重组E. coli生产类人胶原蛋白发酵调控策略与500L中试规模放大方法优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在建立一套完整的重组Escherichia coli生产类人胶原蛋白(human-like collagen,HLC)的中试规模生产工艺,并通过对各单元操作从实验室规模到中试规模的放大研究,为进一步将该工艺放大到工业生产奠定基础。
     重组E.coli的高密度培养是HLC生产过程的核心单元,其放大的成功与否直接关系到整个工艺过程。为了明确影响发酵过程的关键因素,从而选择合适的放大准则和方法,本文对发酵过程中二氧化碳和乙酸的影响进行了系统研究。
     尽管有大量文献表明,二氧化碳对重组E.coli发酵有负面影响,然而关于二氧化碳对重组E.coli,特别是重组蛋白表达方面的定量研究却未见报道。本研究采用二氧化碳脉冲法首次考察了重组E.coli生长不同阶段二氧化碳浓度对重组蛋白生产的影响。研究结果表明,当在分批培养阶段施加浓度为20%(v/v)二氧化碳脉冲时,细胞生长明显受到抑制;而在补料阶段引入该脉冲时,却引起了比生长速率的小幅上升;二氧化碳对HLC表达的抑制只发生在HLC的表达阶段,即在蛋白表达诱导阶段引入浓度为20%(v/v)二氧化碳脉冲3小时,则最终HLC浓度下降33.9%。尽管二氧化碳脉冲的浓度越高,作用时间越长,其相应的抑制或促进作用也越明显,但当二氧化碳脉冲浓度小于等于10%时,对发酵过程却几乎没有影响。
     然后,针对重组E.coli发酵过程的关键问题-乙酸抑制作了系统研究。研究结果表明,在分批培养阶段乙酸对E.coli细胞有明显的抑制作用,但在补料培养阶段,其影响却并不明显;而乙酸对HLC表达的抑制只发生在HLC的表达阶段。本文首次建立了这一评价重组E.coli细胞生长不同阶段乙酸影响的方法。而建立该法的理论依据就是在葡萄糖饥饿阶段,重组E.coli细胞可以利用乙酸。为此,本研究也首次讨论了在细胞生长不同阶段,利用葡萄糖饥饿以诱导乙酸吸收对发酵过程的影响。
     在发酵放大过程中,合适的种子扩大培养过程的建立对于成功的放大也至关重要。为了建立最优的种子扩大培养过程,本研究考察了三级种子不同移种阶段和不同种子培养基浓度对发酵过程的影响。结果表明:在对数期后期移种,HLC产率最高;另外,当种子培养基葡萄糖浓度为20g/L时,其后发酵过程所需的培养时间较短,HLC表达量较高,HLC平均产率最高,达到0.518g/L/h。
     由乙酸的相关研究可知,乙酸对本表达体系具有较强的抑制作用,因而本研究建立了以控制乙酸产生为根本目的的溶氧探测补料技术,该技术具有很强的适应性,可在不同的环境中迅速得到发酵过程的最佳补料方案。采用溶氧探测补料技术,在实验室规模获得的最终细胞干重和HLC浓度分别为69.1g/L和13.1g/L,该值与以前根据比生长速率优化的结果基本一致。而放大到中试规模时,尽管乙酸浓度和实验室规模基本相同,优化诱导时机后获得的HLC表达水平也基本相同,但最终细胞干重和HLC浓度有一定程度下降,分别为51.7g/L和9.6g/L。
     直接放大后HLC产量下降的原因之一可能是不同规模发酵罐氧传递能力不同所致。针对该问题,通过测定不同规模发酵罐的体积氧传递系数,并建立了体积氧传递系数对操作参数(通气量、搅拌速度和装液量)的关联方程,使得不同规模的发酵罐在氧的传递方面具有可比性。实验室小规模发酵罐k_La值对操作参数的经验关联式为:中试规模发酵罐k_La值对操作参数的经验关联式为:
     最后,根据体积氧传递系数的关联方程,分别以k_La和p~*k_La为放大基准进行放大。由于本发酵体系对二氧化碳较不敏感,中试规模(500L)中加压操作得到了成功应用。即以p~*k_La为放大基准进行放大规模的不诱导的分批一补料培养,最终获得的细胞干重为77.9g/L,略低于实验室规模培养获得的细胞干重(80.3g/L),也低于以k_La为放大基准获得的中试规模培养的最终细胞干重(90.0g/L)。但以p~*k_La为基准放大,初始装液量(285L)远高于以k_La为基准放大时的初始装液量(105L);诱导培养后,最终细胞干重达到68.4g/L,最终HLC浓度为13.0g/L,基本同实验室规模。
     此外,本文还建立了HLC中试纯化工艺,并对其中影响蛋白收率和蛋白纯度的主要工艺单元:高压匀浆、沉淀、超滤及离子交换层析进行了放大研究。结果表明,高压匀浆不用改变任何操作参数可直接放大;超滤过程仅改变和膜面积相关参数也可得到满意的放大结果;对于沉淀单元,由于搅拌釜装置变化,在中试规模重新优化了沉淀时间:即沉淀70min后纯化效果最好;保持线速度恒定进行层析单元的放大也获得了较好结果。中试规模纯化工艺得到HLC的纯度为95.4%,收率为65.4%,与实验室规模纯化结果相比(HLC纯度与收率分别为96.4%,71.7%)仅略有下降。
The aim of this investigation was to develop a process for production of human-like collagen (HLC) by recombinant Escherichia coli on pilot-scale. In addition, the study would lay a sound basis for scaling-up to production scale further, through scale-up investigations for unit operations of the process.
     High cell density culture of recombinant E. coli is the key unit for HLC production and its scale-up performance would determine the whole process efficiency. To find the key factors influencing the fermentation process and thus chose the scale-up criteria and method properly, the effects of carbon dioxide and acetate on HLC production was studied firstly.
     Carbon dioxide plays a major role in both aerobic and anaerobic fermentations. However, few literatures focused on the effects of carbon dioxide on recombinant E. coli culture and target protein production. In this paper, a systematic study was initially carried out with the carbon dioxide pulse injection method to investigate the influence of carbon dioxide on the cultivation system of recombinant E. coli. The CO_2 pulse injection experiments showed that: 1) a 20% CO_2 pulse introduced in the batch cultivation phases inhibited cell growth obviously while that introduced in the fed-batch cultivation phases stimulated cell growth slightly; and 2) inhibitory effect of CO_2 on HLC expression occurred only in the expression phase, where the final HLC concentration decreased by 33.9% under a 3-h 20% CO_2 pulse. Meanwhile, the higher the CO_2 concentration and/or the longer the duration of the CO_2 pulses, the stronger the stimulatory or inhibitory effects. However, the CO_2 concentration below or equal to 10% had little influence on the HLC production.
     Then, a systematic study was carried out to determine the effects of acetate on the high cell density culture of recombinant E. coli containing HLC mRNA. In this study, the effects of acetate assimilation through a glucose starvation period at different cell growth phases were initially investigated in a fed-batch culture of recombinant E, coli. The results showed that acetate assimilation was observed without negative effects on the process during a glucose starvation period introduced at all defined cell growth phases except for the post-induction phase. In addition, a new method for evaluating the effects of acetate was development based on the above findings: the acetate concentration was controlled by adding acetate into culture media and/or employed a glucose starvation and thus the effects of acetate at different cell growth phase were determined. Experimental results show that obvious acetate inhibition on cell growth occurred in the phases of batch culture while its inhibitory effect on HLC expression occurred only in the expression phase.
     The development of a suitable inoculum is important to the fermentation process. To optimize the inoculum preparation process, the third inoculum transfer stage and medium were determined. The results showed that HLC productivity was highest when the third inoculum was transferred at lately exponential stage; in addition, when the glucose concentration was 20 g/L, the following fermentation time was shortest and the final HLC concentration was highest, and thus the HLC average productivity was highest (achieved 0.518 g/L/h).
     Acetate had a strong negative influence on the HLC production according to this work, so a feed-back controlled method that the probing feeding strategy was developed to control the acetate production. The method was employed to maintain dissolved oxygen concentration at the same level on both laboratory scale and pilot scale fermentations. The final DCW of 69.1 g/L and HLC concentration of 13.1 g/L were obtained on the laboratory scale and the results are similar to that optimized in the previous study. The final DCW of 51.7 g/L and HLC concentration of 9.6 g/L were obtained on the pilot-scale upon optimization of induction timing.
     The reason for the decrease in the HLC production on the pilot scale may be the lower oxygen transfer rate for the pilot-scale fermentor. Therefore, the volumetric mass transfer coefficient k_La on different scale fermentors was determined and the correlations between the k_La and operation parameters (aeration, stirrer rate and initial medium volume) were developed. And thus the oxygen transfer capacities for different fermentors could be compared. The correlations for k_La on the lab-scale fermentor is,And the correlations for k_La on the pilot-scale fermentor is,
     Finally, the scale-up fermentations based on k_La and p*k_La were carried out respectively, according to the correlations for k_La calculation. Because the recombinant system was less sensitivity to the CO_2, pressurized culture was successful for the HLC production. That is, for the non-induced cultivation on the pilot-scale based on the constant p*k_La scale-up criteria, the final DCW was 77.9 g/L, which was similar to that (80.3 g/L) obtained on the lab-scale cultivation and lower than the value (90.0 g/L) obtained in the pilot-scale based on the constant k_La scale-up criteria. However, the initial medium volume for the former (285 L) was much higher than the latter (105 L). The final DCW and HLC concentration were 68.4 g/L and 13.0 g/L repectively, which were similar to those obtained on the lab-scale, for the induced cultivation on the pilot-scale.
     The process for HLC purification on the pilot-scale was also developed in this study. The major operation units influencing HLC recovery and purity were homogenization, precipitation, ultrafiltration and CM52 chromatography. The scale-up investigation showed that, 1) the operation parameters could be directly transferred to the larger scale for the homogenization; 2) the operation parameters related to the membrane area were increased proportionally for scaling-up the ultrafiltration process; 3) the precipitation time was optimized on the pilot-scale and the optimized precipitation was 70 min, which is little higher than that on the lab-scale; 4) CM52 chromatography scaling-up based on constant linear velocity was successful. The purity and recovery of HLC reached 95.4%, 65.4%, repectively, which were decreased slightly compared to those (the putity and recovery were 96.4%,71.7%, respectively) obtained on the lab-scale.
引文
1.Akesson M, Karlsson E. N., Hagander P., et al. Online detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients [J]. Biotechnol. Bioeng., 1999, 64: 590-598
    
    2.Akesson M., Hagander P., Axelsson J. P., et al. Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding [J]. Biotechnol.Bioeng., 2001, 73: 223-230
    
    3.Alarm M. N. H. B. HJ. Z. Scale-up strategies in stirred and aerated bioreactor [D]. Malaysia: Universiti Teknologi Malaysia, 2005
    
    4.Alves S. S., Vasconcelos J. M. T. Optimisation of agitation and aeration in fermenters [J]. Bioprocess Biosyst. Eng., 1996,14: 119 - 123
    
    5.Amanullah A., McFarlane C. M., Emery A. M., et al. Scale-down model to simulate spatial pH variations in large scale bioreactors [J]. Biotechnol. Bioeng., 2001, 73:390-399
    
    6.Anderson R. K. I., Jayaraman K., Voisard D., et al. Heat flux as an on-line indicator of metabolic activity in pilot scale bioreactor during the production of Bacillus thuringiensis var. galleriae-based pesticides [J]. Thermochimica Acta 2002, 386:127-138
    
    7.Aristidou A. A., San K.-Y., Bennett G. N. Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source [J]. Biotechnol. Prog., 1999, 15: 140-145
    
    8.Arjunwadkar S. J., Sarvanan A. B., Kulkarni P. R., et al. Gas liquid mass transfer in dual impeller bioreactor [J]. Biochem. Eng. J., 1998,1: 99-106
    
    9.Banks G. T. Aeration of Moulds and Streptomycete Culture Fluids [J]. Enz. Ferment. Biotechnol., 1977, 1:72-110
    
    10.Belo I., Mota M. Batch and fed-batch cultures of E. coli TB1 at different oxygen transfer rates [J]. Bioprocess Eng., 1998,18: 451-455
    
    11.Buckland B. C. The translation of scale in fermentation processes: the impact of computer process control [J]. Bio/Technology, 1984, 2,289-300
    12.Bylund F., Collet E., Enfors E. O., et al. Substrate gradient formation in the large scale lowers cell yield and increases byproduct formation [J]. Bioprocess Eng., 1998, 18:171-180
    
    13.Bylund F., Guillard F., Enfors S. O., et al. Scale down of recombinant production: a comparative study of scaling performance [J]. Bioprocess Eng., 1999, 20: 289-377
    
    14.Bylund F., Castan A., Mikkola R., et al. Influence of scale-up on the quality of recombinant human growth hormone [J]. Biotechnol. Bioeng., 2000,69: 119-128
    
    15.Byun T.-G, Zeng A.-P., Deckwer W.-D. Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen transfer rate [J]. Bioprocess Eng., 1994,11: 167-175
    
    16.Levin M. Pharmaceutical process scale-up [M]. New York: Marcel Dekker. 95-114.
    
    17.Castan A., Enfors S.-O. Characteristics of a DO-controlled fed-batch culture of Escherichia coli [J]. Bioprocess Eng., 2000, 22: 509-515
    
    18.Castan A., N(?)sman A., Enfors S. O. Oxygen enriched air supply in Escherichia coli processes: production of biomass and recombinant human growth hormone [J].Enzyme Microb. Technol., 2002, 30: 847-854
    
    19.Chen X. A., Cen P. L., Chen J. S. Enhanced production of human epidermal growth factor by a recombinant Escherichia coli integrated with in situ exchange of acetic acid by macroporous ion-exchange resin [J]. J. Biosci. Bioeng., 2005, 100: 579-581
    
    20.Clarke K.G., Williams P.C., Smit M.S., et al. Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors [J]. Biochem. Eng. J., 2006, 28:237-242
    
    21.Davidson K. M., Sushil S., Eggleton C. D., et al. Using computational fluid dynamics software to estimate circulation time distributions in bioreactors [J]. Biotechnol. Progress, 2003, 19: 1480-1486
    
    22.Diaz A., Acevedo F. Scale-up strategy for bioreactors with Newtonian and non-Newtonian broths [J]. Bioprocess Eng., 1999, 21: 21-23
    
    23.Eiteman M. A., Altaian E. Overcoming acetate in Escherichia coli recombinant protein fermentations [J]. Trends Biotechnol, 2006,24: 530-536
    24.Enfors S.-O., Jahic M., Rozkov A., et al. Physiological responses to mixing in large scale bioreactors [J]. J. Biotechnol., 2001, 85: 175-185
    
    25.Erkmen O. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk [J]. Int. J. Food Microbiol., 2001, 65: 131-135
    
    26.Fan D. D., Luo Y. E., Mi Y., et al. Characteristics of fed-batch cultures of recombinant Escherichia coli containing human-like collagen cDNA at different specific growth rates [J]. Biotechnol. Lett., 2005, 27: 865-870
    
    27.Faulkner E., Barrett M., Okor S., et al. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli [J]. Biotechnol. Prog., 2006,22: 889-897
    
    28.Fieschko J., Ritsch T. Production of human alpha consensus interferon in recombinant Escherichia coli [J]. Chem. Eng. Commun., 1986,45: 229-240
    
    29.Flickinger M. C., Rouse M. P. Sustaining protein synthesis in the absence of rapid cell division: an investigation of plasmid-encoded protein expression in Escherichia coli during very slow growth [J]. Biotechnol. Prog., 1993, 9: 555-572
    
    30.Flores E. R., Perez F., de la Torre M. Scale-up of Bacillus thuringiensis fermentation based on oxygen transfer [J]. J. Ferm. Bioeng., 1997, 83: 561-564
    
    31.Fuchs C., Kostera D., Wiebusch S., et al. Scale-up of dialysis fermentation for high cell density cultivation of Escherichia coli [J]. J. Biotechnol., 2002,93: 243-251
    
    32.Garcia-Ochoa F., Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview [J]. Biotechnol. Adv., 2009, 27: 153 - 176
    
    33.George H. A., Powell A. L., Dahlgren M. E., et al. Physiological effects of TGF-PE40 expression in recombinant Escherichia coli JM109 [J]. Biotechnol. Bioeng., 1992,40(3): 437-445
    
    34.Gschaedler A., Robas N., Boudrant J., et al. Effects of pulse addition of carbon sources on continuous cultivation of Escherichia coli containing a recombinant E. coli gapA gene [J]. Biotechnol. Bioeng., 1999, 63, 712-720
    
    35.Harder M. P. F., Sanders E. A., Wingender E., et al. Production of human parathyroid hormone by recombinant Escherichia coli TGI on synthetic medium [J]. J. Biotechnol.,1994,32:157-164
    36.Hellmuth K., Korz D. J., Sanders E. A., et al. Effect of growth rate on stability and gene expression of recombinant plasmids during continuous and high cell density cultivation of Escherichia coli [J]. J. Biotechnol., 1994,32: 289-298
    
    37.Hensing M. C. M., Rouwenhorst R. J., Heijnen J. J., et al. Physiological and technological aspects of large-scale heterologous-protein production with yeasts [J].Antonie van Leeuwenhoek, 1995,67: 261-279
    
    38.Hewitt C. J., Nebe-von Caron G., Axelsson B., et al. Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry:effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration [J]. Biotechnol. Bioeng., 2000, 70: 381-390
    
    39.Ho C. S., Smith M. D. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production [J]. Biotechnol. Bioeng., 1986,28: 668-677
    
    40.Smith J. E., Smith D. R., Berry D. R., et al. Fungal biotechnology [M]. London: Academic, 1980: 1-14
    
    41.Hopkins D. J., Betenbaugh M. J., Dhurjati P. Effects of dissolved oxygen shock on the stability of recombinant Escherichia coli containing plasmid pKN401 [J]. Biotechnol.Bioeng., 1987,29:85-91
    
    42.Hsu Y.-L., Wu W.-T. A novel approach for scaling-up a fermentation system [J]. Biochem. Eng. J., 2002, 11:123-130
    
    43.Hu S.-Y., Wu J.-L., Huang J.-H. Production of tilapia insulin-like growth factor-2 in high cell density cultures of recombinant Escherichia coli [J]. J. Biotechnol., 2004, 107: 161-171
    
    44.Hua X. F., Fan D. D., Luo Y. E., et al. Kinetics of high cell density fed-batch culture of recombinant Escherichia coli producing human-like collagen [J]. Chin. J. Chem. Eng.,2006, 14,242-247
    
    45.Jae G. P., Joon S. R., Jean M. L. Physiological constraints in increasing biomass concentration of Escherichia coli B in fed-batch culture [J]. Biotechnol. Lett., 1987, 9:89-94
    
    46.Jensen E. B., Carlsen S. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts [J]. Biotechnol. Bioeng. 1990, 36: 1-11.
    
    47.Johnston W., Cord-Ruwisch R., Cooney M. J. Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables [J]. Bioprocess Biosyst. Eng., 2002, 25: 111-120
    
    48.Johnston W., Stewart M., Lee P., et al. Tracking the acetate threshold using DO-transient control during medium and high cell density cultivation of recombinant Escherichia coli in complex media [J]. Biotechnol. Bioeng., 2003, 84: 314-323
    
    49.Jones R. P., Greenfield P. F. Effect of carbon dioxide on yeast growth and fermentation [J]. Enzyme Microb. Technol., 1982,4: 210-223
    
    50.Junker B. H. Scale-up methodologies for Escherichia coli and yeast fermentation processes [J]. J. Biosci. Bioeng., 2004, 97(6): 347-364
    
    51.Kallio P. T., Kim D. J., Tsai P. S., et al. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions [J]. Eur. J. Biochem., 1994, 219: 201-208
    
    52.Kleman G. L., Strohl W. R. Acetate metabolism by Escherichia coli in high-cell-density fermentation [J]. Appl. Environ. Microbiol., 1994, 60: 3952-3958
    
    53.Ko Y.-F., Bentley W. E., Weigand W. A. An integrated metabolic modeling approach to describe the energy efficiency of Escherichia coli fermentations under oxygen-limited conditions: cellular energetics, carbon flux, and acetate production [J]. Biotechnol.Bioeng., 1993,42:843-853
    
    54.Koh B. T., Nakashimada U., Pfeiffer M., et al. Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains [J]. Biotechnol. Lett, 1992, 14(12):1115-1118
    
    55.Korz D. J., Rinas U., Hellmuth K., et al. Simple fed-batch technique for high cell density cultivation of Escherichia coli [J]. J. Biotechnol., 1995, 39: 59-65.
    
    56.Kramer R. Analysis and modeling of substrate uptake and product release by prokaryotic and eukaryotic cells [J]. Adv. Biochem. Eng. Biotechnol., 1996, 54:31-73
    
    57.Kuriyama H., Mahakarnchanakul W., Matsui S., et al. The effects of pCO_2 on yeast growth and metabolism under continuous fermentation [J]. Biotechnol. Lett., 1993, 15: 189-194
    
    58.Larsson G., T(o|¨)rnkvist M., Wemersson E. S., et al. Substrate gradients in bioreactors: origin and consequences [J]. Bioprocess Eng., 1996,14: 281-289
    
    59.Lee J.-H., Choi Y.-H., Kang S.-K., et al. Production of human leukocyte interferon in Escherichia coli by control of growth rate in fed-batch fermentation [J]. Biotechnol. Lett., 1989,11:695-698
    
    60.Lee S. Y. High cell-density culture of Escherichia coli [J]. Trends Biotechnol., 1996,14: 98-105
    
    61.Liao H. M., Hu X. S., Liao X. J., et al. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide [J]. Int. J. Food Microbiol.,2007,118:126-131
    
    62.Lin H. Y. Cellular responses to the induction of recombinant genes in Escherichia coli fed-batch cultures [D]. Germany Halle (Saale): Martin-Luther-Universitat Halle-Wittenberg, 1999
    
    63.Lin H. Y., Neubauer P. Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli [J]. J. Biotechnol., 2000, 79: 27-37
    
    64.Lin H. Y., Mathiszik B., Xu B., et al. Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli [J]. Biotechnol. Bioeng., 2001, 73: 347-357
    
    65.Lincoln R. E. Control of stock culture preservation and inoculum build-up in bacterial fermentation [J]. J. Biochem. Microbiol. Tech. Eng., 1960,2(4): 481 - 500
    
    66.Lischke H. H., Brandes L., Wu X., et al. Influence of acetate on the growth of recombinant Escherichia coli JM103 and product formation [J]. Bioprocess Eng., 1993,9: 155-157
    
    67.Luli G. W., Strohl W. R. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations [J]. Appl.Environ. Microbiol., 1990, 56: 1004-1011
    
    68.Luo Y E., Fan D. D., Ma X. X., et al. Process control for production of human-like collagen in fed-batch culture of Escherichia coli BL21 [J]. Chin. J. Chem. Eng., 2005,13: 276-279
    69.Luo Y. E., Fan D. D., Shang L. A., et al. Analysis of metabolic flux in Escherichia coli expressing human-like collagen in fed-batch culture [J]. Biotechnol. Lett., 2008, 30:637-643
    
    70.Matsui T., Shinzato N., Yokota H., et al. High cell density cultivation of recombinant E. coli with a pressurized culture [J]. Process Biochem., 2006,41: 920-924
    
    71.McIntyre M, McNeil B. Effects of elevated dissolved CO_2 levels on batch and continuous cultures of Aspergillus niger A60: an evaluation of experimental methods [J]. Appl. Environ. Microbiol., 1997, 63: 4171-4177
    
    72.McIntyre M., McNeil B. Morphogenetic and biochemical effects of dissolved carbon dioxide on filamentous fungi in submerged cultivation [J]. Appl. Microbiol.Biotechnol., 1998, 50: 291-298
    
    73.Mey M. D., Maeseneire S. D., Soetaert W., et al. Minimizing acetate formation in E. coli fermentations [J]. J. Ind. Microbiol. Biotechnol., 2007, 34: 689-700
    
    74.Michel B. J., Miller S. A. Power requirements of gas-liquid agitated systems [J]. AIChE J., 1962, 8: 262-267
    
    75.Nakano K., Rischke M., Sato S., et al. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor [J]. Appl.Microbiol. Biotechnol., 1997, 48, 597-601
    
    76.Nancib N., Branlant C, Boudrant J. Metabolic roles of peptone and yeast extract for the culture of a recombinant strain of Escherichia coli [J]. J. Ind. Microbiol., 1991, 8,165-169
    
    77.Neysens P., Vuyst L. D. Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production [J]. Int. J. Food Microbiol., 2005,105: 191-202
    
    78.Neubauer P., H(a|¨)ggstr(o|¨)m L., Enfors S.-O. Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations [J]. Biotechnol. Bioeng., 1995, 47(2): 139-146
    
    79.Neubauer P., Lin H. Y, Mathiszik B. Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli [J]. Biotechnol. Bioeng., 2003, 83: 53-64
    80.Okada S., Iwamatu S. Scale-up production of milbemycin by Streptomyces hygroscopicus subsp, aureolacrimosus with control of internal pressure, temperature, aeration and agitation [J]. J. Chem. Technol. Biotechnol., 1997, 70,179-187
    
    81.Olsen D., Yang C. L., Bodo M., et al. Recombinant collagen and gelatin for drug delivery [J]. Adv. Drug Deliv. Rev., 2003, 55: 1547-1567
    
    82.Oniscu C., Galaction A. I., Cascaval D., et al. Modelling of mixing in stirred bioreactors 1. Mixing time for non-aerated simulated broths [J]. Roum. Biotechnol.Lett., 2001, 6: 119-129
    
    83.Onken U., Liefke E. Effects of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes [J]. Adv. Biochem. Eng. Biotechnol., 1989,40:137-169
    
    84.Onyeaka H., Nienow A., Hewitt C. J. Further studies related to the scale-up of high cell density Escherichia coli fed-batch fermentations: the additional effect of changing microenvironment when using aqueous ammonia to control pH [J]. Biotechnol. Bioeng.,2003, 84: 474-484
    
    85.Oosterhuis N. M., Kossen N. W., Olivier A. P., et al. Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans [J]. Biotechnol. Bioeng., 1985,27(5):711-720
    
    86.Pinheiro R., Belo I., Mota M. Physiological behaviour of Saccharomyces cerevisiae under increased air and oxygen pressures [J]. Biotechnol. Lett., 1997,19(7): 703-708
    
    87.Pinsach J., de Mas C, Josep L.-S. Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: Application to rhamnulose 1-phosphate aldolase [J]. Biochem. Eng. J., 2008,41: 181-187
    
    88.Puthli M. S., Rathod V. K., Pandit A. B. Gas-liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor [J]. Biochem. Eng. J., 2005, 23: 25-30
    
    89.Reischer H., Schotola I., Striedner G., et al. Evaluation of the GFP signal and its aptitude for novel on-line monitoring strategies of recombinant fermentation processes [J]. J. Biotechnol.,2004,108(2): 115-125
    
    90.Riesenberg D., Menzel K., Schulz V., et al. High cell density fermentation of recombinant Escherichia coli expressing human interferon-α1 [J]. Appl. Microbiol. Biotechnol., 1990,34:77-82
    91.Riesenberg D., Schulz V., Knorre W. A., et al. High cell density cultivation of Escherichia coli at controlled specific growth rate [J]. J. Biotechnol., 1991,20: 17-28
    
    92.Riesenberg D., Guthke R. High-cell-density cultivation of microorganisms [J]. Appl. Microbiol. Biotechnol., 1999, 51: 422-430
    
    93.Russel A. B., Thomas C. R., Lilly M. D. Oxygen transfer measurements during yeast fermentations in a pilot scale airlift fermenter [J]. Bioprocess Biosyst. Eng., 1995, 12:71-79
    
    94.Ryan W., Parulekar S. J., Stark B. C. Expression of β-lactamase by recombinant Escherichia coli strains containing plasmids of different sizes-effects of pH, phosphate,and dissolved oxygen [J]. Biotechnol. Bioeng., 1989, 34: 309-319
    
    95.Sabatie J., Speck D., Reymund J., et al. Biotin formation by recombinant strains of Escherichia coli: Influence of the host physiology [J]. J. Biotechnol., 1991, 20(1):29-50
    
    96.San K.-Y., Bennett G. N., Aristidou A. A., et al. Strategies in high-level expression of recombinant protein in Escherichia coli [J]. Ann. N. Y. Acad. Sci., 1994, 721: 257-267
    
    97.Saraswat V, Kim DY, Lee J, et al. Effect of specific production rate of recombinant protein on multimerization of plasmid vector and gene expression level [J]. FEMS Microbiol. Lett., 1999, 179: 367-373
    
    98.Schmidt F. R. Optimization and scale up of industrial fermentation processes [J]. Appl. Microbiol. Biotechnol, 2005, 68: 425-435
    
    99.Schweder T., Krüger E., Xu B., et al. Monitoring genes that respond to process related stress in large-scale bioprocesses [J]. Biotechnol. Bioeng., 1999, 65: 151-159
    
    100.Seeger A., Schneppe B., McCarthy J. E. G, et al. Comparison of temperature- and isopropyl-β-D-thiogalacto-pyranoside-induced synthesis of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli [J]. Enzyme Microb. Technol., 1995, 17: 947-953
    
    101.Sen R., Swaminathan T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production [J]. Biochem. Eng.J., 2004,21: 141-148
    
    102.Shang L. A., Jiang M., Ryu C. H., et al. Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: Evaluation by CO_2 pulse injection and autogenous CO_2 methods [J]. Biotechnol. Bioeng., 2003, 83: 312-320
    
    103.Shimizu N., Fukuzono S., Fujimori K., et al. Fed-batch cultures of recombinant Escherichia coli with inhibitory substance concentration monitoring [J]. J. Ferm.Technol., 1988,66: 187-191
    
    104.Stanbury P. F., Whitaker A., Hall S. J. Principles of fermentation technology [M]. Second Edition. Burlington: Butterworth-Heinemann, 1995: 147-166
    
    105.Suárez, D. C., Kilikian, B. V. Acetic acid accumulation in aerobic growth of recombinant Escherichia coli [J]. Process Biochem., 2000,35: 1051-1055
    
    106.Takebe H., Takane N., Hiruta O., et al. Scale-up of bialaphos production [J]. J. Ferment. Bioeng., 1994, 78: 93-99
    
    107.Türker M. Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations [J]. Thermochimica Acta, 2004,419: 73-81
    
    108.Turner, C., Gregory, M. E., Turner, M. K. A study of the effects of specific growth rate and acetate on recombinant protein production of Escherichia coli JM107 [J].Biotechnol. Lett., 1994, 16: 891-896
    
    109.Van De Walle M., Shiloach J. Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation [J]. Biotechnol.Bioeng., 1998,57:71-78
    
    110.van Reis R., Goodrich E. M., Yson C. L. et al. Linear scale ultrafiltration [J]. Biotechnol. Bioeng., 1997, 55(5): 737-746
    
    111.Van't Riet K. Review of measuring methods and nonviscous gas-liquid mass transfer in stirred vessels [J]. Ind. Eng. Chem. Process Des. Dev., 1979,18: 357-364
    
    112.Velut S., Castan A., Short K. A., et al. Influence of bioreactor scale and complex medium on probing control of glucose feeding in cultivations of recombinant strains of Escherichia coli [J]. Biotechnol. Bioeng., 2006, 97(4): 816-824
    
    113.Virkar P. D., Hoare M., Chan M. Y., et al. Kinetics of the acid precipitation of soya protein in a continuous-flow tubular reactor [J]. Biotechnol. Bioeng., 1982, 24(4):871-887
    
    114.Wong I., Hernandez A., Garcia M. A., et al. Fermentation scale up for recombinant K99 antigen production cloned in Escherichia coli MC1061 [J]. Proc.Biochem., 2002, 37:1195-1199
    115. Wolfe A. J. The Acetate Switch [J]. Microbiol. Mol.Biol.Rev., 2005, 69: 12-50
    116. Xu B., Jahic M., Blomsten G, et al.Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli [J]. Appl. Microbiol. Biotechnol.,1999, 51: 564-571
    117. Yang J.-D., Wang N. S. Oxygen mass transfer enhancement via fermentor headspace pressurization [J]. Biotechnol. Prog., 1992, 8: 244-251
    118. Yawalkar A. A., Heesink A. B. M., Versteeg G.F.,et al. Gas-liquid mass transfer coefficient in stirred tank reactors [J]. Can. J. Chem.Eng., 2002, 80: 840-848
    119. Zawada J., Swartz J. Maintaining rapid growth in moderate-density Escherichia coli fermentations [J]. Biotechnol. Bioeng., 2005, 89: 407-417
    120. Zhai Y., Cui F. Z., Wang Y. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils [J]. Current Applied Physics., 2005, 5: 429-432
    121. Zhai Y, Cui F. Z. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals [J].J.Cryst. Growth., 2006,291:202-206
    122. Zhu C. H., Fan D. D., Duan Z. G, et al. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering [J]. J. Biomed.Mater.Res. A.,in the press. DOI:10.1002/jbm.a.32256
    123. Zhu Y, Bandopadhayay P. C, Wu J. Measurement of gas-liquid mass transfer in an agitated vessel--a comparison between different impellers [J]. J. Chem. Eng. Jpn., 2001,34: 579-584
    124.曹光明,俞子行.论中药工业中的中试放大验证[J].世界科学技术,2002,4(6):19-23
    125.储炬,李友荣.现代生物工艺学(上册)[M].上海:华东理工大学出版社,2007:147-150
    126.储炬,李友荣.现代生物工艺学(下册)[M].上海:华东理工大学出版社,2007:77-88
    127.杜鹏,叶勤,俞俊棠.大肠杆菌耦合乙酸分离的过滤培养[J].生物工程学报,2000,16(4):528-530
    [128] 段明瑞,米钰,范代娣.重组人源型胶原蛋白基因工程菌补料分批发酵过程动力学研究[J].化学反应工程与工艺,2002,18(3):238-243
    [129] 范代娣.摇瓶到发酵罐放大方法及手段的研究[D].上海:华东理工大学,1994
    [130] 范代娣.细胞培养与蛋白质工程[M].北京:化学工业出版社,2000:126-190
    [131] 范代娣,段明瑞,米钰,等.重组E.cofi工程菌高密度培养生产人源型胶原蛋白[J].化工学报,2002,53(7):752-754
    [132] 冯尔玲,于公义.工程菌发酵过程中乙酸的形成及其控制方法[J].生物技术通讯,1995,6(4):184-186
    [133] 冯宇.重组表位疫苗的构建表达及其纯化工艺研究和中试放大[D].长春:吉林大学,2007
    [134] 侯文洁,范代娣,薛文娇,等.重组类人胶原蛋白Ⅱ的表达与纯化[J].中国医药工业杂志,2006,37(7):454-457
    [135] 李民,陈常庆,朴勤.利用恒溶氧补料分批技术高密度发酵大肠杆菌生产重组人骨形成蛋白-2A[J].生物工程学报,1998,14(4):270-275
    [136] 李树刚.重组人白细胞介素-1受体拮抗剂的表达、复性、纯化及中试生产工艺研究[D].重庆:重庆大学,2007
    [137] 李志敏,叶勤.大肠杆菌乙酸代谢突变株的培养和外源基因表达[J].华东理工大学学报,2002,28(2):164-167
    [138] 廖鲜艳,朱至,陈坚,堵国成.用于谷胱甘肽合成的重组大肠杆菌的培养和诱导表达[J].过程工程学报,2007,7(1):124-127
    [139] 马晓轩.基因重组大肠杆菌高密度发酵生产类人胶原蛋白及其分离纯化[D].西安:西北大学,2006
    [140] 马歇克D.R.,门永J.T.,克努特M.W.,等.蛋白质纯化与鉴定实验指南[M].朱厚础 译.北京:科学出版社,1999:1-235
    [141] 蒙健宗,陈发忠,王青艳,等.重组海藻糖合成酶工程菌的pH-stat高密度发酵工艺研究[J].食品科学,2006,27(8):125-128
    [142] 戚以政,夏杰.生物反应工程[M].北京:化学工业出版社,2004:287-309
    [143] 沈林南,魏东芝,俞俊棠.重组人碱性成纤维细胞生长因子基因工程菌的高密度培养[J].微生物学杂志,1999,19(4):11-14
    [144] 孙彦.生物分离工程[M].北京:化学工业出版社,1998:28-37
    [145] 孙彦.生物分离工程[M].第二版.北京:化学工业出版社,2005:1-11
    [146] 熊盛,钱垂文,黄立,等.50L规模中试发酵重组核苷二磷酸激酶A工程菌[J].中国生物工程杂志,2006,26(10):1-6
    [147] 薛文娇.离子交换法纯化类人胶原蛋白Ⅱ的研究[D].西安:西北大学,2006
    [148] 严希康.生化分离工程[M].北京:化学工业出版社,2001:1-16
    [149] 俞俊棠,唐孝宣.生物工艺学[M].上海:华东化工学院出版社,1991:242-432;111-117
    [150] 张彩,王郡甫,刘金生,等.重组人白细胞介素15工程菌高密度发酵条件探讨[J].中国生化药物杂志,2007,28(1):1-3
    [151] 郑志永,姚善泾.应用溶氧反馈控制高密度培养重组大肠杆菌过程中乙酸的产生[J].高校化学工程学报,2006,20(2):233-238
    [152] 郑志永.基于重组大肠杆菌细胞生理的人表皮生长因子发酵研究[D].杭州:浙江大学,2004
    [153] 周涟,罗进贤,张添元,等.培养条件对含血管生成抑制素工程菌生长和表达的影响及乙酸的控制作用[J].中山大学学报(自然科学版),2003,42(1):55-57
    [154] 吴军,于公义,冯尔玲.乙酸积累对基因工程菌培养的影响及与培养基pH的关系[J].微生物学报,1996,36(6):433-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700