surgery,1957.146(4): 596.
    103.Hafeli, U.O., Magnetically Modulated Therapeutic Systems. International journal of pharmaceutics, 2004.277(1-2):19.
    104.Moroz, P., et al., Magnetically Mediated Hyperthermia:Current Status and Future Directions. International journal of hyperthermia,2002.18(4):267.
    105.Mitsumori, M., et al., Targeted Hyperthermia Using Dextran Magnetite Complex:A New Treatment Modality for Liver Tumors. Hepatogastroenterology,1996.43:1431.
    106.Bagaria, H., et al., Analytical and Numerical Solution to a Concentric Sphere Model and Optimization for Magnetic Fluid Hyperthermia Treatment. International journal of hyperthermia,2005.21:57.
    107.Pollert, E., et al., New Tc-Tuned Magnetic Nanoparticles for Self-Controlled Hyperthermia. Journal of Magnetism and Magnetic Materials,2007.316(2):122.
    108.Kuznetsov, A.A., et al., Smart Mediators for Self-Controlled Inductive Heating. Eur Cells Mater,2002. 3:75.
    109.Babincova, M., et al, Blood-Specific Whole-Body Electromagnetic Hyperthermia. Medical hypotheses, 2000.55(6):459.
    110.Hilger, I., et al., Thermal Ablation of Tumors Using Magnetic Nanoparticles:An in Vivo Feasibility Study. Investigative radiology,2002.37(10):580.
    111 Johannsen, M., et al., Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique. International journal of hyperthermia,2005.21(7):637.
    112.Sun, C, et al., Magnetic Nanoparticles in Mr Imaging and Drug Delivery. Advanced drug delivery reviews,2008.60(11):1252.
    113.Babes, L., et al., Synthesis of Iron Oxide Nanoparticles Used as Mri Contrast Agents:A Parametric Study. Journal of colloid and interface science,1999.212(2):474.
    114.Bulte, J.W.M., et al., Short-Vs. Long-Circulating Magnetoliposomes as Bone Marrow-Seeking Mr Contrast Agents. Journal of Magnetic Resonance Imaging,1999.9(2):329.
    115.Bulte, J.W.M., et al., Magnetodendrimers Allow Endosomal Magnetic Labeling and in Vivo Tracking of Stem Cells. Nature Biotechnology,2001.19(12):1141.
    116.Bulte, J.W.M., et al., Iron Oxide Mr Contrast Agents for Molecular and Cellular Imaging. NMR in Biomedicine,2004.17(7):484.
    117.Corot, C., et al., Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging. Advanced drug delivery reviews,2006.58(14):1471.
    118.Harisinghani, M.G., et al., Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer. New England Journal of Medicine,2003.348(25):2491.
    119.Enochs, W.S., et al., Improved Delineation of Human Brain Tumors on Mr Images Using a Long-Circulating, Superparamagnetic Iron Oxide Agent. Journal of Magnetic Resonance Imaging,1999. 9(2):228.
    120.Hoehn, M., et al., Monitoring of Implanted Stem Cell Migration in Vivo:A Highly Resolved in Vivo Magnetic Resonance Imaging Investigation of Experimental Stroke in Rat. Proceedings of the National Academy of Sciences of the United States of America,2002.99(25):16267.
    121.Kelly, K.A., et al., In Vivo Phage Display Selection Yields Atherosclerotic Plaque Targeted Peptides for Imaging. Molecular Imaging and Biology,2006.8(4):201.
    122.Krestin, G.P., Superparamagnetic Iron Oxide Contrast Agents:Physicochemical Characteristics and Applications in Mr Imaging. Eur. Radiol,2001.11:23192331.
    123.Schellenberger, E.A., et al., Magneto/Optical Annexin V, a Multimodal Protein. Bioconjugate Chem, 2004.15(5):1062.
    124.Hogemann, D., et al., High Throughput Magnetic Resonance Imaging for Evaluating Targeted Nanoparticle Probes. Bioconjugate Chem,2002.13(1):116.
    125.Kim, J., et al., Nanostructures for Enzyme Stabilization. Chemical engineering science,2006.61(3): 1017.
    126.Wu, X., et al., Alpha-Chymotrypsin Immobilization on the Surface of Phase-Transferred Fe3O4 Nanoparticles. Chemical Journal of Chinese Universities-Chinese.31(1):11.
    127.Tamaura, Y., et al., Chemical Modification of Lipase with Ferromagnetic Modifier:A Ferromagnetic-Modified Lipase. Biotechnology Letters,1986.8(12):877.
    128.Kim, H., et al., Evaluation of a Silica-Coated Magnetic Nanoparticle for the Immobilization of a His-Tagged Lipase. Biocatalysis and Biotransformation,2009.27(4):246.
    129.Zhu, H., et al., Immobilization of Glycolate Oxidase from Medicago Falcata on Magnetic Nanoparticles for Application in Biosynthesis of Glyoxylic Acid. Journal of Molecular Catalysis. B, Enzymatic,2009.
    130.Caruso, F., et al., Enzyme Multilayers on Colloid Particles:Assembly, Stability, and Enzymatic Activity. Langmuir,2000.16(24):9595.
    131.Suleka, F., et al., Surface Functionalization of Silica-Coated Magnetic Nanoparticles for Covalent Attachment of Cholesterol Oxidase. Journal of Magnetism and Magnetic Materials,2009.
    132.Shafir, G., et al., Synthesis and Characterization of Recombinant Factor Viia-Conjugated Magnetic Iron Oxide Nanoparticles for Hemophilia Treatment. Journal of biomedical materials research. Part A, 2008.
    133.Dyal, A., et al., Activity of Candida Rugosa Lipase Immobilized on Gamma-Fe2O3 Magnetic Nanoparticles. JOURNAL-AMERICAN CHEMICAL SOCIETY,2003.125(7):1684.
    134.Mizuki, T., et al., Activity of an Enzyme Immobilized on Superparamagnetic Particles in a Rotational Magnetic Field. Biochemical and Biophysical Research Communications,2010.
    135.Kim, J., et al., Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network. Nano Letters,2003.3(9):1219.
    136.Heged s, I., et al., Improvement of Chymotrypsin Enzyme Stability as Single Enzyme Nanoparticles. Chemical engineering science,2009.64(5):1053.
    137.Ge, J., et al., Lipase Nanogel Catalyzed Transesterification in Anhydrous Dimethyl Sulfoxide. Biomacromolecules,2009.10(6):1612.
    138.0h, J.K., et al., The Development of Microgels/Nanogels for Drug Delivery Applications. Progress in Polymer Science,2008.33(4):448.
    139.Liu, M., Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability. Journal of the American Chemical Society,2006.128:34.
    140.Yang, Z., et al., Magnetic Single-Enzyme Nanoparticles with High Activity and Stability. Biochemical and Biophysical Research Communications,2007.
    141.Vernick, S., et al., Directed Metallization of Single-Enzyme Molecules with Preserved Enzymatic Activity. IEEE Transactions on Nanotechnology,2009.8(1):95.
    142.Wang, X., et al., Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads. Applied and Environmental Microbiology,2007.73(20):6421.
    143.Safarik, I., et al., Magnetically Modified Microbial Cells:A New Type of Magnetic Adsorbents. China Particuology,2007.5(1-2):19.
    144.Rosi, N.L., et al., Nanostructures in Biodiagnostics. Chem. Rev,2005.105(4):15477562.
    145.何晓晓,et al., Dna纳米富集器应用于痕量寡取核苷酸的富集.高等学校化学学报,2003.24(001):40.
    146.Liu, H., et al., High-Throughput Snp Genotyping Based on Solid-Phase Per on Magnetic Nanoparticles with Dual-Color Hybridization. Journal of biotechnology,2007.131(3):217.
    147.Nam, J.M., et al., Bio-Bar-Code-Based DNA Detection with Pcr-Like Sensitivity. Journal of the American Chemical Society,2004.126(19):5932.
    148.Nam, J.M., et al., Bio-Barcodes Based on Oligonucleotide-Modified Nanoparticles. Journal of the American Chemical Society,2002.124(15):3820.
    149.Nam, J.M., et al., Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science,2003.301(5641):1884.
    150.Fan, A., et al., Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label. Analytical chemistry,2005.77(10):3238.
    151.Huang, W.C., et al., Multifunctional Fe3O4@ Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria*. Small (Weinheim an der Bergstrasse, Germany),2009.5(1):51.
    152.Lin, Y.S., et al., Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the Maldi-Ms Analysis of Bacteria. Anal. Chem,2005.77(6):1753.
    153.Gu, H., et al., Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration. Journal of the American Chemical Society,2003.125(51):15702.
    154.Chang, S.Y., et al., Analysis of Peptides and Proteins Affinity-Bound to Iron Oxide Nanoparticles by Maldi Ms. Journal of the American Society for Mass Spectrometry,2007.18(5):910.
    155.Perez, J.M., et al., Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media. Journal of the American Chemical Society,2003.125(34):10192.
    156.Perez, J.M., et al., DNA-Based Magnetic Nanoparticle Assembly Acts as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents. Journal of the American Chemical Society, 2002.124(12):2856.
    157.Chen, J., et al., Twisting Integrin Receptors Increases Endothelin-1 Gene Expression in Endothelial Cells. American Journal of Physiology-Cell Physiology,2001.280(6):C1475.
    158.Kawai, T., et al., Protein Binding to Polymer Brush, Based on Ion-Exchange, Hydrophobic, and Affinity Interactions. Journal of Chromatography B,2003.790(1-2):131.
    159.Ditsch, A., et al., Ion-Exchange Purification of Proteins Using Magnetic Nanoclusters. Biotechnology progress,2006.22(4):1153.
    160.Xu, C., et al., Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. Journal of the American Chemical Society,2004.126(11):3392.
    161.Hofmann, I., et al., Symplekin, a Constitutive Protein of Karyo-and Cytoplasmic Particles Involved in Mrna Biogenesis in Xenopus Laevis Oocytes. Molecular biology of the cell,2002.13(5):1665.
    162,Franzreb, M., et al., Protein Purification Using Magnetic Adsorbent Particles. Applied microbiology and biotechnology,2006.70(5):505.
    163.Jd, A., et al., Affinity Chromatographic Purification of Antibodies to a Biotinylated Fusion Protein Expressed in Escherichia Coli. Protein Expression and Purification,1998.12(1).
    164.Schuster, M., et al., Short Cut of Protein Purification by Integration of Cell-Disrupture and Affinity Extraction. Bioseparation,2000.9(2):59.
    165.Safarik, I., et al., Magnetic Techniques for the Isolation and Purification of Proteins and Peptides. BioMagnetic Research and Technology,2004.2(1):7.
    166.Yang, P.F., et al., Direct Purification and Immobilization of Recombinant Hyaluronan Lyase from Undarified Feedstock Using Immobilized Metal Affinity Magnetite for Oligo-Hyaluronan Preparation. Biochemical Engineering Journal,2007.37(1):108.
    167.Liu, X., et al., Preparation and Characterization of Magnetic Polymer Nanospheres with High Protein Binding Capacity. Journal of Magnetism and Magnetic Materials,2005.293(1):111.
    168.Shieh, D.B., et al., Aqueous Nickel-Nitrilotriacetate Modified Fe3O4-Nh3+Nanoparticles for Protein Purification and Cell Targeting. Nanotechnology,2006.17:4174.
    169.Kim, J.S., et al., Highly-Efficient Purification of Native Polyhistidine-Tagged Proteins by Multivalent Nta-Modified Magnetic Nanoparticles. Bioconjugate Chem,2007.18(2):333.
    170.Lee, I.S., et al., Ni/Nio Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged Proteins. Journal of the American Chemical Society,2006.128(33):10658.
    171.Seto, T., et al., Magnetic Properties of Monodispersed Ni/Nio Core-Shell Nanoparticles. J. Phys. Chem. B,2005.109(28):13403.
    172.Li, Y.C., et al., Nitrilotriacetic Acid-Coated Magnetic Nanoparticles as Affinity Probes for Enrichment of Histidine-Tagged Proteins and Phosphorylated Peptides. Anal. Chem,2007.79(19):7519.
    173.Chen, C.T., et al., Fe3O/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical chemistry,2005.77(18):5912.
    174.Chen, C.T., et al., Rapid Enrichment of Phosphopeptides and Phosphoproteins from Complex Samples Using Magnetic Particles Coated with Alumina as the Concentrating Probes for Maldi Ms Analysis. Journal of proteome research,2007.6(1):316.
    175.Lo, C.Y., et al., Rapid Enrichment of Phosphopeptides from Tryptic Digests of Proteins Using Iron Oxide Nanocomposites of Magnetic Particles Coated with Zirconia as the Concentrating Probes. Journal of proteome research,2007.6(2):887.
    176.Liao, M.H., et al., Preparation and Characterization of a Novel Magnetic Nano-Adsorbent. Journal of Materials Chemistry,2002.12(12):3654.
    177.Liao, M.H., et al., Fast and Efficient Adsorption/Desorption of Protein by a Novel Magnetic Nano-Adsorbent. Biotechnology Letters,2002.24(22):1913.
    178.Chen, D.H., et al., Fast Separation of Bromelain by Polyacrylic Acid-Bound Iron Oxide Magnetic Nanoparticles. Process Biochemistry,2004.39(12):2207.
    179.Huang, S.H., et al., Fast and Efficient Recovery of Lipase by Polyacrylic Acid-Coated Magnetic Nano-Adsorbent with High Activity Retention. Separation and Purification Technology,2006.51(2):113.
    180.Bucak, S., et al., Protein Separations Using Colloidal Magnetic Nanoparticles. Biotechnology progress,2003.19(2):477.
    181.Teng, C.H., et al., Gold Nanoparticles as Selective and Concentrating Probes for Samples in Maldi Ms Analysis. Anal. Chem,2004.76(15):4337.
    182.He, X., et al., Selective Separation of Proteins with Ph-Dependent Magnetic Nanoadsorbents. Nanotechnology,2007.18:365604.
    183.Ohnishi, N., et al., High-Efficiency Bioaffinity Separation of Cells and Proteins Using Novel Thermoresponsive Biotinylated Magnetic Nanoparticles. NanoBioTechnology,2006.2(1):43.
    184.Dynal, A.S., Biomagnetic Techniques in Molecular Biology. Oslo, Norway:Dynal Corp,1998.
    185.Alexiou, C, et al., Medical Applications of Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology,6,2006.9(10):2762.
    186.Safar k, I., et al., Use of Magnetic Techniques for the Isolation of Cells. Journal of Chromatography B, 1999.722:33.
    187.Wilhelm, C, et al., Intracellular Uptake ofAnionic Superparamagnetic Nanoparticles as a Function of Their Surface Coating. Biomaterials,2003.24(6):1001.
    188.Zhang, Y., et al., Surface Modification of Superparamagnetic Magnetite Nanoparticles and Their Intracellular Uptake. Biomaterials,2002.23(7):1553.
    189.Safarik, I., et al., The Application of Magnetic Separations in Applied Microbiology. Journal of applied bacteriology. Oxford,1995.78(6):575.
    190.Duan, H.L., et al., Preparation of Immunomagnetic Iron-Dextran Nanoparticles and Application in Rapid Isolation of E. Coli 0157:H7 from Foods. World Journal of Gastroenterology,2005.11(24): 3660.
    191.Deng, Y., et al., Superparamagnetic High-Magnetization Microspheres with an Fe3O4@ SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society,2008.130(1):28.
    192.Chen, W., et al., Synthesis of Immunomagnetic Nanoparticles and Their Application in the Separation and Purification ofCD34+Hematopoietic Stem Cells. Applied Surface Science,2006.253(4):1762.
    193.Luxembourg, A.T., et al., Biomagnetic Isolation of Antigen-Specific CD8+T Cells Usable in Immunotherapy. Nature Biotechnology,1998.16(3):281.
    194.Shoge, K., et al., Rat Retinal Ganglion Cells Culture Enriched with the Magnetic Cell Sorter. Neuroscience letters,1999.259(2):111.
    195.Temesvari, L., et al., Characterization of Lysosomal Membrane Proteins of Dictyostelium Discoideum. A Complex Population of Acidic Integral Membrane Glycoproteins, Rab Gtp-Binding Proteins and Vacuolar Atpase Subunits. Journal of Biological Chemistry,1994.269(41):25719.
    196.Li, L., et al., Multivalent Vancomycins and Related Antibiotics against Infectious Diseases. Current pharmaceutical design,2005.11(24):3111.
    197.Lu, J., et al., Synthesis of Rigidly-Linked Vancomycin Dimers and Their in Vivo Efficacy against Resistant Bacteria. Chemical Communications,2007.2007(3):251.
    198.Xing, B., et al., Self-Assembled Multivalent Vancomycin on Cell Surfaces against Vancomycin-Resistant Enterococci (Vre). Chemical Communications,2003.2003(17):2224.
    199.Xing, B., et al., Multivalent Antibiotics Via Metal Complexes:Potent Divalent Vancomycins against Vancomycin-Resistant Enterococci. J. Med. Chem,2003.46(23):4904.
    200.Lea, T., et al., Monosized, Magnetic Polymer Particles:Their Use in Separation of Cells and Subcellular Components, and in the Study of Lymphocyte Function in Vitro. J. Mol. Recognit,1988.1:9.
    201.Furukawa, H., et al., Affinity Selection of Target Cells from Cell Surface Displayed Libraries:A Novel Procedure Using Thermo-Responsive Magnetic Nanoparticles. Applied microbiology and biotechnology, 2003.62(5):478.
    202.Jordan, A., et al., Cellular Uptake of Magnetic Fluid Particles and Their Effects on Human Adenocarcinoma Cells Exposed to Ac Magnetic Fields in Vitro. International journal of hyperthermia, 1996.12(6):705.
    203 Jordan, A., et al., Effects of Magnetic Fluid Hyperthermia (MFH) on C3H Mammary Carcinoma in Vivo. International journal of hyperthermia,1997.13(6):587.
    204.Schoepf, U., et al., Intracellular Magnetic Labeling of Lymphocytes for in Vivo Trafficking Studies. Biotechniques,1998.24(4):642.
    205.Weissleder, R., et al., Magnetically Labeled Cells Can Be Detected by Mr Imaging. Journal of Magnetic Resonance Imaging,1997.7(1):258.
    206. Wagner, K., et al., Synthesis of Oligonucleotide-Functionalized Magnetic Nanoparticles and Study on Their in Vitro Cell Uptake. Applied organometallic chemistry,2004.18(10):514.
    207.Yeh, T.C., et al., Intracellular Labelling of T-Cells with Superparamagnetic Contrast Agents. Magnetic resonance in medicine,1993.30:617.
    208.Lauffenburger, D.A., et al., Receptors:Models for Binding, Trafficking, and Signaling.1996:Oxford University Press, USA.
    209.Qian, Z.M., et al., Targeted Drug Delivery Via the Transferrin Receptor-Mediated Endocytosis Pathway. Pharmacological reviews,2002.54(4):561.
    210.Xie, X., et al., Rapid Extraction of Genomic DNA from Saliva for Hla Typing on Microarray Based on Magnetic Nanobeads. Journal of Magnetism and Magnetic Materials,2004.280(2-3):164.
    211.Xie, X., et al., Rapid Enrichment of Leucocytes and Genomic DNA from Blood Based on Bifunctional Core-Shell Magnetic Nanoparticles. Journal of Magnetism and Magnetic Materials,2007.311(1):416.
    212.Obata, K., et al., Recent Developments in Laboratory Automation Using Magnetic Particles for Genome Analysis, pgs,2002.3(5):697.
    213.Murashov, V.V., et al., Adsorption of the Phosphate Groups on Silica Hydroxyls:An Ab Initio Study. Journal of Physical Chemistry A,1999.103:1228.
    214.Nguyen, T.H., et al., Plasmid DNA Adsorption on Silica:Kinetics and Conformational Changes in Monovalent and Divalent Salts. Biomacromolecules,2007.8(1):24.
    215.Tian, H., et al., Evaluation of Silica Resins for Direct and Efficient Extraction of DNA from Complex Biological Matrices in a Miniaturized Format. Analytical Biochemistry,2000.283(2):175.
    216.Davies, M.J., et al., Isolation of Plasmid DNA Using Magnetite as a Solid-Phase Adsorbent. Analytical Biochemistry,1998.262(1):92.
    217.Prod lalov, J., et al., Isolation of Genomic DNA Using Magnetic Cobalt Ferrite and Silica Particles. Journal of Chromatography A,2004.1056(1-2):43.
    218.Taylor, J.I., et al., Application of Magnetite and Silica-Magnetite Composites to the Isolation of Genomic DNA. Journal of Chromatography A,2000.890(1):159.
    219.Saiyed, Z.M., et al., Application of Magnetic Particles (Fe3O4) for Isolation of Genomic DNA from Mammalian Cells. Analytical Biochemistry,2006.356(2):306.
    220.Saiyed, Z.M., et al., Extraction of DNA from Agarose Gel Using Magnetic Nanoparticles (Magnetite or Fe3O4). Analytical Biochemistry,2007.363(2):288.
    221.Sahoo, Y., et al., Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles:A Comparison with Fatty Acids. Superlattices Microstruct,1996.19:191.
    222.Melzak, K.A., et al., Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions. Journal of colloid and interface science,1996.181(2):635.
    223.Chiang, C.L., et al., Application of Silica-Agnetite Nanocomposites to the Isolation of Ultrapure Plasmid DNA from Bacterial Cells. Journal of Magnetism and Magnetic Materials,2006.305(2):483.
    224.He, X., et al., Plasmid DNA Isolation Using Amino-Silica Coated Magnetic Nanoparticles (Asmnps). Talanta,2007.73(4):764.
    225.Park, M.E., et al., High Throughput Human DNA Purification with Aminosilanes Tailored Silica-Coated Magnetic Nanoparticles. Materials Science & Engineering C,2007.27(5-8):1232.
    226.Yoza, B., et al., DNA Extraction Using Modified Bacterial Magnetic Particles in the Presence of Amino Silane Compound. Journal of biotechnology,2002.94(3):217.
    227.Ota, H., et al., Automated DNA Extraction from Genetically Modified Maize Using Aminosilane-Modified Bacterial Magnetic Particles. Journal of biotechnology,2006.125(3):361.
    228.Chiang, C.L., et al., Application of Superparamagnetic Nanoparticles in Purification of Plasmid DNA from Bacterial Cells. Journal of Chromatography B,2005.822(1-2):54.
    229.Veyret, R., et al., Amino-Containing Magnetic Nanoemulsions:Elaboration and Nucleic Acid Extraction. Journal of Magnetism and Magnetic Materials,2005.295(2):155.
    230.Steitz, B., et al., Characterization of Pei-Coated Superparamagnetic Iron Oxide Nanoparticles for Transfection:Size Distribution, Colloidal Properties and DNA Interaction. Journal of Magnetism and Magnetic Materials,2007.311(1):300.
    231.Yoza, B., et al., DNA Extraction Using Bacterial Magnetic Particles Modified with Hyperbranched Polyamidoamine Dendrimer. Journal of biotechnology,2003.101(3):219.
    232.Hawkins, T.L., et al., DNA Purification and Isolation Using a Solid-Phase. Nucleic acids research, 1994.22(21):4543.
    233.Xie, X., et al., Preparation and Application of Surface-Coated Superparamagnetic Nanobeads in the Isolation ofGenomic DNA. Journal of Magnetism and Magnetic Materials,2004.277(1-2):16.
    234.Ashtari, P., et al., An Efficient Method for Recovery of Target Ssdna Based on Amino-Modified Silica-Coated Magnetic Nanoparticles. Talanta,2005.67(3):548.
    235.Oster, J., et al., Polyvinyl-Alcohol-Based Magnetic Beads for Rapid and Efficient Separation of Specific or Unspecific Nucleic Acid Sequences. Journal of Magnetism and Magnetic Materials,2001. 225(1-2):145.
    236.Kinoshita, T., et al., Functionalization of Magnetic Gold/Iron-Oxide Composite Nanoparticles with Oligonucleotides and Magnetic Separation of Specific Target. Journal of Magnetism and Magnetic Materials,2007.311(1):255.
    237.Bruce, I.J., et al., Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations. Langmuir,2005.21(15):7029.
    238.Zhao, X., et al., Collection of Trace Amounts of DNA/Mrna Molecules Using Genomagnetic Nanocapturers. ANALYTICAL CHEMISTRY-WASHINGTON DC-,2003.75(14):3144.
    239.Nakagawa, T., et al., Capture and Release of DNA Using Aminosilane-Modified Bacterial Magnetic Particles for Automated Detection System of Single Nucleotide Polymorphisms. Biotechnology and bioengineering,2006.94(5):862.
    240.Schluep, T., et al., Purification of Plasmids by Triplex Affinity Interaction. Nucleic acids research, 1998.26(19):4524.
    241.Gelsthorpe, A.R., et al., Extraction of DNA Using Monoclonal Anti-DNA and Magnetic Beads. Biotechniques,1997.22(6):1080.
    242.Birnboim, H.C., et al., A Rapid Alkaline Extraction Procedure for Screening Recombinant Plasmid DNA. Nucleic acids research,1979.7(6):1513.
    243.Birnboim, H.C., A Rapid Alkaline Extraction Method for the Isolation of Plasmid DNA. Methods Enzymol,1983.100:243.
    244.Holmes, D.S., et al., A Rapid Boiling Method for the Preparation of Bacterial Plasmids. Analytical Biochemistry,1981.114(1):193.
    245.Chowdhury, K., One Step'miniprep'methodfor the Isolation of Plasmid DNA. Nucleic Acids Res,1991. 19(10):2792.
    246.Song, J., et al., Direct Lysis Method for the Rapid Preparation of Plasmid DNA. Analytical Biochemistry,1999.271(1):89.
    247.Elkin, C.J., et al., High-Throughput Plasmid Purification for Capillary Sequencing. Genome Research, 2001.11(7):1269.
    248.Marra, M.A., et al., High-Throughput Plasmid DNA Purification for 3 Cents Per Sample. Nucleic acids research,1999.27(24):e37.
    249.Shiels, G., et al., Automated Plasmid Purification Using MagnesilTm Paramagnetic Particles. www.promega.com,2001.79:22.
    250.Smith, D., et al., Automated Purification of Plasmid DNA Using Paramagnetic Particles. Journal of the Association for Laboratory Automation,2003.8(3):50.
    251.Paul, B., et al., A Nonalkaline Method for Isolating Sequencing-Ready Plasmids. Analytical Biochemistry,2008.377(2):218.
    252.Gjerde, D.T., et al., DNA Chromatography.2002:Wiley-VCH Weinheim, FRG.
    253.Diogo, M.M., et al., Chromatography of Plasmid DNA. Journal of Chromatography A,2005.1069(1): 3.
    254.Wei, W., et al., Sonochemical Synthesis, Structure and Magnetic Properties of Air-Stable Fe3O4@Au Nanoparticles. Nanotechnology,2007.18(14):8 pp.
    255.Baranchikov, A.Y., et al., Sonochemical Synthesis of Inorganic Materials. Uspekhi Khimii,2007.76(2): 147.
    256.Okitsu, K., et al., Sonochemical Synthesis of Gold Nanoparticles:Effects of Ultrasound Frequency. Journal of Physical Chemistry B,2005.109(44):20673.
    257.Wang, Z.L., et al., Sonochemical Synthesis of Ferromagnetic Core-Shell Fe3O4-FeP Nanoparticles and FeP Nanoshells. Chemical Physics Letters,2006.428(4-6):343.
    258.Ranjbar, Z.R., et al., Sonochemical Syntheses of a New Nano-Sized Porous Lead(Ii) Coordination Polymer as Precursor for Preparation ofLead(Ii) Oxide Nanoparticles. Journal of Molecular Structure, 2009.936(1-3):206.
    259.Kell, A.J., et al., Vancomycin-Modified Nanoparticles for Efficient Targeting and Preconcentration of Gram-Positive and Gram-Negative Bacteria. Acs Nano,2008.2(9):1777.
    260.Cheng, Y., et al., Combining Biofunctional Magnetic Nanoparticles and Atp Bioluminescence for Rapid Detection of Escherichia Coli. Talanta,2009.77(4):1332.
    261.Guihen, E., et al., Nanoparticles in Separation Science:Recent Developments. Analytical letters,2003. 36(15):3309.
    262.Sarkar, T.R., et al., Carboxyl-Coated Magnetic Nanoparticles for Mrna Isolation and Extraction of Supercoiled Plasmid DNA. Analytical Biochemistry,2008.379(1):130.
    263.Zhang, H.P., et al., Fabrication of Mono-Sized Magnetic Anion Exchange Beads for Plasmid DNA Purification. Journal of Chromatography B,2009.877(3):127.
    264.Sauer, M.L., et al., Sequential Cacl2, Polyethylene Glycol Precipitation for RNase-Free Plasmid DNA Isolation. Analytical Biochemistry,2008.380(2):310.
    265.Eon-Duval, A., et al., Removal of Rna Impurities by Tangential Flow Filtration in an RNase-Free Plasmid DNA Purification Process. Analytical Biochemistry,2003.316(1):66.
    266.Eon-Duval, A., et al., Purification of Pharmaceutical-Grade Plasmid DNA by Anion-Exchange Chromatography in an RNase-Free Process. Journal of Chromatography B,2004.804(2):327.
    267.Norgard, M.V., Rapid and Simple Removal of Contaminating Rna from Plasmid DNA without the Use ofRNase. Analytical Biochemistry,1981.113(1):34.
    268.Lev, Z., A Procedure for Large-Scale Isolation of Rna-Free Plasmid and Phage DNA without the Use of Rnase. Analytical Biochemistry,1987.160(2):332.
    269.Lee, J., et al., Preparation of Ultrafine Fe3O4particles by Precipitation in the Presence of PVA at High pH. Journal of colloid and interface science,1996.177(2):490.
    270.Dawson, N., et al., Preparation and Characterization of Polymer-Coated Magnetic Nanoparticles. IEEE Transactions on Magnetics,2001.
    271. Wong, S.S., et al., Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology. Nature,1998.394(6688):52.
    272.Durgin, P.B., et al., Dispersion of Kaolinite by Dissolved Organic from Douglas-Fir Roots. Can. J. Soil Sci,1984.64:445.
    273.Yu, S., et al., Carboxyl Group (CO2H) Functionalized Ferrimagnetic Iron Oxide Nanoparticles for Potential Bio-Applications. Journal of Materials Chemistry,2004.14(18):2781.
    274.Chatterjee, J., et al., Polyethylene Magnetic Nanoparticle:A New Magnetic Material for Biomedical Applications. Journal of Magnetism and Magnetic Materials,2002.246(3):382.
    275.Kachkachila, H., et al., Surface Effects in Nanoparticles:Application to Maghemite-Fe2O3. Eur. Phys. J.B,2000.14:681.
    276.Feltin, N., et al., New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles. Langmuir, 1997.13(15):3927.
    277.Barron, V., et al., Hydromaghemite, an Intermediate in the Hydrothermal Transformation of 2-Line Ferrihydrite into Hematite. American Mineralogist,2003.88(11-12):1679.
    278.Y1, M., et al., Spectroscopic and Xrd Studies of the Air Degradation of Acid-Reacted Pyrrhotites. Geochimica et Cosmochimica Acta,2002.66:23.
    279. Yang, C., et al., Effect of Ultrasonic Treatment on Dispersibility of Fe3O4 Nanoparticles and Synthesis of Multi-Core Fe3O4@SiO2 Core/Shell Nanoparticles. Journal of Materials Chemistry,2005.15(39): 4252.
    280.Tannenbaum, R., et al., Infrared Study of the Kinetics and Mechanism of Adsorption of Acrylic Polymers on Alumina Surfaces. Langmuir,2004.20(11):4507.
    281.Polacco, G., et al., Thermal Behaviour of Poly (Methacrylic Acid)/Poly (N-Vinyl-2-Pyrrolidone) Complexes. European Polymer Journal,2000.36(12):2541.
    282. Ye, M., et al., Synthesis, Preparation, and Conformation of Stimulus-Responsive End-Grafted Poly (Methacrylic Acid-G-Ethylene Glycol) Layers. Soft Matter,2006.2(3):243.
    283.Yen, F.S., et al., Crystallite Size Variations of Nanosized Fe2O3 Powders During [Gamma]-to [Alpha]-Phase Transformation. Nano Letters,2002.2(3):245.
    284.戚绍祺,et al.,晶粒大小的测定.广州化学,2000.25(3):34.
    285.Dumazet-Bonnamour, I., et al., Colloidal Dispersion of Magnetite Nanoparticles Via in Situ Preparation with Sodium Polyoxyalkylene Di-Phosphonates. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000.173(1-3):61.
    286.Mendenhall, G.D., et al., Optimization of Long-Term Stability of Magnetic Fluids from Magnetite and Synthetic Poly electrolytes. Journal of colloid and interface science,1996.184(2):519.
    287.Levison, P.R., et al., Recent Developments of Magnetic Beads for Use in Nucleic Acid Purification. Journal of Chromatography A,1998.816(1):107.
    288.Bitner, R.M., et al., Kits for Cell Concentration and Lysate Clearance Using Paramagnetic Particles. 2001, United States Patent 6284470
    289.Bitner, R., et al., Cell Concentration and Lysate Clearance Using Paramagnetic Particles.2005, United States Patent Application 20060240448.
    290.Chatellier, X., et al., Adsorption of a Cationic Poly electrolyte on Escherichia Coli Bacteria:1. Adsorption of the Polymer. Langmuir,2001.17(9):2782.
    291.Chatellier, X., et al., Adsorption of a Cationic Poly electrolyte on Escherichia Coli Bacteria:2. Interactions between the Bacterial Surfaces Covered with the Polymer. Langmuir,2001.17(9):2791.
    292.Strand, S.P., et al., Screening of Chitosans and Conditions for Bacterial Flocculation. Biomacromolecules,2001.2(1):126.
    293.Strand, S.P., et al., Efficiency of Chitosans Applied for Flocculation of Different Bacteria. Water research,2002.36(19):4745.
    294.Strand, S.P., et al., Interactions between Chitosans and Bacterial Suspensions:Adsorption and Flocculation. Colloids and Surfaces B:Biointerfaces,2003.27(1):71.
    295.Eboigbodin, K.E., et al., Investigating the Surface Properties of Escherichia Coli under Glucose Controlled Conditions and Its Effect on Aggregation. Langmuir,2007.23(12):6691.
    296.Martinez, R.E., et al., Determination of Intrinsic Bacterial Surface Acidity Constants Using a Donnan Shell Model and a Continuous Pka Distribution Method. Journal of colloid and interface science,2002. 253(1):130.
    297.Barany, S., et al., Flocculation of Cellular Suspensions by Polyelectrolytes. Advances in colloid and interface science,2004.111(1-2):117.
    298.雷涵,et al.,亚微米生物功能磁性复合微球的构建及在质粒dna捕获中的应用.高技术通讯,2002.12(008):75.
    299.Kfizova, J., et al., Magnetic Hydrophilic Methacrylate-Based Polymer Microspheres for Genomic DNA Isolation. Journal of Chromatography A,2005.1064(2):247.
    300.Vasilevskaya, V.V., et al., Collapse of Single DNA Molecule in Poly (Ethylene Glycol) Solutions. The Journal of Chemical Physics,1995.102:6595.
    301.Bloomfield, V.A., DNA Condensation. Current Opinion in Structural Biology,1996.6(3):334.
    302.Harvey, S.C., DNA Structural Dynamics:Longitudinal Breathing as a Possible Mechanism for the B {Rightleftarrows} Z Transition. Nucleic acids research,1983.11(14):4867.
    303.Nordmeier, G.K.E., Poly (Ethylene Glycol)-Induced DNA Condensation in Aqueous/Methanol Containing Low-Molecular-Weight Electrolyte Solutions Part I. Theoretical Considerations. Polymer, 1999.40:14.
    304.Esumi, K., et al., Adsorption of Poly (Ethyleneglycol) and Poly (Amidoamine) Dendrimer from Their Mixtures on Alumina/Water and Silica/Water Interfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001.194(1-3):7.
    305.Yoshikawa, K., et al., Highly Effective Compaction of Long Duplex DNA Induced by Polyethylene Glycol with Pendant Amino Groups. Journal of the American Chemical Society,1997.119(28):6473.
    306.Trindade, I.P., et al., Purification of Plasmid DNA Vectors by Aqueous Two-Phase Extraction and Hydrophobic Interaction Chromatography. Journal of Chromatography A,2005.1082(2):176.
    307.Persson, J., et al., Purification of Recombinant Apolipoprotein a-lmilano Expressed in Escherichia Coli Using Aqueous Two-Phase Extraction Followed by Temperature-Induced Phase Separation. Journal of Chromatography B:Biomedical Sciences and Applications,1998.711(1-2):97.
    308.Hatti-Kaul, R., Aqueous Two-Phase Systems. Molecular biotechnology,2001.19(3):269.
    309.Ohlsson, R., et al., A Rapid Method for the Isolation of Circular DNA Using an Aqueous Two-Phase Partition System. Nucleic acids research,1978.5(2):583.
    310.Ribeiro, S.C., et al., Isolation of Plasmid DNA from Cell Lysates by Aqueous Two-Phase Systems. Biotechnology and bioengineering,2002.78(4):376.
    311.Frerix, A., et al., Exploitation of the Coil-Globule Plasmid Dna Transition Induced by Small Changes in Temperature, Ph Salt, and Poly (Ethylene Glycol) Compositions for Directed Partitioning in Aqueous Two-Phase Systems. Langmuir,2006.22(9):4282.
    312.Smith, P.K., et al., Measurement of Protein Using Bicinchoninic Acid [Published Erratum Appears in Anal Biochem 1987 May 15; 163 (1):279]. Anal Biochem,1985.150(1):76.
    313.Tabor, C.W., et al., Polyamines in Microorganisms. Microbiology and Molecular Biology Reviews, 1985.49(1):81.
    314.Gosule, L.C., et al., Compact Form of DNA Induced by Spermidine.1976.
    315.Khan, A.U., et al., Spermine and Spermidine Protection of Plasmid DNA against Single-Strand Breaks Induced by Singlet Oxygen. Proceedings of the National Academy of Sciences of the United States of America,1992.89(23):11428.
    316.Besteman, K., et al., Charge Inversion Accompanies DNA Condensation by Multivalent Ions. Nature Physics,2007.3(9):641.
    317.Pelta, J., et al., DNA Aggregation Induced by Polyamines and Cobalthexamine. Journal of Biological Chemistry,1996.271(10):5656.
    318.Arscott, P.G., et al., Condensation of DNA by Trivalent Cations.1. Effects of DNA Length and Topology on the Size and Shape of Condensed Particles. Biopolymers,2004.30(5-6):619.
    319.Raspaud, E., et al., Precipitation of DNA by Polyamines:A Poly electrolyte Behavior. Biophysical Journal,1998.74(1):381.
    320.Murphy, J.C., et al., Purification of Plasmid DNA Using Selective Precipitation by Compaction Agents. Nature Biotechnology,1999.17(8):822.
    321.Allison, S.A., et al., Structure of Viral Phi 29 DNA Condensed by Simple Triamines:A Light-Scattering and Electron-Microscopy Study. Biopolymers,2004.20(3):469.
    322.Thomas, T.J., et al., Collapse of DNA Caused by Trivalent Cations:Ph and Ionic Specificity Effects. Biopolymers,2004.22(4):1097.
    323.Makita, N., et al., Proton Concentration (Ph) Switches the Higher-Order Structure of DNA in the Presence of Spermine. Biophysical chemistry,2002.99(1):43.
    324.Zinchenko, A.A., et al., Single-Chain Compaction of Long Duplex DNA by Cationic Nanoparticles: Modes of Interaction and Comparison with Chromatin. J. Phys. Chem. B,2007.111(11):3019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700