胰腺癌血清蛋白质指纹图谱及CCR7与胰腺癌淋巴结转移相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.研究背景和目的
     胰腺癌是一种恶性程度极高的消化系统恶性肿瘤,发病率在国内外均呈上升趋势,发病隐匿,进展快,预后差。
     胰腺癌早期诊断困难,确诊时大多已属晚期,手术切除率为10%-20%,其中根治者仅为5%-7.5%,可进行外科手术切除术的患者的5年生存率也仅达15%-40%,最近20年来,胰腺癌患者5年生存率仅从3%增长到4%。胰腺癌的预后与是否早期诊断和选择合理治疗方案密切相关,术前评估是正确选定综合治疗方案及预测根治性手术后生存率和正确制定术后随访计划的关键因素,手术后的局部复发和远处转移是胰腺癌根治术后治疗失败的主要原因,因此深入对胰腺癌分期、局部复发、远处转移的研究,对改善预后具有重要的现实意义。CA19-9是最常用的肿瘤标志物,但对于可以切除的早期胰腺癌诊断价值不大,对于胰腺癌筛查,分期和检测复发敏感性特异性低,因此寻找新的胰腺癌血清标志物非常必要。
     研究表明,胰腺癌是在环境和遗传因素共同作用下,通过多基因、多步骤、多阶段的复杂的生物学演变而形成的疾病,在这一分子事件过程中包括了抑癌基因功能的丧失、癌基因的活化等。因此,用单个或数个因子检测对胰腺癌的早期诊断、预后评估及随访过程中复发转移的检测不可避免地存在敏感性和特异性的矛盾。蛋白质是基因表达的产物,而肿瘤性疾病从蛋白质的角度看,是一种蛋白质缺陷病,其发生过程中有多种蛋白质会发生异常变化。这种变化不仅包括蛋白表达量的增加或减少,还包括蛋白翻译后的不同修饰,从而导致肿瘤组织或体液中相应蛋白质表达谱的改变。为了深入研究恶性肿瘤的发生发展过程,客观上需要在蛋白质组的水平进行进一步探索。蛋白质组学正是以蛋白质组为研究对象,能够识别鉴定细胞、组织或机体的全部蛋白质,提供一组蛋白质的功能及模式信息,反映细胞内部的遗传特性和外界因素影响的结果。近年来发展起来的表面增强激光解析/离子化飞行时间质谱(surface enhanced laser desorption/ ionization time-of-flight mass spectrometry, SELDI-TOF-MS)是一种新的蛋白质组学研究方法,由于SELDI-TOF-MS技术的高灵敏度及高通量特性,能反映被检测样本中蛋白质的全貌,进而能同时找到多个蛋白质标志物,客观上为肿瘤的早期诊断、预后评估和复发转移的早期检测提供了可能。
     在本项研究中,我们应用SELDI-TOF-MS技术对胰腺癌、胰腺良性疾病患者和健康正常人的血清进行质谱分析,应用生物信息学统计方法寻找差异蛋白峰和明确差异蛋白峰临床应用价值,应用免疫芯片技术和酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)鉴定并验证了血清差异蛋白峰的表达,应用免疫组化方法在胰腺癌组织中进一步验证。
     二.研究方法
     采用SELDI-TOF-MS技术应用强阴离子交换芯片(strong anionic exchange chromatography, SAX2)分析58例胰腺癌患者、18例胰腺良性疾病患者和51例健康正常人的血清蛋白质指纹图谱,从中筛选出与胰腺癌相关的血清差异蛋白峰,通过建立决策树诊断模型和Logistic回归模型并盲法验证该模型的可靠性,和CA19-9比较对于胰腺癌诊断的敏感性和特异性,评估差异蛋白峰在胰腺癌术前诊断、分期诊断和术后检测中的价值。应用免疫芯片技术鉴定差异蛋白峰M28068,ELISA方法测定血清差异蛋白C14orf166浓度,免疫组化方法验证C14orf166在胰腺癌组织中的表达。
     三.研究结果
     1.58例胰腺癌患者和51例健康人的血清蛋白质指纹图谱比较分析,定义m/z值在2000-30000范围内共检测到61个蛋白峰,其中26个蛋白峰在两组中的差异有明显统计学意义(p<0.001)。交叉证实率最高的10个决策树模型预测胰腺癌正确率为0.929,敏感性为0.833,特异性为1.000;7个差异蛋白峰建立的Logistic回归模型预测胰腺癌的正确率为0.857,AUC为0.976(P<0.001),敏感性为0.914-0.776,特异性为0.922-1.000。
     2.58例胰腺癌患者和18例胰腺良性疾病患者的血清蛋白质指纹图谱比较分析,定义m/z值在2000-30000范围内共检测到61个蛋白峰,其中16个蛋白峰在两组中的差异有统计学意义(P<0.05)。交叉证实率最高的10个决策树模型预测胰腺癌正确率为0.929,敏感性为0.833,特异性为1.000;3个差异蛋白峰建立的Logistic回归模型预测胰腺癌的正确率为0.857,AUC为0.933(p<0.001),敏感性为0.958-0.708,特异性为0.769-1.000;联合CA19-9预测正确率为0.929,AUC为0.976(P<0.001),敏感性为0.958-0.750,特异性为0.923-1.000;CA19-9诊断胰腺癌的敏感性为0.813,特异性为0.770。
     3.58例胰腺癌患者和69例非胰腺癌患者的血清蛋白质指纹图谱比较分析,发现5个差异蛋白峰在胰腺癌和另外两组中的差异有统计学意义(p<0.05),5个差异蛋白峰在胰腺癌和正常对照组中诊断胰腺癌AUC为0.763,在胰腺癌和胰腺良性疾病组中诊断胰腺癌AUC为0.865,联合CA19-9诊断胰腺癌AUC为0.971,敏感性为0.923-1.000,特异性为0.927-0.917,预测胰腺癌正确率为1.000。
     4.6个差异蛋白峰和胰腺癌的分期相关(p<0.01),对ⅠⅡ期、ⅡⅢ期和ⅢⅣ期分别建立的Logistic回归模型对胰腺癌的分类能力分别为86.1%、91.9%和77.3%,其AUC值分别为0.897、0.978和0.792(p<0.05),敏感性和特异性分别为0.839-0.871/1.000-0.400、0.903-1.000/0.968-0.833和0.750-0.833/0.938-0.500。
     5.1个胰腺癌高表达的差异蛋白峰M4016在术后1周、2周、4周和半年随访中峰值强度有一度下降趋势(p<0.05)。
     6.免疫芯片验证差异蛋白峰M28068为C14orf166,5个胰腺癌患者峰值强度为3.33±1.76,5个正常人对照峰值强度为0.60±0.43。
     7. ELISA法测定58例胰腺癌患者、18例胰腺良性疾病患者和51例健康正常人的血清中C14orf166浓度分别为24.21±10.42、9.11±4.57和7.78±3.69μg/ml(P<0.001),诊断胰腺癌和正常对照组与胰腺癌和胰腺良性疾病组的AUC分别为0.938和0.917(p<0.001),诊断界值为14.56μg/m1时,诊断胰腺癌的敏感性和特异性分别为0.828/0.922和0.828/0.889。
     8.免疫组化法测定35例胰腺癌组织和正常胰腺组织C14orf166显示,C14orf166定位在细胞浆,半定量分析胰腺癌组织和正常组织表达量,两者有明显统计学差异(5.05±3.00/0.83±0.95,p<0.001)。
     四.研究结论
     1.蛋白质芯片SELDI-TOF-MS技术重复性高、稳定性好,是比较理想的蛋白质组学研究技术平台;样品的质量控制和操作过程的标准化将直接影响实验结果的可靠性。
     2.应用SELDI-TOF-MS技术可以从血清中筛选出胰腺癌相关的标志蛋白。建立的胰腺癌诊断预测模型可能对早期诊断胰腺癌具有重要的意义和对胰腺癌的预后评估有一定价值,同时可以评估疗效,早期发现肿瘤复发。
     3.免疫芯片技术可以作为SELDI-TOF-MS筛选出的差异蛋白峰的验证方法。
     4.鉴定出的差异蛋白C14orf166有望在胰腺癌的特异性诊断中发挥作用,为今后胰腺癌的发病机制研究奠定了基础。
     目的:探讨趋化因子受体CCR7在人胰腺癌组织中的表达与淋巴结转移之间的关系以及与趋化因子受体CXCR4和血管内皮生长因子VEGF-C之间的关系。方法:应用荧光实时定量PCR (realtime polymerase chain reaction)方法,检测CCR7、CXCR4和VEGF-C在24例胰腺癌组织及正常组织样本中的基因水平;应用免疫组化方法,检测CCR7、CXCR4和VEGF-C在65例胰腺癌组织及癌旁组织样本中的表达,IPP图像分析软件计算平均光密度和累积光密度比较蛋白表达差异。结果:(1)实时定量PCR分析显示CCR7和VEGF-C在伴有淋巴结转移的胰腺癌组较淋巴结阴性组基因相对表达量明显增加(P<0.05), CXCR4在两组中基因相对表达量无明显差异(P>0.05), CCR7、CXCR4和VEGF-C在癌组织较正常组织基因相对表达量明显增加(p<0.05)。(2)免疫组化分析显示CCR7平均光密度值在伴有淋巴结转移的胰腺癌组较淋巴结阴性组明显高(P<0.001),在胰腺癌组织中CXCR4和VEGF-C平均光密度值与是否淋巴结转移无关(p>0.05);CCR7和VEGF-C累积光密度在伴有淋巴结转移的胰腺癌组较淋巴结阴性组明显高(p<0.05), CXCR4累积光密度与是否淋巴结转移无关(P>0.05),CCR7和CXCR4平均光密度和累积光密度在胰腺癌组织中较癌旁组织低(P<0.05), VEGF-C在两组中无差异(P>0.05)。结论:CCR7和VEGF-C可以作为评估胰腺癌淋巴结转移的一个观测指标,CXCR4与胰腺癌是否淋巴结转移无明显相关性。
一. Background and objective
     PC is one of the most malignant tumors in digestive system, due to its rising incidence, difficulty in early diagnosis, rapid progress and poor prognosis.
     Currently, there are no ideal methods for the early detection of PC. Only 10-20% of patients (5-7.5% can be under radical correction) are resectable at the time of diagnosis and 5-year survival rate after operation is still 15-40%.The early diagnosis and right treatment are closely related to death. The preoperative assessment is one key factor of the choice of treatment, the prediction of survival and the plan of postoperative follow-up and local recurrence or distant metastasis confirms the failure of treatment. It's important for the improving of prognosis to achieve the early and right diagnosis and to monitor the recurrence and metastasis. CA19-9 is the most commonly used tumor marker but value little for the early diagnosis, prognosis evaluation and detection of recurrence. So it's necessary to seek for new biomarkers.
     By now, PC is proved not a single disease, but an accumulation of sophisticated biological evolutions include polygene, muti-procedure and multistage under the role of environment and heredity. Also in the procedure exists the function lost of cancer suppressor gene and activation of oncogene. Therefore, the attempt of early diagnosis, prognosis evaluation and monitoring for local recurrence and/or metastasis by the detection of single or several factors has unavoidablely the conflict between the sensitivity and specificity. Protein is the production of gene expression and tumor is believed to be a disease of protein's pitfall. Numerous of proteins changed during the included different modifications after protein translation as well as the expression level, resulted in the change of protein expression profiles of tumor tissue or body fluid. Therefore there is much need in the proteome level for further research of the development of malignant tumor. It detects the functional units of expressed genes using proteomic methods to analyze celluar proteins and provide a protein fingerprint. The proteomic reflects both the intrinsic genetic programme of the cell and the impact of the immediate environment and is therefore valuable in biomarker discovery. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) is a new method of proteomics developed in recent years. Not only because of its high sensitivity and high throughput, but also its ability of reflecting the full protein profiles of tested sample and eventually finding the protein biomarkers, it is a promising method for early diagnosis, prognosis evaluation and monitoring of local recurrence and metastasis of tumorous diseases.
     Serum samples were applied to strong anionic exchange chromatography (SAX2) protein chips for protein profiling by SELDI-TOF-MS to distinguish PC, Pancreatic benign disease and normal healthy control. Statistical Methods in Bioinformatics were used to analyze the multiple protein peaks. The valuable protein peak was identified using SELDI Immunoassay and enzyme linked immunosorbent assay (ELISA) and its tissues expression was further confirmed.
     Methods
     Serum samples obtained from subjects with PC (n=58), Pancreatic benign diseases (n=18) and normal healthy control (n=51) were applied to SAX2 chips for protein profiling by SELDI-TOF-MS to screen multiple serum biomarkers. The decision tree or logistic regression classification models were constructed to diagnose PC, evaluate the prognosis and curative effect, compared with CA19-9. The valuable protein peak was identified using SELDI Immunoassay and further confirmed by ELISA and immunohistochemical analysis.
     Results
     1. Sixty-one qualified protein peaks between 2 000 and 30 000 m/z ratios were detected and significant differences were detected in the levels of 26 serum protein biomarkers between PC patients (n=58) and the healthy controls (n=51) (P<0.001). The top 10 decision trees with the highest correct validation rate were chosen to establish the classification tree model, which had the high positive predictive value of 0.929, a sensitivity of 0.833, and a specificity of 1.000. It was significantly better to use a combination assay of seven protein biomarkers (AUC,0.976; P<0.001) in diagnostic power, resulting in a specificity of between 0.922 and 1.000 and a corresponding sensitivity of between 0.914 and 0.776. Application of this logistic model classification using combinations of the seven protein biomarkers gave diagnostic accuracies of up to 0.857 in the independent testing set.
     2. Significant differences were detected in the levels of 16 serum protein biomarkers between PC patients and Pancreatic benign disease patients (P<0.05). The top 10 decision trees with the highest correct validation rate between 0.90 and 0.95 were chosen to establish the classification tree model, which had the high positive predictive value of 0.929, with a sensitivity of 0.833 and a specificity of 1.000. It was significantly better to use a combination assay p of three protein biomarkers (AUC,0.933; P<0.001) in diagnostic power, resulting in a specificity of between 0.769 and 1.000 and a corresponding sensitivity of between 0.958 and 0.708. Application of this logistic model classification using combinations of the three protein biomarkers gave diagnostic accuracies of up to 0.857. However, there was a strong trend for a superior discrimination of PC from Pancreatic benign disease combining SELDI profiling and CA19-9 (P<0.001). The combination p1 of CA19-9 and the discriminating peaks had an AUC of 0.976 (P<0.001), resulting in a specificity of between 0.923 and 1.000 and a corresponding sensitivity of between 0.958 and 0.750, and diagnostic accuracies of up to 0.929. So the classification tree model was superior to CA19-9 in the discrimination of PC from Pancreatic benign disease. The latter had a sensitivity of 0.813 and a specificity of 0.770.
     3. The five most discriminating protein biomarkers were detected through the comparison of the PC group and the noncancer group (i.e. healthy controls and the Pancreatic benign disease group), which yielded an AUC of 0.763 between the group of PC and healthy controls and 0.865 between another group of PC and Pancreatic benign disease. There was a strong trend for a superior discrimination of PC from Pancreatic benign disease when combining SELDI profiling and CA19-9 (P<0.001). The combination p of CA19-9 and the five discriminating peaks had an AUC of 0.971 resulting in a sensitivity of between 0.923 and 1.000 and a specificity of between 0.927 and 0.917.
     4. A panel of the six most discriminating protein biomarkers could classify patients with PC in different stages (P<0.01). There was a significant improvement when predicting different PC stages by combining the SELDI six protein peaks. The AUC were 0.897 (between stage I and stageⅡ),0.978 (between stageⅡand stageⅢ), and 0.792 (between stageⅢand stageⅣ) (P<0.05) in the diagnosis of different PC stages resulting in a sensitivity of between 0.839-0.871/0.903-1.000/0.750-0.833 and a specificity of 1.000-0.400/0.968-0.833/0.938-0.500.
     5. There was a down-regulated trend (P<0.05) in the most discriminating protein biomarker(M4 016)through analyzing the pre-operative cancer group and the postoperative cancer group (1,2,4 weeks, and 6 months after operation).
     6. We performed a SELDI-based immunoassay with a specific anti-C14orf166 monoclonal antibody on 10 pancreatic serum samples:five for which the 28 068 Da peak was present and five for which a 28 068 Da peak was nearly absent on the SAX2 chip. We found that a specific peak of mean mass at 28 068 Da with an intensity of 3.33±1.76 was present in all five samples that displayed a peak on the SAX2 chip, and the peak had an intensity of 0.60±0.43 in the other five samples.
     7. In 127 individual serum samples including 58 PC,18 Pancreatic benign diseases, and 51 healthy controls, C14orf166 levels were detected. C14orf16 serum concentrations were significantly higher in patients with PC (24.21±10.42μg/ml) than in patients with Pancreatic benign diseases (9.11±4.57μg/ml) and healthy controls (7.78±3.69μg/ml) (P<0.001). There was no statistically significant difference when comparing levels in patients with Pancreatic benign diseases and healthy controls (P= 0.34). The sensitivity and specificity of a serum C14orf166 level of 14.56μg/ml for predicting PC in healthy controls was 0.828/0.922 and 0.828 /0.889 compared with benign disease, respectively, which yielded an AUC of 0.938/0.917 (P<0.001).
     8. We analyzed C14orf166 expression by immunohistochemistry in patients undergoing pancreatectomy including 35 PC. Semi-quantitative scoring showed that C14orf166 expression levels of cancer cells (5.05±3.0) were significantly higher than in the normal pancreas (0.83±0.95, P<0.001). C14orf166 protein was localized in the cytoplasm of tumor cells.
     Conclusions
     1. SELDI-TOF-MS was an ideal technological platform for proteomic research because of high reproducibility and stability. Quality control and standardization conditions could be key issue for the reliability of outcome.
     2. The results suggest that SELDI-TOF-MS serum profiling is helpful to the diagnostic, prognostic or therapeutic effects of PC, which is superior to CA19-9.
     3. SELDI immunoassay is useful for the identification of the significant protein peak screened by SELDI-TOF-MS.
     4. The identified protein biomarker C14orf166 is a potential biomarker of PC and lays the foundation for the pathogenesis research.
     Objective:To investigate the relationship of chemokine receptor CCR7, CXCR4, VEGF-C and the lymph node metastasis of PC. Methods:The transcription levels of CCR7, CXCR4 and VEGF-C in PC(n=24) were measured by Real-time PCR, the expressions of CCR7, CXCR4 and VEGF-C were measured by immuohistochemistry(n=65). The professional software of pathological image manipulation (Image Pro Plus 6.0, IPP 6.0)was used to quantitate the results of the immunohistochimical staining including mean density and integrated option density (IOD). Results:The transcription of CCR7 and VEGF-C in PC with lymph node metastasis increased compared with PC without lymph node metastasis (P<0.05), but that of CXCR4 was irrelevant to lymph node metastasis (P>0.05). The transcription of CCR7, CXCR4 and VEGF-C in PC increased compared with the normal pancreas (P<0.05). The mean dentisy of CCR7 in PC with lymph node metastasis increased compared with PC without lymph node metastasis(P<0.05), but that of CXCR4 and VEGF-C was irrelevant to lymph node metastasis(P>0.05). The IOD of CCR7 and VEGF-C in PC with lymph node metastasis increased compared with PC without lymph node metastasis (P<0.05), but that of CXCR4 was irrelevant to lymph node metastasis (P>0.05). The mean density and IOD of CCR7 and CXCR4 in PC decreased compared with the adjacent pancreas (P<0.05) but there was no diffirence in both group for VEGF-C(P>0.05). Conclusions:CCR7 and VEGF-C not CXCR4 seem to play a pivotal role in lymph node metastasis of PC.
引文
1. Moossa AR, Levin B. The diagnosis of “early” pancreatic cancer. the University of Chicago experience. Cancer.1981;47 (6 Suppl):1688-97.
    2. Fukuda A, Hatori T, Onizawa S, et al. Evaluation of early detection of small pancreatic cancer. J. Jpn. Panc. Soc.2004;19:567-72.
    3. Yamaguchi K, Mizumoto K, Noshiro H, et al. Pancreatic carcinoma:≤ 2cm versus 1 cm in size. Int Surg.1999;84(3):213-9.
    4. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy for cancer of the head of the pancreas.201 patients. Ann Surg.1995;221 (6):721-31:discussion 731-3.
    5. Ariyama J, Suyama M, Ogawa K, et al. The detection and prognosis of small pancreatic carcinoma. Int J Pancreatol.1990;7(1-3):37-47.
    6. Iordache S, Saftoiu A, Cazacu S, et al. Endoscopic ultrasound approach of pancreatic cancer in chronic pancreatitis patients in a tertiary referral centre. J. Gastrointest. Liver Dis.2008:17:279-84.
    7. Ghadirian P, Lynch HT, Krewski D. Epidemiology of pancreatic cancer: An overview. Cancer Detect. Prev.2003;27:87-93.
    8. Simon B, Printz H. Epidemiological trends in pancreatic neoplasias. Dig. Dis.2001;19:6-14.
    9. Lowenfels AB, Maisonneuve P.Epidemiologic and etiologic factors of pancreatic cancer. Hematol. Oncol. Clin. North Am.2002;16:1-16.
    10. Chowdhury P, Rayford PL. Smoking and pancreatic disorders. Eur. J. Gastroenterol. Hepatol.2000;12:869-77.
    11. Sofuni A, lima H, Moriyasu F, et al. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J Gastroenterol. 2005:40:518-525.
    12. Ardengh JC, de Paulo GA, Ferrari AP. EUS-guided FNA in the diagnosis of pancreatic neuroendocrine tumors before surgery. Gastrointest Endosc.2004;60(3):378-384.
    13. Smith SL, Rajan PS. Imaging of pancreatic adenocarcinoma with emphasis on multidetector CT. Clinical Radiology.2004;59:26-38.
    14. Zhang YT, Bai RJ, Yu TL.Abdomen portrait diagnose must-read. Beijing:People's Military Medical Press.2007.
    15. Hiromitsu S, Taketo Y. Diagnostic imaging for pancreatic cancer, computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas.2004;28:273-278.
    16. Van Kouwen MC, Laverman P, van Krieken JH, et al.FDG-PET in the detection of early pancreatic cancer in o BOP hamster model. Nucl Med Biol.2005:32:445-450.
    17. Sawabu N, Watanabe H, Yamaguchi Y, etal. Serum tum or m arkers and molecular biological diagnosis in pancreatic cancer. Pancreas.2004; 28:263-267.
    18. Jiang J, Wuc DHF, Lu MY, etal. Serum level of TSGF, CA242 and CA19 9 in pancreatic cancer. Wbrid, Gastroenterof.2004;10:1675-1677.
    19.夏晴,仲人前,邓安梅,等.胰腺癌相关自身抗原47原核表达、纯化及其抗体检测胰腺癌的价值初探.中华检验医学杂志.2003;26(4):222-225.
    20. Rosty C, Christa L, Kcezdzal S, etal. Identification of hepatocarcin-oma-intestine pancreas/pancreatitis-associated protein 1 as a biomarkal for pancreatic ductal adenocarcinoma by protein biochip technology.Cancer Res.2002;62:1868-1875.
    21. Yamada T, Nakamori S, Ohzato H, et al.Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res.1998; 4(6):1527-32.
    22. Takaku K, Oshima M, Miyoshi H, et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4(Smad4)and Apc genes. Cell.1998; 92(5):645-56.
    23. J Luttges, H Galehdari, V Brocker, etal. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am. J. Pathol.2001;158(5):1677-1683.
    24.王洛伟,李兆申,余志良,等.血清CA19-9水平对胰腺癌的诊断价值.解放军医学杂志.2002;27(4):302-303.
    25. Porta M, Femandez E, Alguacil J. Semiology, proteomies, and the early detection of symptomatic cancer. J Clin Epidemiol.2003; 56 (9):815-819.
    26. Seibert V, Eberr MP, Buschmann T.Advances in clinical cancer proteomics:SELDI-TOF-mass spectrometry and biomarker discovery. Brief Funct Genomic Proteomic.2005;4:16-26.
    27. Wang MZ, Howard B, Campa MJ, et al. Analysis of human serum proteins by liquid phase isoelectric focusing and matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics.2003;3: 1661-1666.
    28. Takano M, Kikuchi Y, Asakawa T, et al. Identification of potential serum markers for endometrial cancer using protein expression profiling. Journal of Cancer Research and Clinical Oncology.2010; 136(3):475-481.
    29. De BM, de SD, Meuwis MA, et al. Challenges for Biomarker Discovery in Body Fluids Using SELDI-TOF-MS. Journal of Biomedicine and Biotechnology.2010;1110-7243.
    30. Gomes AP, Imrie M, Gray RD, et al. SELDI-TOF biomarker signatures for cystic fibrosis, asthma and chronic obstructive pulmonary disease. Clinical Biochemistry.2010;43(1-2):168-177.
    31. Petricoin EF, Ardekani AM, Hitt BA, et al.Use of proteomic patterns in serum to identify ovarian cancer. Lancet.2002;359:572-577.
    1. Gridelli C, Aapro M, Ardizzoni A, et al. Treatment of advanced non-small-cell lung cancer in the elderly:results of an international expert panel. Clin Oncol.2005;23(13):3125-37.
    2. Bast RJ, Ravdin P, Hayes DF, et al. Status of tumor markers in ovarian cancer screening. Clin Oncol.2003;21(9):200-205.
    3. Petricoin EF, Liotta LA. Clinical applications of proteomics. J Nut. 2003.133:2476s-2484s.
    4. Petricoin EF, Ornstein DK, Paweletz CP, et al. Serum Proteomic Patterns for Detection of Prostate Cancer. Journal of the National Cancer Institute.2002;94 (20):1576-1578.
    5. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns In serum to identify ovarian cancer. Lancet.2002; 359 (9306):572-577.
    6. Malik G, Rojahn E, Ward MD, et al. SELDI protein profiling of dunning R-3327 derived cell lines:identification of molecular markers of prostate cancer progression. Prostate.2007;67(14):1565-75.
    7. Wei LW, Ming G, Deng WL, et al. UsingTreeAnalysis Pattern and SELDI-TOF-MS to DiscriminateTransitional Cell Carcinoma of the Bladder Cancer from Noncancer Patients. European Urology.2005; 47:456-462.
    8. Judith YE, Helgi HH, Annemieke C, et al. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry. World J Gastroenterol.2006;12(10):1536-1544.
    9. Yang SY, Xiao XY, Zhang WG, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer.2005;5:83.
    10. Fowler LJ, Lovell MO, Izbicka E. Fine-needle aspiration in PreservCyt: a novel and reproducible method for possible ancillary proteomic pattern expression of breast neoplasms by SELDI-TOF. Modern Pathology. 2004:17(8):1012-20.
    11. Britten RA, Hardy C, Vlahou A, et al. Identification of reproducible low mass SELDI protein profiles specific to cisplatin resistance in human ovarian cancer cells. Oncology Reports.2005;14(5):1323-30.
    12. Laurent M, Ralf B, Philippe D, et al. Discovery and Identification of Potential Biomarkers in a Prospective Study of Chronic Lymphoid Malignancies Using SELDI-TOF-MS. Journal of Proteome Research. 2006;5:2258-2269.
    13. Takano M, Kikuchi Y, Asakawa T, et al. Identification of potential serum markers for endometrial cancer using protein expression profiling. Journal of Cancer Research & Clinical Oncology. 2010:136(3):475-81.
    14. Risum S, Hogdall E, Engelholm SA, et al.A proteomics panel for predicting optimal primary cytoreduction in stage III/IV ovarian cancer. International Journal of Gynecological Cancer.2009; 19(9):1535-8.
    15. Yang Y, Zhao S, Fan Y, et al. Detection and identification of potential biomarkers of non-small cell lung cancer. Technology in Cancer Research & Treatment.2009;8(6):455-66.
    16. Fan Y, Shi L, Liu Q, et al. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Molecular Cancer.2009; 8:79.
    17. Caron J, Mange A, Guillot B, et al. Highly sensitive detection of melanoma based on serum proteomic profiling. Journal of Cancer Research & Clinical Oncology.2009:135(9):1257-64.
    18. Navaglia F, Fogar P, Basso D, et al. Pancreatic cancer biomarkers discovery by surface-enhanced laser desorption and ionization time-of-flight mass spectrometry. Clin Chem Lab Med.2009; 47(6):713-23.
    19. Yun Y, Sheng C, Li WS, et al. Prediction of Pancreatic Cancer by Serum Biomarkers Using Surface-Enhanced Laser Desorption/Ionization- Based Decision Tree Classification. Oncology.2005;68:79-86.
    20. Liu D, Cao L, Yu J, Que R, et al. Diagnosis of pancreatic adenocarcinoma using protein chip technology. Pancreatology.2009;9(1-2):127-35.
    21. Jens K, Zhen Z, Nicole W, et al. Serum Diagnosis of Pancreatic Adenocarcinoma Using Surface Enhanced Laser Desorption and Ionization Mass Spectrometry.Clinical Cancer Research.2004;10:860-868.
    22. Christophe R, Laurence C, Scott K, et al. Identification of Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-associated Protein I as a Biomarker for Pancreatic Ductal Adenocarcinoma by Protein Biochip Technology. Cancer research.2002; 62:1868-1875.
    23. Lj J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinforrmatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem.2002;48(8):1296-304.
    1. Hiromitsu S, Taketo Y. Diagnostic imaging for pancreatic cancer, computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas.2004;28:273-278.
    2. Ohlund D, Lundin C, Ardnor B, et al.Type IV collagen is a tumour stroma-derived biomarker for pancreas cancer. Br J Cancer.2009; 101(1):91-7.
    3. Biankin AV, Kench JG, Colvin EK, et al. Expression of S100A2 calcium-binding protein predicts response to pancreatectomy for pancreatic cancer. Gastroenterology.2009;137(2):558-68.
    4. Yao J, Ma Q, Wang L, et al. Pleiotrophin expression in human pancreatic cancer and its correlation with clinicopathological features, perineural invasion, and prognosis. Dig Dis Sci.2009;54(4):895-901.
    5. Niedergethmann M, Wostbrock B, Sturm JW, et al. Prognostic impact of cysteine proteases cathepsin B and cathepsin L in pancreatic adenocarcinoma. Pancreas.2004;29(3):204-11.
    6. Steinberg W. The clinical utility of the CA19-9 tumor-associated antigen. Am J Gastroenterol.1990;85(4):350-5.
    7. Halm US, chumann T, Schiefke I, et al. Decrease of CA199 during chemotherapy with gemcitabine predicts survival time in patient swith advanced pancreatic cancer. Br J Cancer.2000;82(5):1013.
    1. Lehmann R, Melle C, Escher N, et al. Detection and identification of protein interactions of S100 proteins by proteinchip technology.J Proteome Res 2005;4(5):1717-1721.
    2. Trocme C, Marotte H, Baillet, et al. AApolipoprotein A-I and platelet factor 4 are biomarkers for infliximab response in rheumatoid arthritis. Annals of the Rheumatic Diseases.2009;68(8):1328-1333.
    3. Gang X, Cui QX, Ye L, et al. Application of SELDI-TOF-MS to identify serum biomarkers for renal cell carcinoma. Cancer Letters.2009;282: 205-213.
    4. Masashi T, Yoshihiro K, Takayoshi A, et al. Identification of potential serum markers for endometrial cancer using protein expression prowling. J Cancer Res Clin Oncol.2010;136:475-481.
    5. Zinkin NT, Grall F, Bhaskar K, et al. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clinical cancer research.2008;14(2):470-477.
    6. Meuwis MA, Fillet M, Geurts P, et al. Biomarker discovery for inflammat-ory bowel disease, using proteomic serum profiling. Biochemical Pharmacology.2007;73(9):1422-1433.
    7. Christophe R, Laurence C, Scott K, et al. Identification of Hepato-carcinoma-Intestine-Pancreas/Pancreatitis-associated Protein I as a Biomarker for Pancreatic Ductal Adenocarcinoma by Protein Biochip Technology. Cancer research.2002;62:1868-1875
    8. Ricolleau G, Charbonnel C, Lode L, et al. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics.2006; 6(6):1963-1975.
    9. Yang EC, Guo J, Diehl G, et al. Protein expression profiling of endometrial malignancies reveals a new tumor marker:chaperonin 10. J Proteome Res.2004;3(3):636-643.
    10. Sanchez JC, Guillaume E, Lescuyer P, et al. Cystatin C as a potential cerebrospinal fluid marker for the diagnosis of Creutzfeldt Jakob disease. Proteomics.2004;4(8):2229-2233.
    11. Li J, Zhao J, Yu X, et al. Identification of biomarkers for breast cancer in nipple aspiration and ductal lavage fluid. Clin Cancer Res 2005;11(23):8312-8320.
    12. Allard L, Lescuyer P, Burgess J, et al. ApoC-Ⅰ and ApoC-Ⅲ as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics.2004;4(8):2242-2251.
    13. Cui Y, Wu J, Zong M, et al. Proteomic profiling in pancreatic cancer with and without lymph node metastasis. Int. J. Cancer.2009;124: 1614-1621.
    14. Howng S L, Hsu HC, Cheng TS, et al. A novel ninein-interaction Protein, CGI-99, blocks ninein phosphorylati on by GSK3beta and is highly expressed in brain tumors. FEBS Lett.2004;566(1-3):162-168.
    15. Wang J, Gu Y, Wang L, et al. HUPO BPP pilot study:a proteomics analysis of the mouse brain of different developmental stages. Proteomics. 2007:21:4008-4015.
    16. Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA:isolation and characterization of an RNA-transporting granule. Neuron.2004;43: 513-525.
    17. Hirschberg D, Tryggvason S, Gustafsson M, et al. Identification of endothelial proteins by MALDI-MS using a compact disc microfluidic system. Protein Journal.2004;23:263-271.
    18. Sauer G, Korner R, Hanisch A,et al.Proteome analysis of the human mitotic spindle. Molecular and Cellular Proteomics.2005;4:35-43.
    19. Wang J, Chen S. Screening and identification of gastric adenocarcinoma metastasis-related genes using cDNA microarray coupled to FDD-PCR. Journal of Cancer Research and Clinical Oncology.2002:128:547-553.
    20. Poirier F, Joubert-Caron R, Labas V, et al. Proteomic analysis of a lymphoma-derived cell line (DG75) following treatment with a demethylating drug:modification of membrane-associated proteins. Proteomics.2003;3:1028-1036.
    21. Peyrl A, Krapfenbauer K, Slavc I, et al. Protein pro f(?) les of medulloblastoma cell lines DAOY and D283:identi fi cation of tumor-related proteins and principles. Proteomics 2003;3:1781-1800.
    22. Isabella L, Karl WB, Shey-Cherng T, et al.Novel autoantigens in autoimmune hypophysitis. Clinical Endocrinology.2008;69:269-278.
    1. American Cancer Society www. cancer. org.
    2. Ferrone CR, Brennan MF, Gonen M, et al. Pancreatic adenocarcinoma:the actual 5-year survivors. J Gastrointest Surg.2008;12(4):701-706.
    3. Winter JM, Cameron JL, Campbell KA, et al.1423 pancreaticoduo-denectomies for pancreatic cancer:a single-institution experience. J Gastrointest Surg.2006;10(9):1199-210. discussion 1210-1.
    4. Schnelldorfer T, Ware AL, Sarr MG, et al.Long-term survival after pancreatoduodenectomy for pancreatic adenocarcinoma:is cure possible? Ann Surg.2008;247(3):456-462.
    5. Cleary SP, Gryfe R, Guindi M, et al. Prognostic factors in resected pancreatic adenocarcinoma:analysis of actual 5-year survivors. J Am Coll Surg.2004;198(5):722-731.
    6. House MG, Gonen M, Jarnagin WR, et al. Prognostic significance of pathologic nodal status in patients with resected pancreatic cancer. J Gastrointest Surg.2007;11 (11):1549-1555.
    7. Lim JE, Chien MW, Earle CC.Prognostic factors following curative resection for pancreatic adenocarcinoma:a populationbased, linked database analysis of 396 patients. Ann Surg.2003;237(1):74-85.
    8. Ioannis T, Konstantinidis VD, Hui JA, et al. Does the mechanism of lymph node invasion affect survival in patients with pancreatic ductal adenocarcinoma? J Gastrointest Surg.2010;14:261-267.
    9. Yeo CJ, Cameron JL, Lillemoe KD et al. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2:randomized controlled trial evaluating survival, morbidity, and mortality.Ann Surg.2002;236(3):355-366. discussion 366-8.
    10. Farnell MB, Pearson RK, Sarr MG, et al. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. Surgery.2005;138(4):618-628. discussion 628-30.
    11. Christopherson KN, HromaSR. Chemokim regulation of nomal and pathologic immune responses. Stem Cells.2001;19(5):388-396.
    12. Nagira M, Imai T, Hjeshima K, et al. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem.1997;272(31):19518-19524.
    13. Yoshida R, Nagira M, Kitaura M, et al. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem.1998;273(12):7118-7122.
    14. Balkwill F. Cancer,and the chemokine network. Nat ReV Cancer.2004;4(7): 540-550.
    15. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature.2001;410(6824):50-56.
    16. Shang ZJ, Liu K, Shao Z. Expression of chemokine receptor CCR7 is associated with cervical lymph node metastasis of oral squamous cell carcinoma. Oral Oncology.2009;45(6):480-485.
    17. Arigami T, Natsugoe S, Uenosono Y, et al. CCR7 and CXCR4 expression predicts lymph node status including micrometastasis in gastric cancer. International Journal of Oncology.2009;35(1):19-24.
    18. Wagner PL, Moo TA, Arora N, et al.The chemokine receptors CXCR4 and CCR7 are associated with tumor size and pathologic indicators of tumor aggressiveness in papillary thyroid carcinoma. Annals of Surgical Oncology.2008;15 (10):2833-2841.
    19. Ou DL, Chien HF, Chen CL, et al. Role of Twist in head and neck carcinoma with lymph node metastasis. Anticancer Research.2008;28(2B): 1355-1359.
    20. Maekawa S, Iwasaki A, Shirakusa T, et al. Association between the expression of chemokine receptors CCR7 and CXCR3, and lymph node metastatic potential in lung adenocarcinoma. Oncology Reports.2008; 19(6):1461-1468.
    21. Sasaki K, Natsugoe S, Ishigami S, et al. Expression of CXCL12 and its receptor CXCR4 in esophageal squamous cell carcinoma. Oncology Reports.2009;21(1):65-71.
    22. Liu FF, Lang RG, Wei J, et al. Increased expression of SDF-1/CXCR4 is associated with lymph node metastasis of invasive micropapillary carcinoma of the breast. Histopathology.2009;54(6):741-750.
    23. Lee HJ, Kim SW, Kim HY, et al. Chemokine receptor CXCR4 expression, function, and clinical implications in gastric cancer. International Journal of Oncology.2009;34(2):473-480.
    24. Yoshitake N, Fukui H, Yamagishi H, et al. Expression of SDF-1 alpha and nuclear CXCR4 predicts lymph node metastasis in colorectal cancer. British Journal of Cancer.2008;98(10):1682-1689.
    25. David G. New molecular markers for the study of tumor lymphangio-genesis. Anticancer Res.2001;21(9):4279-4283.
    26. Xiang ZL, Zeng ZC, Tang ZY, et al. Increased Expression of Vascular Endothelial Growth Factor-C and Nuclear CXCR4 in Hepatocellular Carcinoma Is Correlated With Lymph Node Metastasis and Poor Outcome. Cancer Journal.2009;15(6):519-525.
    27. Kodama J, Hasengaowa KT, Seki N, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Annals of Oncology.2007;18(1):70-76.
    28. Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell.2005;7(2):121-127.
    29. Onogawa S, Kitadai Y, Tanaka S, et al. Regulation of vascular endothelial growth factor(VEGF)-C and VEGF-D expression by the organ microenviro- nment in human colon carcinoma. Eur J Cancer.2004;40 (10): 1604-1609.
    1. Nakno A, Takeda S, Sakai M, et al. Extended radical resection versus standard resection for pancreatic cancer. The Rationale for Extended Radical Resection. Pancreas.2004;28(3):289-292.
    2. Schnelldorfer T, Ware AL, Sarr MG, et al. Long-term survival after pancreatoduodenectomy for pancreatic adenocarcinoma:is cure possible? Ann Surg.2008;247(3):456-462.
    3. Buchler MW, Kleeff J, Friess H. Surgical treatment of pancreatic cancer. J Am Coll Surg.2007;205 (4 Suppl):S81-S86.
    4. Koliopanos A, Avgerinos C, Farfaras A, et al. Radical resection of pancreatic cancer. Hepatobiliary Pancreat Dis Int.2008;7(1):11-18.
    5. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2:randomized controlled trial evaluating survival, morbidity, and mortality. Ann Surg.2002;236(3):355-368.
    6. Yamada S, Nakao A, Fujii T, et al.Pancreatic cancer with paraaortic lymph node metastasis a contraindication for radical surgery? Pancreas.2009;38(1):E13-E17.
    7. Roche CJ, Hughes ML, Garvey CJ, et al.CT and Pathologic assessment of prospective nodal staging in patients with ductal adenocarcinoma of the head ofthe pancreas. AIR.2003;180(2):475-480.
    8. Satoi S, Yanagimoto H, Toyokawa H, et al. Surgical Results After Preoperative Chemoradiation Therapy for Patients With Pancreatic Cancer. Pancrease.2009;38 (3):282-288.
    9. Seiko H, Hiroki Ya, Yutaka H, et al. Molecular markers associated with lymph node metastasis in pancreatic ductal adenocarcinoma by genome-wide expression profiling.Cancer Sci.2010;1(101):259-266.
    10. Wang P, Fan J, Chen Z, et al. Low-Level Expression of Smad7 Correlates with Lymph Node Metastasis and Poor Prognosis in Patients with Pancreatic Cancer. Annals of Surgical Oncology.2009;16(4):826-835.
    11. Cui YZ, Wu JM, Zong MJ, et al. Proteomic profiling in pancreatic cancer with and without lymph node metastasis. International Journal of Cancer.2009;124(7):1614-1621.
    12. Alexandra CH, Leslie C, Marcelo DR, et al.HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Modern Pathology.2009;22:43-49.
    13. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature.2001;410:50-56.
    14. Cabioglu N, Yazici MS, Arun B, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res.2005;11:5686-5693.
    15. Wilson JL, Burchell J, Grimshaw MJ. Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1. Cancer Res.2006:66:11802-11807.
    16. Wiley HE, Gonzalez EB, Maki W, et al. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst.2001;93:1638-1643.
    17. Rubie C, Frick V0, Wagne M, et al. Chemokine expression in hepatocellular carcinoma versus colorectal liver metastases. World Journal of Gastroenterology.2006;12(41):6627-6633.
    18. Ben-Baruch A. The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev.2006;25:357-371.
    19. Issa A, Le TX, Shoushtari AN, et al. Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell-Lymphatic Cross-talk Promote Invasive Phenotype. Cancer Research.2009;69(1): 349-357.
    20. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol.2006;16:38-52.
    21. Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol.2006:79:639-651.
    1. She Kouh AR, Thompsoncc, Prime W, etal. Application of laser capture microdissection cormbined weth two-dimensional electrophoresis for the discovery of differentility regulated proteins in pancreatic ductal adenocarcinoma. Proteomics.2003;32:1988-2001.
    2. Locker GY, Hamilton S, Harris J, etal.ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. Journal of Clinical Oncology.2006;924(33):5313-27.
    3. Kawa S, Tokoo M, Hasebe 0, etal. Comparative study of CA242 and CA19-9 for the diagnosis of pancreatic cancer. Br J Cancer1994.70(3): 481-486.
    4. Sawabu N, Watanabe H, Yamaguchi Y, etal. Serum tumor markers and molecular biological diagnosis in pancreatic cancer. Pancreas. 2004;28:263-267.
    5. Boeck S, Stieber P, Holdenrieder S, etal. Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer. Oncology.2006;70(4):255-64.
    6. Kim JE, Lee K1, Lee JK, etal. Clinical usefulness of carbohvdrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. Gastroenter of Hepatof.2004;19:182-186.
    7. Jiang J, Wuc DHF, Lu MY, etal. Serum level of TSGF, CA242 and CA19 9 in pancreatic cancer. Wbrid, Gastroenterof.2004;10:1675-1677.
    8.万晓东,李德春,倪卫星,等.南通大学学报(医学版).2005;25(1):42-44.
    9. Kawa S, Tomoo M, Hasebe 0, etal. Comparative study of CA242 and CA19-9 for the diagnosis of pancreatic cancer. Br J Cancer.1994;70:481.
    10.张秀芳,彭文晖,高桂华,等.CA19-9和CA242发光免疫分析对胰腺癌的诊断意义.肿瘤防治杂志.2003;10(5):496-497.
    11.邹雄.肿瘤标志在肿瘤早期诊断中的研究与应用进展.中华检验医学杂志.2002:25(2):71-72.
    12.唐昃,段秀泉.TSGF测定在多种肿瘤疾病中阳性表达的比较.中华现代医学与临床.2005;2(6):36-37.
    13. Jing TJ, Chang PW, Hai FD, etal. Serum Level of TGSF, CA 242 and CA 19-9 in pancreatic cancer. World J Gastroenterof.2004;10(11):1675-1677.
    14. Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res.2004;10:860-868.
    15. Groblewska M, Mroczko B, Wereszczynska SU,et al. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin Chem Lab Med.2007; 45(1):30-4.
    16. Goggins. Michael-Molecular Markers of Early Pancreatic Cancer. Journal of Clinical Oncology.2005;23(20);4524-4531.
    17.张波,张向红,曾庆东,等.组织多肽特异性抗原在胰腺癌诊断中的意义.山东大学学报(医学版).2003;41(6):713.
    18.夏晴,仲人前,邓安梅,等.胰腺癌相关自身抗原47原核表达、纯化及其抗体检测胰腺癌的价值初探.中华检验医学杂志.2003;26(4):222-225.
    19. Yiannnakou JY, Newland P, Galder F, etal. Prospective study of CAM17.1/WGAmucin assay for senlogical diagnosis of pancreatic. cancer Lancet.1997;349(9049):389-392.
    20. Neal S, Fedarko, Alka Jain, et al. Evaluation of Osteopontin as Biomarker for Pancreatic Adenocarcinoma. Cancer Epidemiology. Biomarkers & Prevention.2004;13(3):487-491.
    21.陈宏辉,张明亮,阳学风,等.骨调素在酒精性肝纤维化中的表达.胃肠病学和肝病学杂志.2005;(14):45-48.
    22.王宏,李建辉,李林瑞,等.S100蛋白在乳腺癌中的表达及意义.现代肿瘤医学.2003:11(3).
    23. Biankin AV, Kench JG, Colvin EK, et al. Expression of S100A2 calcium-binding protein predicts response to pancreatectomy for pancreatic cancer. Gastroenterology.2009; 137(2):558-68,568 el-11
    24. Zhao XY, Yu SY, Da SP, etal. Clinical evaluation of serological diagnosis for pancreatic cancer. WDrid, Gastroenterof.1998.4:147-149.
    25.朱庆云,屠振兴,李兆申,等.Mesothelin在胰腺癌组织的表达及其临床意义.胰腺病学.2005:5(1):17-20.
    26. Barbara M, Maciej S, Urszula WS, et al. Stem cell factor and macrophage-colony stimulating factor in patients with pancreatic cancer. Clin Chem Lab Med.2004;42(3):256-260.
    27. Yantiss RK, Woda BA, Fanger GR, et al. KOC(K homo logy domain containing protein overexpressed in cancer):a novel molecular marker that distinguish between benign and malignant lesions of the pancreas, Am J Surg Pathol.2005;29(2):188-195.
    28. Rosty C, Christa L, Kcezdzal S, et al. Identification of hepatocarcinoma- intestine pancreas/pancreatitis-associated protein 1 as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res.2002;62:1868-1875.
    29.李兆申,蔡振寨.胰腺癌早期诊断最新进展.世界华人消化杂.2005;13(10):1177-1178.
    30. Haptupee JC, Zhang H, Bonaldo MF, et al. Isolation and characterization of a cDNA encoding a novelmember of the human re2 generating protein family:Reg Ⅳ.Biochim BiophysActa.2001;1518(3):287-293.
    31. Sekikawa A, Fukui H, Fujii S, et al.REG I alpha protein may function as a trophic and/or anti-apoptotic factor in the development of gastric cancer. Gastroenterology.2005;128:642-53.
    32. Bishnupuri KS, Luo Q, Murmu N, etal. Reg IV activates the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon adenocarcinomas. Gastroenterology.2006;130:137-49.
    33. Kamara IM, Heiskala K, Knuutila S, et al. RELP, a novel human REG21ike protein with up2regulated expression in inflammatory and metaplastic gastrointestinal mucosa. Am J Pathol.2003;163(1):11-20.
    34. Nakashima M, Sonoda K, Watanabe T. Inhibition of cell growth and induction of apoptotic cell death by the human tumor associated antigen RCAS1. NatMed.1999;5(8):938-942.
    35. Leelawat K, Watanabe T, Nakajima M, et al. Upregulation of tumour associated antigen RCAS1 is implicated in high stages of colorectal cancer. J Clin Pathol.2003;56(10):764-768.
    36. Enjoji M, Nakashima M, Yamaguchi K, et al. Significance of RCAS1 antigen in hepatocellular, cholangiocellular and pancreatic carcinomas. Gastroenterology & Hepatology.20(8):1143-8,2005;20(8):1143-8.
    37.杨盈赤,赵玉沛,廖泉等.RCAS1在胰腺癌诊断中的作用.中华外科杂志.2009;47(13):999-1001.
    38. Malaguarnera M, Cristaldi E, Cammalleri L, et al. Elevated chromo-granin A (CgA) serum levels in the patients with advanced pancreatic cancer. Arch Gerontol Geriatr.2009;48(2):213-7.
    39. Novotny I, Dite P, Dastych M, et al. Tumor marker M2-pyruvate-kinase in differential diagnosis of chronic pancreatitis and pancreatic cancer. Hepatogastroenterology.2008;55(85):1475-7.
    40. Simeone DM, Ji B, Baner jee M, et al. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas.2007;34(4):436-43.
    1. Baumgart Ma, Heinmoller E, Horstmann 0, etal. The genetic basis of sporadic pancreatic cancer. Cell Oncol.2005;27(1):3-13.
    2. Haug U, Wente MN, Seiler CM, et al.Stool testing for the early detection of pancreatic cancer:rationale and current evidence. Expert Rev Mol Diagn.2008; 8 (6):753-9.
    3.张文岚,杨绍娟,侯治富,等.大肠癌PRAD21/CCND1基因产物表达研究.中国免疫学杂志.1998;14-348.
    4.李宏宇,于皆平,郭晓钟,等.染色体缺失磷酸酶及张力蛋白同源物对胰腺癌细胞系细胞周期和增殖能力的影响.中华消化杂志.2005;25(3):162-165.
    5. Poch B, Gansauge F, Schwarz A, et al. Epidermal growth factor induces cyclin D1 in human pancreatic carcinoma:evidence for a cyclin D1-dependent cell cycle progression. Pancreas.2000;23(3):280-287.
    6. Tobita K, Ki jima H, Dowaki S, et al. Epidermal growth factor receptor expression in human pancreatic cancer:Significance for liver metastasis. Int J Mol Med.2003;11(3):305-309.
    7. Zhang L, Yuan SZ. Expression of c-erbB-2 oncogene protein, epidermal growth factor receptor, and TGF-betal in human pancreatic ductal adenocarcinoma. Hepatobil Pancreat Dis Int.2002;1(4):620-623.
    8. Apple SK, Hecht JR, Lewin DN, et al. Immunohistochemical evaluation of K-ras, p53, and HER-2/neu expression in hyperplastic, dysplastic,and carcinomatous lesions of the pancreas:evidence for multistep carcinogenesis. Hum Pathol.1999;30(2):123-129.
    9. Safran H, Steinhoff M, Mangray S, et al. Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. Am J Clin Oncol.2001;24(5)496-499.
    10.雷士泽,罗克枢,林万芳.胰腺癌肿瘤基因HER-2/neu表达与预后关系的探讨解放军医学杂志.1996;21(4):276-278.
    11. Schlieman MG, Fahy BN, Ramsamooj R, et al. Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J. Cancer.2003:89(11):2110-2115.
    12.康春生,浦佩玉,李捷,等.人脑胶质瘤AKT2表达与细胞增殖和侵袭性的关系.中华病理学杂志.2004;33(5):464-465.
    13. Ohhashi S, Ohuchida K, Mizumoto K, et al. Midkine mRNA is overexpress-ed in pancreatic cancer. Dig Dis Sci.2009;54(4):811-5.
    14. Kohei N, Kenoki 0, Eishi N, et al.LM02 is a novel predictive marker for a better prognosis in pancreatic cancer.2009;11 (7):712-719.
    15. Park JK, Ryu JK, Lee KH, et al. Quantitative analysis of NPTX2 hypermethylation is a promising molecular diagnostic marker for pancreatic cancer. Pancreas.2007;35(3):e9-15.
    16. Heinmoller E, Dietmaier W, Zirngibl H, et al. Molecular analysis of microdissected tumors and preneoplastic intraductal lesions in pancreatic carcinoma. Am J Pathol.2000;157(1):83-92.
    17. Rozenblum E, Schutte M, Goggins M, etal. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res.1997;57(9):1731-1734.
    18. Luttges J, Galehdari H, Brocker V, et al.Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol.2001; 158 (5):1677-1683.
    19.沈宗丽,朱月清,吴晓柳,等.肿瘤患者血细胞中P53突变蛋白高表达与转移复发的关系.中华检验医学杂志.2005;28(4):406-407.
    20.龙江.在家族性胰腺癌中CDKN2A种系突变.国外医学(外科学分册).2003:30(4):244-245.
    21.伍俊.INK4a基因与肺癌关系的研究.国外医学肿瘤学分册.2001;28(1):54-56.
    22.陈笑雷,张群华,倪泉兴.p14ARF与p53抑癌基因对胰腺癌生物学行为的影响.中华医学杂志.2003;83(10):868-871.
    23.田云,卢向阳,易克,等.BRCA2蛋白的研究生命的化学.2003;23(1):12-13.
    24. Rodriguez JA, Li M, Yao 0, et al. Fisher Gene Overexpression in Pancreatic Adenocarcinoma:Diagnostic and Therapeutic Implications. World J Surg.2005;29(3):297-305.
    25. Sahin F, Maitra A, Argani P, et al. Loss of Stkll/Lkbl expression in pancreatic and biliary neoplasms. Mod. Pathol.2003;16(7):686-691.
    26.赵喜荣,康连春,吕有勇.Peutz-Jeghers综合征.世界华人消化杂志.2003:11(11):1773-1776.
    27. Tanase CP. Caveolin-1:a marker for pancreatic cancerdiagnosis. Expert Rev Mol Diagn.2008;8 (4):395-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700