芥子气皮肤损伤毒理学及对抗药物研发策略应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芥子气(sulfur mustard, SM)素有“毒剂之王”之称,是糜烂性毒剂的典型代表。皮肤是芥子气的最主要中毒靶器官之一,芥子气染毒皮肤后能够引起红斑、水肿、起疱、糜烂、坏死并容易造成二次感染,伤口愈合缓慢。
     自芥子气出现于第一次世界大战以来,针对芥子气防护以及损伤治疗的相关研究一直持续,并向深入发展。但是,迄今为止,芥子气毒理学机制仍未完全阐明,针对芥子气中毒的特效抗毒药物仍然属于空白,临床上仅能采取对症治疗措施,究其原因,可能与芥子气作为双功能烃化剂,其毒理学作用具有多水平、多靶点的特点有关。因此,芥子气皮肤损伤毒理学机制以及基于相关研究基础之上的特效抗毒药物研究策略的探索和有效实施,仍是国内外芥子气研究领域关注的工作重点之一。
     基于课题组前期工作积累,并结合国外研究进展,本课题选取了与芥子气皮肤损伤具有密切关系的谷胱甘肽硫转移酶(glutathione-S-transferase, GST),以及组织因子途径抑制剂-2 (tissue factor pathway inhibitor-2, TFPI-2)作为研究重点,旨在进一步了解GST在芥子气诱导细胞凋亡中的作用,探索其能否成为缓解芥子气毒性的新途径,同时,利用生物工程技术体外制备TFPI-2,探讨其作为一种丝氨酸蛋白酶抑制剂,在芥子气损伤预防和治疗研究中的价值,并试图通过这种关注和积累芥子气皮肤损伤不同环节作用资料的研究,以逐步对特效抗毒药物研究和开发策略的制定提供有意义的帮助。
     1.芥子气诱导GST活性变化规律与细胞凋亡情况的关系研究。
     在芥子气皮肤损伤小鼠耳廓模型上,GST活性变化具有剂量依赖性和时间依赖性。随着芥子气染毒剂量加大和染毒时间延长,GST活性下降,至染毒剂量为160mg/ml时所有时间点,GST活性显著下降;所有剂量组染毒后72h,GST活性显著下降,与课题组前期蛋白质组学实验结果取得了较好的一致性,明显提示,芥子气染毒后,皮肤组织依赖于GST的对自由基及芥子气的清除能力有所减弱。
     将芥子气作用于原代培养的乳鼠皮肤成纤维细胞,观察由其诱导细胞发生凋亡的情况,结果发现,在芥子气浓度为100μM染毒后16h,细胞凋亡明显,此时细胞内GST活性显著下降,至芥子气染毒后24h,死亡细胞显著增多。结果提示芥子气诱导的细胞凋亡与GST活性降低在某种程度上可能具有关联性。
     2.增加细胞内GST对芥子气诱导细胞凋亡效应的影响
     从GST含量丰富的小鼠肝脏提取总RNA,经过PCR扩增反应,测序并与NCBI序列库比对,证实取得正确的GST基因,将该基因与pCMV真核表达载体进行载体构建,为后续细胞转染奠定基础。
     通过脂质体转染技术,将携带有克隆基因片段GST的真核表达载体转染至HaCaT细胞系,并利用免疫印迹对其表达进行验证,将该细胞称为HaCaT/GST。芥子气染毒两种细胞(染毒浓度为100μM,检测时间为16h),HaCaT/GST与HaCaT细胞相比,细胞凋亡百分比明显下降,证实了单独转染GST对于芥子气诱导的细胞凋亡有防护和对抗作用。
     在上述染毒条件下,分别于染毒后6h、12h、24h,检测HaCaT细胞内GSH、SOD和MDA变化情况。结果表明,随着芥子气染毒时间延长,GSH含量降低,脂质过氧化反应产物MDA含量逐渐增加,SOD被芥子气刺激产生的自由基所耗竭,含量逐渐下降,细胞内氧化还原平衡被破坏,最终引起细胞损伤。提示芥子气诱导的细胞凋亡与氧化还原系统失衡有关,并且GSH耗竭在该过程中可能起一定作用。
     3.TFPI-2分子克隆及其第一结构域的基因克隆、蛋白表达与纯化为了探讨TFPI-2能否缓解芥子气毒性,从TFPI-2含量较高的人胎盘调取该基因,并从其全长基因中将含有Kunitz结构域1(first Kunitz-type domain, KD1),即TFPI-2/KD1基因片段进行扩增。分别将TFPI-2和TFPI-2/KD1构建至原核表达载体,利用原核表达的方法将两种蛋白进行体外表达,结果表明TFPI-2以包涵体形式表达,而TFPI-2/KD1以可溶的形式表达于细胞内上清液,提示TFPI-2/KD1可能具有生物活性,不需经过复性过程。因此,在后续的实验研究中,我们对TFPI-2/KD1进行了纯化,进一步探讨其活性和功能。
     4.TFPI-2/KD1的功能研究
     4.1 TFPI-2/KD1的活性验证
     采用明胶酶谱法检测TFPI-2/KD1能否抑制H1299癌细胞株分泌的基质金属蛋白酶;采用发色底物法检测TFPI-2/KD1能否抑制胰蛋白酶。结果表明,TFPI-2 /KD1浓度为20μM时能够显著的抑制MMP-2、MMP-9;在一定浓度范围内,随TFPI-2/KD1浓度的升高,对胰蛋白酶的抑制作用呈现增强的趋势。提示TFPI-2 /KD1具有抑制丝氨酸蛋白酶的活性。
     4.2 TFPI-2/KD1对于芥子气诱导炎症因子分泌的影响
     采用放射免疫分析法检测炎症因子IL-6、IL-8和TNF-α。与正常细胞相比较,100μM芥子气染毒HaCaT细胞后8h,上清液中IL-6、IL-8和TNF-α均显著分泌。TFPI-2/KD1蛋白为1mg/ml以及2mg/ml时,能够显著性抑制芥子气诱导IL-8分泌;TFPI-2/KD1蛋白浓度为1mg/ml时,能够显著性抑制芥子气诱导IL-6分泌;而各浓度组TFPI-2/KD1(0.5mg/ml、1mg/ml以及2mg/ml)对于芥子气诱导的TNF-α分泌升高却没有抑制作用。基于以上结果,我们推测TFPI-2/KD1通过影响细胞因子分泌,可能具有对抗芥子气诱导炎症反应的作用。
     4.3芥子气染毒家兔皮肤血流变化与病理损伤研究
     利用激光多普勒仪检测不同剂量芥子气(1μl、2.5μl、5μl、10μl)染毒家兔背部皮肤血流变化情况,连续观察至染毒后第三天,将动物处死,做石蜡切片检测皮肤的病理损伤程度。
     结果显示,芥子气染毒后,染毒皮肤短时间内即出现血流加快,提示染毒部位可能出现急性炎症反应,血管扩张;随着时间的延长,中心区域供血减弱,出现环形供血区域,提示染毒部位的血管可能产生损伤,周围组织代偿性供血。随着染毒时间延长和剂量增加,环形供血区域更加明显。
     病理切片结果显示,家兔正常背部皮肤可见表皮、真皮、附属器及肌肉组织;1μl芥子气染毒后表皮出现糜烂、溃疡、表皮下大疱(>5mm)、毛囊和皮脂腺有瘤样增生;随着染毒剂量加大,部分表皮消失,表皮可见坏死及渗出物;真皮层血管扩张、充血、水肿,有大量的炎细胞浸润并深达附属器;急性炎症反应明显(中性粒细胞为主);染毒剂量为10μl时,表皮出现灶性坏死,出血明显。
     4.4 TFPI-2/KD1干预芥子气引起皮肤炎症的初步探讨
     TFPI-2/KD1(给药剂量为1mg/ml,4次/日)对伴随芥子气急性损伤时所观察到的,体现急性炎症性反应特点的血液流变规律没有明显影响;病理结果显示,与对照组比较,TFPI-2/KD1给药后染毒皮肤炎症反应有所减轻,表现为中性粒细胞浸润数量减少,表皮灶性坏死程度减轻。但总体上没能非常有效地改善芥子气染毒所致皮肤病理损伤,芥子气染毒皮肤表面出血、灶性的炎症反应等病理变化仍十分常见。提示TFPI-2/KD1对芥子气所致皮肤损伤治疗效果有限,而这一现象在芥子气的治疗中具有普遍提示性:单一药物干预效果不理想。
     简而言之,在芥子气皮肤损伤过程中GST以及TFPI-2通过不同作用环节起到相应的作用,前者主要与芥子气诱导的细胞凋亡相关,而后者可能通过对丝氨酸蛋白酶的抑制效应,部分地对抗了芥子气诱导的急性炎症反应。但是,单一途径的干预效果仍然十分有限,体现了芥子气损伤的多部位、多靶点特征,提示针对芥子气损伤特效抗毒药物研究和开发策略不应仅局限于单一环节,而应该努力寻找最为关键的环节和靶点,并尽量兼顾其多部位、多靶点特征。
Sulfur mustard (SM),“the king of the chemical warfare agents,”is a typical vesicant agent. Skin is the major target for SM., the most prominent toxic effects of which are extremely slow healing lesions and blisters resulting in ulcer and vesicle of the skin, and promoting secondary infections.
     Although the toxicity of SM has been investigated since it was used in the World War I. Presently, the mechanisms underlying sulfur mustard-induced skin damage are not fully elucidated and no antidote exists, apart from its characteristics of multiple stratification and multiple targets. Current treatment strategy is designed to relieve symptoms. Critical questions are proposed to increase our understanding of SM toxicity and accelerate the development of vesicant therapeutics.
     We focus on Glutathione S-transferase (GST) and Tissue factor pathway inhibitor-2 (TFPI-2) which closely related with SM, based on the accumulation of our work previously and the research in progress of SM. The interest of this paper is further to discover the role of GST in apoptosis and to acquire TFPI-2 in vitro, and to know about the potent pharmacology of TFPI-2 in SM. The results are as follows:
     1. Relation between the variation of GST activity and apoptosis induced by SM.
     The variation of GST activity is dose- and time-dependent of SM in mouse ear model. GST activity decreased significantly at 48h post exposure, and also decreased at the dose 160mg/ml SM. It suggested that the skin can’t scavenge free radicals and sulfur mustard at these conditions. The result is also in accordance with the proteomic analysis, confirmed with the decrease of GST after exposure of SM.
     We explored the condition of primary fibroblast apoptotic induced by SM.A large number of fibroblast apoptotic were observed in a study of exposure to 100μM SM at 16h, GST activity decreased at the same condition. This result is consistent with our previous findings that the decrease in the expression of GST might relate to epidermal basal cells apoptosis (not published).
     2. Effects of increased GST on apoptosis induced by SM.
     We obtain GST gene by PCR from a mouse liver, directly insert GST gene into plasmid pCMV, and successfully transfect GST gene into HaCaT by lipofectamine. The cell expressed exogenous GST gene was named as HaCaT/GST.
     The percentage of apoptosis cell decreased in HaCaT/GST compared with HaCaT at 16h post exposure to 100μM SM. Such investigation may confirm that GST participates in the apoptosis in SM, and can alleviate the toxicity of SM.
     The activity of SOD, the GSH and MDA level were measured at 6h, 12h and 24h after SM administration. The results show that both SOD activity and GSH level were significantly decreased after post-exposure, while the MDA level was enhanced in HaCaT. These results suggested that endogenous antioxidant system was interrupted by the excess free radical production and lipid per-oxidation. So SM induced apoptosis may be associated with the antioxidant defense systems interruption, and the GSH may also have relation with this progress.
     3. Molecular cloning, prokaryotic expression and purification of TFPI-2 and the first Kunitz-type domain of TFPI-2.
     The TFPI-2, obtained by PCR from a women placenta, was directly inserted into expression vector. And the first Kunitz-type domain of TFPI-2 (TFPI-2/KD1), screened in TFPI-2, was also cloned into expression vector. After cell expression, TFPI-2 expressed as inclusion bodies, while TFPI-2/KD1 exist in supernatant. These results implied that TFPI-2/KD1 in E coli has biological activity. Purification of recombinant TFPI-2/KD1 was performed using His-tag.
     4. Biological function of TFPI-2/KD1.
     4.1 Biological activity assay of TFPI-2/KD1.
     Subsequently TFPI-2/KD1 inhibits the activity of MMPs. Chromogenic and gelatin zymography methods were used to evaluate the inhibiting effects of purified KD1 on trypsin and MMPs individually.
     The result suggested that the protein can inhibit MMP-2 and MMP-9 at 20μM of TFPI-2/KD1, and dose-dependently inhibit trypsin. This result implied that TFPI-2/KD1 can inhibit serine protease.
     4.2 Effects of TFPI-2/KD1 on inflammatory cytokines release after SM exposure.
     The release of inflammatory cytokines including interleukin-8 (IL-8), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) significantly increased at 8h after exposure of 100μM SM in HaCaT. At the dose of 1mg/mL and 2mg/mL TFPI-2/KD1 can significantly suppress SM-increased IL-8 and IL-6 can also be inhibited when administrate 1mg/ml TFPI-2/KD1. But TFPI-2/KD1 has no effect on TNF-α. The fact that TFPI-2/KD1 can inhibit the production of inflammatory cytokines suggested it can at least partly alleviate the toxicity of SM.
     4.3 Changes of skin blood perfusion and histopathology induced by SM.
     To assessment the lesion depth of different dose SM-exposure (1μl, 2.5μl, 5μl, 10μl); the dermal blood flow was studied by laser Doppler perfusion imaging (LDPI) for three days. And after 72h post exposure, the skins were processed for routine H & E histological evaluation to determine the lesion.
     Blood flow of the damage areas became sufficient in a short time. By the time going on the blood flow of damaged skin reduced, and around it circulation increased. This phenomenon was dose- and time- dependent. The result suggested the subcutaneous’vascular were damaged.
     The skin biopsies showed that the normal rabbit skin composed with epidermis, dermis, and subcutaneous tissue. A biopsy from 1μl SM exposed skin showed epidermal erosion, ulceration, sub-epidermal bullous (>5mm), hair follicles and sebaceous glands hyperplasia. Along with the increased poison dose, part of the epidermis disappear, necrosis, exudative; vasodilator and congestive in dermis; inflammatory cell infiltration into adnexa, covered the acute inflammatory response. At the dose of 5μl SM, biopsies showed epidermis focal necrosis and obvious dermal hemorrhage.
     4.4 Intervention roles of TFPI-2/KD1 on skin inflammation induced by SM. TFPI-2/KD1 has no effect on the blood flow, which can reflect the degree of SM induced inflammatory. H & E histological evaluation suggested that TFPI-2/KD1 can partly alleviate the inflammation response to SM, such as the reduction of neutrophil infiltrating. This indicated that single drug can’t effectively alleviate the SM toxicity on skin.
     In summary, GST and TFPI-2/KD1 may play intervention roles in SM skin damage by different pathways. The former is correlated with the apoptosis and the later can partly against with the acute inflammation. Whereas SM has multiple stratification and multiple targets, the mitigation of single drug is limited, we must seek for the key mediator and take the multiple drug/agent medical countermeasures.
引文
[1] Medema J. Mustard gas: the science of H. Nucl Biol Chem Def Technol Int. 1986; 1(4):66–71.
    [2] Wormser U,Toxicology of mustard gas Review. Trends Pharmacol Sci.1991 Apr; 12(4):164-7.
    [3] Sinclair DC. Disability produced by exposure of skin to mustard-gas vapour. Br Med J. 1950;1:346–349.
    [4] Paromov V, Suntres Z, Smith M, et al. Sulfur Mustard Toxicity Following Dermal Exposure. J Burns Wounds. 2007; 7: e7.
    [5] Ruff AL, Dillman JF., Signaling Molecules in Sulfur Mustard–Induced Cutaneous Injury. Eplasty. 2008; 8: e2.
    [6] Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, et al. Calmodulin, poly (ADP-ribose) polymerase and p53 are targets for modulating the effects of sulfur mustard. J Appl Toxicol. 2000; 20(suppl1):S43–9.
    [7] Yu SW, Andrabi SA, Wang H, et al. Apoptosis-inducing factor mediates poly (ADP-ribose) (PAR) polymer induced cell death. Proc Natl Acad Sci USA. 2006; 103(48):18314–9.
    [8] Minsavage GD, Dillman JF III. Bifunctional alkylating agent-induced p53 and nonclassical nuclear factor kappaB responses and cell death are altered by caffeic acid phenethyl ester: a potential role for antioxidant/electrophilic response- element signaling. J Pharmacol Exp Ther. 2007; 321(1):202–212.
    [9] Bohuslav J, Chen LF, Kwon H, Mu Y, Greene WC. p53 induces NF-kappaB acti- vation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem.2004; 279(25):26115–25.
    [10] Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, et al. Sulfur mustard induces markers of terminal differentiation and apoptosis in keratinocytes via a Ca2+- calmodulin and caspase-dependent pathway. J Invest Dermatol. 1998, 111 (1): 64-71.
    [11] Rosenthal DS, Velena A, Chou FP, et al. Expression of dominant-negative Fas-associated death domain blocks human keratinocyte apoptosis and vesication induced by sulfur mustard. J Biol Chem. 2003,7;278(10):531-540.
    [12] Zhang P, Ng P, Caridha D, et al. Gene expressions in Jurkat cells poisoned by a sulphur mustard vesicant and the induction of apoptosis.Br J Pharmacol. 2002, 137(2):245-252.
    [13] Rosenthal DS, Simbulan-Rosenthal CM, Liu WF, Velena A, et al. PARP determines the mode of cell death in skin fibroblasts, but not keratinocytes, exposed to sulfur mustard. J Invest Dermatol. 2001, 117(6):1566-1573.
    [14] Andrabi SA, Kim NS, Yu SW, et al. Poly (ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA. 2006; 1 03(48):18308–13.
    [15] Papirmeister B, Gross CL, Meier HL, Petrali JP, Johnson JB. Molecular basis for mustard induced vesication. Fundam Appl Toxicol. 1985; 5(6 pt 2):S134–49.
    [16] Cowan FM, Yourick JJ, Hurst CG, Broomfield CA, Smith WJ. Sulfur mustard- increased proteolysis following in vitro and in vivo exposures. Cell Biol Toxicol. 1993;9(3):269–77.
    [17] Chakrabarti AK, Ray P, Broomfield CA, Ray R. Purification and characterization of protease activated by sulfur mustard in normal human epidermal keratinocytes. Biochem Pharmacol. 1998; 56(4):467–72.
    [18] Shakarjian MP, Bhatt P, Gordon MK, et al. Preferential expression of matrix metalloproteinase-9 in mouse. skin after sulfur mustard exposure. J Appl Toxicol. 2006; 26(3):239–46.
    [19] Meier HL, Johnson JB. The determination and prevention of cytotoxic effects induced in human lymphocytes by the alkylating agent 2, 2-dichlorodiethyl sulfide (sulfur mustard, HD). Toxicol Appl Pharmacol. 1992;113(2):234–9.
    [20] Meier HL, Millard CB. Alterations in human lymphocyte DNA caused by sulfur mustard can be mitigated by selective inhibitors of poly (ADP-ribose) polymerase. Biochim Biophys Acta. 1998; 1404(3):367–76.
    [21] Shahin S, Cullinane C, Gray PJ. Mitochondrial and nuclear DNA damage induced by sulphur mustard in keratinocytes.Chem Biol Interact 2001 Dec 21;138(3):231-45
    [22] Sabourin CL, Petrali JP, Casillas RP. Alterations in inflammatory cytokine gene expression in sulfur mustard-exposed mouse skin. J Biochem Mol Toxicol. 2000; 14(6):291–302.
    [23] Sabourin CL, Danne MM, Buxton KL, Casillas RP, Schlager JJ. Cytokine, chemokine, and matrixmetalloproteinase response after sulfur mustard injury to weanling pig skin. J Biochem Mol Toxicol.2002 ;16(6):263–72.
    [24] Arroyo CM, Schafer RJ, Kurt EM, et, al. Response of normal human keratinocytes to sulfur mustard (HD): cytokine release using a non-enzymatic detachment procedure. Hum Exp Toxicol. 1999 ;18(1):1–11.
    [25] Dillman JF III, McGary KL, Schlager JJ. An inhibitor of p38 MAP kinase down regulates cytokine release induced by sulfur mustard exposure in human epidermal keratinocytes. Toxicol In Vitro. 2004;18(5):593–9.
    [26] Lardot C, Dubois V, Lison D. Sulfur mustard upregulates the expression of interleukin-8 in cultured human keratinocytes. Toxicol Lett.1999;110(1–2):29–33.
    [27]. Arroyo CM, Broomfield CA, Hackley BE Jr. The role of interleukin-6 (IL-6) in human sulfur mustard (HD) toxicology. Int J Toxicol. 2001;20(5):281–96.
    [28]. Qabar A, Nelson M, Guzman J, et al. Modulation of sulfur mustard induced cell death in human epidermal keratinocytes using IL-10 and TNF-alpha. J Biochem Mol Toxicol. 2005;19(4):213–25.
    [29] Casillas RP, Kiser RC, Truxall JA, et al. Therapeutic approaches to dermato toxicity by sulfur mustard; part I: modulation of sulfur mustard-induced cutaneous injury in the mouse ear vesicant model. J Appl Toxicol. 2000;20(suppl 1):145–51.
    [30] Babin MC, Ricketts K, Skvorak JP, et al. Systemic administration of candidate antivesicants to protect against topically applied sulfur mustard in the mouse ear vesicant model (MEVM). J Appl Toxicol.2000;20 (suppl 1):S141–4.
    [31] Ricketts KM, Santai CT, France JA, et al. Inflammatory cytokine response in sulfur mustard-exposed mouse skin. J Appl Toxicol. 2000;20(suppl 1):S73–6.
    [32] Blank JA, Lane LA, Menton RG, Casillas RP. Procedure for assessing myelop- eroxidase and inflammatory mediator responses in hairless mouse skin. J Appl Toxicol. 2000; 20 ( suppl 1):S137–9.
    [33] Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev.2003;83(3):835–70.
    [34] Tsuruta J, Sugisaki K, Dannenberg AM Jr, et al. The cytokines NAP-1 (IL-8), MCP-1, IL-1 beta, and GRO in rabbit inflammatory skin lesions produced by the chemical irritant sulfur mustard. Inflammation.1996;20(3):293–318.
    [35] Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol.1994;12:141–79.
    [36] Christman JW, Sadikot RT, Blackwell TS. The role of nuclear factor-kappa B in pulmonary diseases. Chest. 2000; 117(5):1482–7.
    [37]孙俊,王玉霞,孙曼霁.乙酰半胱氨酸及还原型谷胱甘肽对抗硫芥引起的细胞凋亡及坏死.中国药理学和毒理学杂志,2000, 14 (1) : 26-30.
    [38] Amir A , Chapman S, Gozes Y. Protective by extracellular glutathione against sulfur mustard induced toxicity in vitro.H um Exp Toxicol, 1998, 17 (12) :652-660.
    [39] Zhang Z, Riviere JE, Riviere NA. Evaluation of protective effects of sodium thiosulfate, cysteines, niacinamide and indomethacin on sulfur mustard treated isolated perfused porcine skin. Chem Biol Interact, 1995, 96 (3) : 249-262.
    [40] Smith KJ. The prevention and treatment of cutaneous injury secondary to chemical warfare agents. Dermatology Clin, 1999,17 (1) : 41-60.
    [41] GhaneiM , VosoghiAA . An epidemiologic study to screen for chronic myelocytic leukemia in war victim s exposed to mustard gas. Environ Health Prospect, 2002, 110 (5): 519-521.
    [42] Sawyer TW. Synergistic protective effects of selected arginine analogues against sulfur mustard toxicity in neuron culture. Toxicol Appl Pharmacol, 1999, 155 (2): 169-176.
    [43] Mazumder PK, Sugendran K, Vijayaraghavan R. Protective efficacy of calcium channel blockers in sulfur mustard poisoning. Biomed Environ Sci , 1998, 11 (4) : 363-369.
    [44] Sawyer TW , Hamilton MG. Effect of intracellular calcium modulation on sulfur mustard cyto toxicity in cultured human neonatal keratinocytes. Toxicol Vitr, 2000, 14 (2): 149-157.
    [45] Cowan FM, Bruoomfield CA, Lenz DE, et al. Putative role of proteolysis and inflammatory response in the toxicity of nerve and blister chemichal warfare agents: implications for multi-threat medical countermeasures. J Appl. Toxicol. 2002 ; 23: 177-186.
    [46]安文华,钟玉绪,应翔宇,时辉宁,应莺。芥子气诱导小鼠耳廓皮肤差异蛋白的鉴定。中国药理学与毒理学杂志,2006,20(2):152-156。
    [47] Gilot D, Loyer P, Corlu A, Glaise D, Lagadic-Gossmann D, Atfi A, Morel F, Ichijo H, Guguen-Guillouzo C. Liver protection from apoptosis requires both blockage of initiator caspase activities and inhibition of ASK1/JNK pathway via glutathione S-transferase regulation.J Biol Chem, 2002, 277(51):49220-49229
    [48] Chand HS, Foster DC, Kisiel W. Structure, function and biology of tissue factor pathway inhibitor-2. Thromb Haemost. 2005; 94: 1122–30.
    [49] Jafari M. Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology, 2007 Feb 28;231(1):30-9.
    [50] Kim YB, Lee YS, Choi DS. Change in glutathione S-transferase and glyceralde- hyde3-phosphate dehydrogenase activities in the organs of mice treated with 2-chloroethyl ethyl sulfide or its oxidation products. Food Chem Toxicol.1996.Mar; 34(3):259-65.
    [51] Omave ST, Elsaved NM, Klain GJ,etc. Metabolic changes in the mouse kidney after subcutaneous injection of butyl 2-chloroethyl sulfide. J Toxicol Environ Health. 1991 May;33(1):19-27.
    [52]戴振声,陈宝安,徐燕丽,黄培林,谢毅,谢弘。人皮肤成纤维细胞原代培养方法的改良。东南大学学报(医学版),2004 ,Jul ;23 (4):236-238。
    [53] Boss WKJ, Usal H ,Fodor PB ,et al. Autologous culture fibroblasts: A protein repair system. Annal Plast Surg , 2000 , 44(5) :536-542.
    [54] Duvoixa A, Morceaua F, Delhalle S, et al. Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem Pharmacol, 2003, 66:1475–1483.
    [55] Gross CL, Nealley EW, Nipwoda MT, et al. Pretreatment of human epidermal keratinocytes with D,L-sulforaphane protects against sulfur mustard cytotoxicity. Cutan Ocul Toxicol. 2006;25(3):155-63.
    [56] Smith KJ, Hurst CG, Moeller RB, Skelton HG, Sidell FR. Sulfur mustard: its continuing threat as a chemical warfare agent, the cutaneous lesions induced, progress in understanding its mechanism of action, its long-term health effects, and new developments for protection and therapy. Review. J Am Acad Dermatol. 1995 May; 32(5 Pt 1): 765-76
    [57] Vijayaraghavan R, Gautam A, Kumar O, et al. Protective effect of ethanolic and water extracts of sea buckthorn (Hippophae rhamnoides L.) against the toxic effects of mustard gas. Indian J Exp Biol, 2006 Oct;44(10):821-31.
    [58]Mukodhyay S, Rajaratnam V, Mukherjee S, et al. Modulation of the expression of superoxide dismutase gene in lung injury by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol Toxicol. 2006;20(3):142-9.
    [59] Sprecher CA, Kisiel W, Mathewes S, et al. Molecular cloning, expression, and partial characterization of asecond human tissue-factor-pathway inhibitor. Proc. Natl. Acad. Sci. U S A. 1994, Apr 12; 91(8):3353-7.
    [60] Chand HS, Schmidt AE, Bajaj SP, et al. Structure-function analysis of the reactive site in the first Kunitz-type domain of human tissue factor pathway inhibitor-2. J Biol Chem. 2004, 279(17):17500-7.
    [61] Schmidt AE, Chand HS, Cascio D, et al. Crystal structure of Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in complex with trypsin: Implications for KD1 specificity of inhibition. J Biol Chem. 2005, 280(30):27832-27838.
    [62] Bode W, Huber R. Structural basis of the endoproteinase protein inhibitor interaction. Biochim Biophys Acta. 2000 Mar 7; 1477(1-2):241-52
    [63] Laskowski M, Jr., Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980,49:593–626.
    [64] Miyagi Y, Koshikawa N, Yasumitsu H, et al. cDNA cloning and mRNA expression of a serine proteinase inhibitor secreted by cancer cells: identification as placental protein 5 and tissue factor pathway inhibitor-2. J Biochem. 1994 Nov; 116(5):939-42.
    [65] Chinni E, Colaizzo D, Margaglione M, et al. Correlation between factors involved in the local haemostasis and angiogenesis in full term human placenta. Thromb Res. 2008;122(3):376-82.
    [66] Shakuntala Kondraganti, Christopher s. Gondi, Meena Gujrati, et al. Restoration of tissue factor pathway inhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line. Int J Oncol, 2006,29: 25-32.
    [67] Prakasha Kempaiah, Walter Kisiel. Human tissue factor pathway inhibitor-2 induces caspase-mediated apoptosis in a human fibrosarcoma cell line.Apoptosis 2008,13:702–715.
    [68] Masahiko Shibuya, Haru Okamoto, Takehiro Nozawa, et al. Proteomic and Transcrip tomic Analyses of Retinal Pigment Epithelial Cells Exposed to REF-1/TFPI-2. Invest Ophthalmol Vis Sci. 2007,48:516–521.
    [69] Peerschke EI, Petrovan RJ, Ghebrehiwet B ,et al. Tissue factor pathway inhibitor-2 (TFPI-2) recognizes the complement and kininogen binding protein gC1qR/p33 (gC1qR): implications for vascular inflammation. Thromb Haemost 2004, 92: 811–819.
    [70] Kamei S, Petersen LC, Sprecher CA, et al. Inhibitory properties of human recombinant Arg24-->Gln type-2 tissue factor pathway inhibitor(R24Q TFPI-2). Thromb Res 1999,94: 147–152.
    [71]Chenqi ZHANG, Desheng KONG, Xingang LIU, et al. Spectroscopic Analysis on the Effect of Temperature on Kunitz Domain 1 of Human Tissue Factor Pathway Inhibitor-2. Acta Biochim Biophys Sin (Shanghai). 2007 Jun;39(6):406-12.
    [72] Lindsay CD, Rice P. Assessment of the biochemical effects of percutaneous exposure of sulfur mustard in an in vitro human skin system. Hum Exp Toxicol. 1996 Mar;15 (3):237-44.
    [73] Kamc M.; Selzler J.; Schulz SM. Enhanced serine protease activities in the sulfur mustard-exposed homogenates of hairless guinea pig skin. International journal of toxicology.1997,16,(6):669-681.
    [74] Cowan MF, Broomfiecd CA , Smith WJ. Effect of sulfur mustard exposure on protease activity in human peripheral blood lymphocytes. Cell Biol Toxicol, 1991, 7 (3): 239-248.
    [75] Ray P, Chakrabarti AK, Broomfield CA,et al. Sulfur mustard-stimulated protease: a target for antivesicant drugs. Appl Toxicol. 2002 Mar-Apr;22(2):139-40.
    [76] Chakrabarti AK, Ray P. Novel endogenous inhibitor of sulfur mustard-stimulated protease in cultured human epidermal keratinocytes: possible application in vesicant intervention. Appl Toxicol. 2000 Dec;20 Suppl 1:S59-61.
    [77] Ray P, Ali ST. Protease in normal human epidermal keratinocytes. Drug Chem Toxicol, 1998, 21 (3):319-327.
    [78] Powers JC, Kam CM, Ricketts KM, Casillas RP. Cutaneous protease activity in the mouse ear vesicant model. J Appl Toxicol. 2000.20: S177–S182.
    [79] Ries C,Popp T, Egea V, et al. Matrix metalloproteinase-9 expression and release from skin fibroblasts interacting with keratinocytes: Upregulation in response to sulphur mustard.Toxicology. 2008 sep 3.
    [80] Cowan FM, Bruoomfield CA, Smith WJ, et al. Suppression of sulfur mustard–induced IL-8 in human keratinocyte cell cultures by serine protease inhibitors: implications for toxicity and medical countermeasures. Cell Biology and Toxicology. 2002; 18: 175-180.
    [81]Arroyo CM, Von Tersch RL and Broomfield CA Activation of alpha-human tumour necrosis factor (TNF-alpha) by human monocytes (THP-1) exposed to 2-chloroethyl ethyl sulphide(H-MG). Human and Experimental Toxicology 1995, 14:547-53.
    [82] Arroyo CM, Schafer RJ, Kurt EM, et, al. Response of normal human keratinocy- tes to sulfur mustard: cytokine release. Journal of Applied Toxicology : Jat 2000, 20(Suppl1):S63-72.
    [83]Blaha M, Bowers W, Kohl J, et, al. IL-1-related cytokine responses of nonimmun- e skin cells subjected to CEES exposure with and without potential vesicantantagonists. In Vitr Mol Toxicol 2000, 13:99-111.
    [84] Xiugong Gao, Radharaman Ray, Yan Xiao, et, al. Inhibition of sulfur mustard- induced cytotoxicity and inflammation by the macrolide antibiotic roxithromycin in human respiratory epithelial cells. BMC Cell Biology 2007, 8:17 doi:10.1186/1471-2121
    [85] Chen LF and Greene WC (2004) Shaping the nuclear action of NF-kB. Nat Rev Mol Cell Biol 5:392–401.
    [86] Ritchie MH, Fillmore RA, Lausch RN, and Oakes JE. A role for NF-_B binding motifs in the differential induction of chemokine gene expression in human corneal epithelial cells. Investig Ophthalmol Vis Sci 2004, 45:2299–2305.
    [87] Arroyo CM, Kan RK, Burman DL, et, al. Regulationof 1-alpha, 25-dihydroxyvitamin D3 on interleukin-6 and interleukin-8 induced by sulfur mustard (SM) on human skin cells. Pharmacol Toxicol 2003; 92:204–213.
    [88] Brown RFR, Rice P, Bennett NJ. The use of laser Doppler imaging as an aid in clinical management decision making in the treatment of vesicant burns. Burns. 1998;24:692–698.
    [89] Graham JS, Schomacker KT, Glatter RD, et, al. Bioengineering methods employed in the study of wound healing of sulfur mustard burns. Skin Res Tech. 2002;8:57–69.
    [90] Chilcott RP, Brown RFR, Rice P. Non-invasive quantification of skin injury resulting from exposure to sulphur mustard and Lewisite vapours. Burns. 2000;26:245–250.
    [91] John S. Graham, Robert P. Chilcott, Paul Rice, Wound Healing of Cutaneous Sulfur Mustard Injuries:Strategies for the Development of Improved Therapies. J Burns Wounds. 2005; 4: e1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700