蛋白质指纹图谱在乳腺癌个体化新辅助化疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新辅助化疗,又称术前化疗、诱导化疗、初始化疗等,是指对非转移性的肿瘤,在应用局部治疗前进行的全身性、系统性的细胞毒性药物治疗,是近年乳腺癌治疗中的重要内容,已成为中晚期乳腺癌治疗的标准方案之一,而且已经扩展应用于有保乳意愿的早期可手术乳腺癌患者。虽然乳腺癌新辅助化疗在全世界范围内得到了广泛的关注,并进行了大量的基础研究和临床试验,但是乳腺癌新辅助化疗领域还存在许多分歧和争议,主要是完全缓解率低;无术前疗效评价的确切方法;缺少疗效预测和监测手段、不能个体化选择新辅助化疗;新辅助化疗后影响淋巴结分期等等。由于化疗具有个体差异性,即对于不同的乳腺癌患者新辅助化疗的效果差异很大,但是根据目前的检测手段,尚不能在新辅助化疗实施前或是化疗早期就明确患者对化疗方案的敏感性,只能在临床应用2-3疗程化疗后再行评价,若无效再考虑换行其他方案,这在一定程度上会影响到对部分患者病情的控制。同时新辅助化疗可以使一些患者的腋窝淋巴结消失或者降期,因此,准确的乳腺癌术前/新辅助化疗前淋巴结分期受到人们越来越多的重视。
     表面加强激光解吸电离-飞行时间质谱技术是近年发展起来的一种新的蛋白质组学研究方法,具有操作简单、样品用量少、灵敏度高、高通量等优点,可以一次性获得某一样品中大量的蛋白质数据,并且能够直接对临床标本进行检测,实现了质谱技术用于临床检测的飞跃。国内外不少研究者已成功将这项技术用于多种恶性肿瘤的诊断,但用于检测化疗敏感性预测因子、监测标志物及术前/新辅助化疗前淋巴结分期的相关性研究仍然比较少见。
     本课题旨在利用SELDI-TOF-MS,通过对乳腺癌患者新辅助化疗前血清进行蛋白质指纹图谱的检测,结合生物信息学的方法,找到有价值的蛋白质指纹图谱化疗敏感性预测模型,提高乳腺癌新辅助化疗的有效率,实现对乳腺癌患者的个体化治疗,避免化疗药物的毒副作用及无效用药;进一步利用血清蛋白质指纹图谱对化疗过程进行监测,动态观测疗效相关因子的变化,筛选出可用于监测疗效的蛋白质标志物;并且运用SELDI-TOF-MS技术来分析鉴定乳腺癌患者不同淋巴结分期蛋白质表达谱的全貌,进行术前/新辅助化疗前分期,用于指导治疗,判断预后。
     第一部分
     血清蛋白质指纹图谱在乳腺癌新辅助化疗疗效预测方面的研究
     为寻找新辅助化疗疗效相关的预测因子,我们进行了本部分研究。采用SELDI-TOF-MS技术及其配套的CM10蛋白质芯片我们检测了参与新辅助化疗的乳腺癌患者(按RECIST标准化疗有效组19例,化疗无效组15例)的血清蛋白质指纹图谱,筛选出6个差异蛋白质峰(质荷比为5869、3291、5894、9296、5953及2220)并建立了预测模型,其中5869 m/z、3291 m/z、5894 m/z、9296 m/z和5953 m/z这5个蛋白质峰在新辅助化疗有效的乳腺癌患者血清中表达较高,而2220m/z则在新辅助化疗无效的患者血清中表达较高。经过交叉验证,该预测模型的灵敏度为89.5%(17/19),特异性为73.3%(11/15),总准确率为82.4%(28/34)。
     按化疗前后肿块大小实际变化(肿块缩小组有25例,肿块增大组有9例)建立模型,共筛选出了5个有价值的差异蛋白质峰(质荷比为3323、5869、5894、7775及6470),其中3323 m/z、5869 m/z、5894 m/z和7775 m/z这4个蛋白质峰在肿块缩小组的乳腺癌患者血清中表达较高,而6470 m/z则在肿块增大组的患者血清中表达较高。经过交叉验证,该预测模型的灵敏度为96.0%(24/25),特异性为77.8%(7/9),总准确率为91.2%(31/34)
     5869 m/z和5894 m/z这两个蛋白质峰同时进入了两个疗效预测模型,可能是比较合适的新辅助化疗疗效预测标志物,下一步我们将对这两个蛋白质进行分离、纯化和分析解码,以进一步明确与新辅助化疗敏感或耐药的关系。
     第二部分
     血清蛋白质指纹图谱在乳腺癌新辅助化疗过程中的动态监测
     为了确定乳腺癌患者在新辅助化疗前后血清蛋白质水平上的变化,我们对34例乳腺癌患者新辅助化疗前后的血清进行了蛋白质指纹图谱检测,找出前后表达差异有统计学意义的蛋白质峰,并将蛋白质峰的变化情况在不同疗效组间进行对比,筛选出11个蛋白质峰在新辅助化疗后,两组间的变化趋势不同,因此可能与化疗疗效相关。然后我们进一步考察这11个蛋白质峰在25例参与动态监测的乳腺癌患者中每一例患者每次化疗后的变化情况,形成目标蛋白质在每例患者随化疗疗程表达情况的动态变化趋势图,以后面3次蛋白质峰的平均值与第一次(化疗前)的峰值进行比较,来判断变化趋势是上升还是下降,以减小单次测量所造成的误差。比较每个蛋白质峰的变化趋势在疗效组内和组间的分布情况,找到组内变化情况较一致而组间变化趋势不同的蛋白质峰。最后发现4302 m/z和4645 m/z在有效组中的10/13例(76.9%)患者随化疗进行表达下降,而在无效组中的8/12例(66.7%)患者随化疗进行表达上升;3291 m/z在有效组中的8/13例(61.5%)患者随化疗进行表达下降,而在无效组中的8/12例(66.7%)患者随化疗进行表达上升;5894 m/z在有效组中的8/13例(61.5%)患者随化疗进行表达下降,而在无效组中的9/12例(75%)患者随化疗进行表达上升(见表4.3)。我们认为这4个蛋白质峰在新辅助化疗过程中有监测意义,并且能区分治疗效果。
     进一步搜索蛋白质数据库,我们发现4302m/z的蛋白质峰可能是肾上腺髓质素-2(adrenomedullin-2, ADM-2),这个蛋白质有促进细胞生长、增殖和存活及促进血管、淋巴管新生的作用;4645 m/z的蛋白质峰可能是MSSP (myc single strand binding protein),作为c-Myc基因的调节子,参与DNA的复制和细胞周期从G1期到S期的转化;3291 m/z的蛋白质峰可能是胰高血糖素(glucagon),有研究发现GLP-2通过对肠上皮完整性的支持,使化疗的有效性不致遭到损坏,从而使肿瘤患者获得治疗方面的优势;5894 m/z这个蛋白质峰可能是活性氧物质调节子1(reactive oxygen species modulator 1),它通过调节内源性活性氧物质(ROS)影响多种信号通路使细胞生长失控ROMO1表达的增加在肿瘤发生、增殖过程中起着重要作用,而且Hwang等人发现ROMO1的表达可能与5-FU(氟尿嘧啶)的耐药有关。下一步我们将对这4个蛋白质进行分离、纯化和分析解码,并进一步研究其与化疗疗效的关系.第三部分
     血清蛋白质指纹图谱在乳腺癌患者腋窝淋巴结分期方面的研究
     为了找到准确、微创的新辅助化疗前腋窝淋巴结分期方法,避免化疗后失去区域淋巴结转移情况这一乳腺癌最重要的预后信息,我们进行了此部分研究。比较18例有淋巴结转移乳腺癌患者和16例无淋巴结转移乳腺癌患者的血清蛋白质质谱数据,筛选出5个蛋白质峰的组合(3164 m/z、3979 m/z、9196 m/z、2734m/z和3963 m/z)建立淋巴结转移的预测模型。其中3164 m/z、3979m/z和3963 m/z这3个蛋白质峰在淋巴结有转移的乳腺癌患者血清中表达较高,而9196 m/z和2734 m/z这2个蛋白质峰则在淋巴结无转移的乳腺癌患者血清中表达较高。交叉验证结果显示该模型的灵敏度为88.9%(16/18),特异度为87.5%(14/16),总准确率为88.2%(30/34)
     进一步比较发现,3979 m/z蛋白质峰的表达水平与淋巴结转移数目相关(R2=0.898)。通过搜索蛋白质数据库我们了解到3979 m/z蛋白质峰可能是一种叫P物质的蛋白质,有研究显示P物质参与乳腺癌细胞的增殖、抵抗放射线损伤、防止凋亡、诱导生长因子和促血管生成因子以及促进乳腺癌骨转移等多种病理进程,因此,P物质与乳腺癌腋窝淋巴结转移的关系值得我们进一步深入研究。
     结论
     1、由5869 m/z、3291 m/z、5894 m/z、9296 m/z、5953 m/z和2220 m/z六个蛋白质峰组合所构建的模型能达到预测乳腺癌患者新辅助化疗后临床缓解情况的最佳预测效果,总准确率82.4%。
     2、由3323 m/z、5869 m/z、5894 m/z、7775 m/z和6470 m/z五个蛋白质峰组合所构建的模型能达到预测乳腺癌患者新辅助化疗后乳腺肿块大小变化的最佳预测效果,总准确率91.2%。
     3、5869 m/z和5894 m/z这两个蛋白质峰同时进入了两个疗效预测模型,可能是比较合适的新辅助化疗疗效预测标志物,值得进一步研究。
     4、4302 m/z、4645m/z、3291m/z和5894 m/z这4个蛋白质峰在新辅助化疗有效组和无效组间变化趋势相反,可作为用于新辅助化疗疗效监测的标志物。
     5、4302 m/z的蛋白质峰可能是肾上腺髓质素-2(adrenomedullin-2,ADM-2);4645 m/z的蛋白质峰可能是MSSP(myc single strand binding protein); 3291m/z的蛋白质峰可能是胰高血糖素(glucagon); 5894 m/z这个蛋白质峰可能是活性氧物质调节子1(Reactive oxygen species modulator 1, ROMO1)。下一步我们将对这4个蛋白质进行分离、纯化和分析解码,并进一步研究其与化疗疗效的关系。
     6、5894 m/z这个蛋白质峰既可以可以在新辅助化疗前预测疗效,又可以在化疗进行中监测疗效,值得我们在接下来的研究中加以重点关注。
     7、由3164 m/z、3979 m/z、9196 m/z、2734 m/z和3963 m/z五个蛋白质峰组合所构建的模型能达到预测乳腺癌腋窝淋巴结转移的最佳预测效果,总准确率达88.2%。
     8、3979 m/z蛋白质峰的表达水平与淋巴结转移数目相关:而且可能是一种叫P物质的蛋白质,它与乳腺癌腋窝淋巴结转移的关系值得我们进一步研究。
Neoadjuvant chemotherapy, namely preoperative chemotherapy, induced chemotherapy, initial chemotherapy or primary chemotherapy, has gained wide acceptance for treating patients with locally advanced breast cancer. In these patients the most acknowledged benefit is the reduction in tumor size allowing either a complete resection of an otherwise unresectable tumor or breast conservation surgery in some patients with large tumors. Although many patients benefit from chemotherapy, some fail to respond. However, the success of neoadjuvant chemotherapy in any given individual cannot be predicted. The uncertain benefit for a particular individual, as well as significant toxicity of chemotherapy in all patients, calls for development of methods to select the right patients for treatment and spare those who will not benefit. Meanwhile the application of neoadjuvant chemotherapy can downstage some patients' axillary lymph node (ALN) status, so people want to find more accurate, and less invasive means of predicting ALN metastasis.
     A novel technology, surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) carved out such a new path to proteomics research on breast cancer. It can directly obtain high-throughput protein profilings from clinical samples with high sensitivity. The application of SELDI-TOF-MS has been reported to be capable of being used to diagnose malignancies of various organs, including the ovary, prostate, and pancreas. But the studys of proteomics to predict or monitor tumor response to chemotherapy are still very rare.
     Our current study was specifically designed to compare SELDI mass spectra of serum from chemotherapy responsive and non-responsive breast patients receiving the neoadjuvant treatment for identification the protein biomarkers which could predict or monitor tumor response to chemotherapy. We also hypothesized that proteomic alteration in the serum from breast cancer patients could predict ALN metastasis which could be caught by SELDI.
     Part 1
     The application of SELDI-TOF-MS in the prediction of tumor response to neoadjuvant chemotherapy in breast cancer patients
     SELDI-TOF-MS protein chips were used to detect the serum proteomic patterns of 19 cases of chemotherapy responsive patients and 15 cases of chemotherapy non-responsive patients. Six potential biomarkers were found (5869 m/z,3291 m/z, 5894 m/z,9296 m/z.5953 m/z and 2220 m/z). The protein peaks of 5869 m/z.3291 m/z, 5894 m/z,9296 m/z and 5953 m/z were higher in the chemotherapy responsive patients while the protein peak of 2220 m/z was higher in the chemotherapy non-responsive patients. The prediction model was quite accurate with an accuracy of 82.4%.
     After neoadjuvant chemotherapy,25 patients got tumor shrinked while 9 patients' tumor enlarged. With the method of SELDI-TOF-MS-5 protein peak were identified (3323 m/z,5869 m/z,5894 m/z,7775 m/z and 6470 m/z). The protein peaks of 3323 m/z,5869 m/z,5894 m/z and 7775 m/z were higher in the tumor shrinked patients while the protein peak of 6470 m/z was higher in the tumor enlarged patients. This model has an accuracy of 91.2%.
     As the two models both included the protein peaks of 5869 m/z and 5894 m/z, we think they may be potential biomarkers that can predict tumor response to neoadjuvant chemotherapy.
     Part 2
     The application of SELDI-TOF-MS in the monitoring of tumor response to neoadjuvant chemotherapy in breast cancer patients
     We first compared the protein fingerprints of the total 34 cases patients pre-chemotherapy and post-chemotherapy. Eleven discrepant proteins were screened which changed differently between the two groups. Then we checked these proteins in every 25 patients after every period of chemotherapy. The average value of proteins of last 3 periods was compared to the value of the first time in every patient in order to judge the protein peak was rise or drop after receiving chemotherapy. At last we found that the protein peak of 4302 m/z was drop in 76.9% patients of responsive group and rise in 66.7% patients of non-responsive group. So was the protein peak of 4645 m/z. The protein peak of 3291 m/z was drop in 61.5% patients of responsive group and rise in 66.7% patients of non-responsive group, and the protein peak of 5894 m/z was drop in 61.5% patients of responsive group and rise in 75% patients of non-responsive group. We think these 4 protein peaks may serve as biomarkers for monitoring tumor response to chemotherapy.
     Part 3
     The application of SELDI-TOF-MS in the ALN staging in breast cancer patients
     SELDI-TOF-MS protein chips were used to detect the serum proteomic patterns of 18 cases of patients with ALN metastasis and 16 cases of patients without ALN metastasis. Five potential biomarkers were found (3164 m/z,3979m/z,9196 m/z,2734 m/z and 3963 m/z). The protein peaks of 3164 m/z,3979 m/z and 3963 m/z were higher in the patients with ALN metastasis while the protein peak of 9196 m/z and 2734 m/z were higher in the patients without ALN metastasis. This model has an accuracy of 88.2%.
     We also find the expression level of the protein peak of 3979 m/z was relevant to the number of metastatic lymph nodes. After searching for the protein database, we know that the protein peak of 3979 m/z maybe the substance P which is deserved for further studies.
     Conclusions
     1、The model composed by 5869 m/z,3291 m/z,5894 m/z,9296 m/z,5953 m/z and 2220 m/z could do the best in the division of chemotherapy responsive patients and chemotherapy non-responsive patients. The accuracy was 82.4%.
     2、The model composed by 3323 m/z,5869 m/z,5894 m/z,7775 m/z and 6470 m/z could do the best in the division of the tumor shrinked patients and the tumor enlarged patients. The accuracy was 91.2%.
     3、The protein peaks of 5869 m/z and 5894 m/z may be potential biomarkers that can predict tumor response to neoadjuvant chemotherapy.
     4、The 4 protein peaks (4302 m/z,4645 m/z,3291 m/z and 5894 m/z) may serve as biomarkers for monitoring tumor response to chemotherapy.
     5、The protein peak of 5894 m/z serves both as predictor and monitor for tumor response to chemotherapy, and it is deserved for further studies.
     6、The model composed by 3164 m/z,3979m/z,9196 m/z,2734 m/z and 3963 m/z could do the best in the division of patients with ALN metastasis and patients without ALN metastasis. The accuracy was 88.2%.
     7、The expression level of the protein peak of 3979 m/z was relevant to the number of metastatic lymph nodes.
引文
[1]程虹等译.乳腺及女性生殖器官肿瘤病理学和遗传学.北京:人民卫生出版社,2006:1.135.
    [2]沈镇宙,陆劲松.乳腺癌临床研究新进展.中国癌症杂志.2001;11:388-392.
    [3]张保宁,宣立学,王伸照.乳腺癌综合治疗的现状与展望中国实用外科杂志2006;26:243-245.
    [4]Mauri D, Pavlidis N, Ioarmidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer:A meta-analysis. J Natl Cancer hast.2005;97:188-194.
    [5]Gunduz N, Fisher B, Saffer EA. Effect of surgical removal on the growth and kinetics of residual tumor. Cancer Res.1979; 39:3861-3865.
    [6]Fisher B, Guiduz N, Saffer EA. Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases. Cancer Res. 1983; 43:1488-1492.
    [7]Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy:updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol,2008; 26:778-785.
    [8]Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer:a Meta-analysis. J Natl Cancer Inst.2005; 97:188-194.
    [9]Gralow JR, Burstein HJ, Wood W, et al. Preoperative therapy in invasive breast cancer:pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol,2008; 26:814-819.
    [10]Hanrahan EO, Hennessy BT and Valero V. Neoadjuvant systemic therapy for breast cancer:an overview and review of recent clinical trials. Expert Opin Pharmacother.2005; 6:1477-1491.
    [11]Kaufmann M, von Minckwitz G and Rody A. Preoperative (neoadjuvant) systemic treatment of breast cancer. Breast.2005; 14:576-581.
    [12]Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights:international expert consensus on the primary therapy of early breast cancer. Ann Oncol. 2005;16:1569-1583.
    [13]Brummelkamp TR, Nijman SMB, Dirac AMG, Bernards R. Loss of the cylindromatosis tumour suppressor inhibitsapoptosis by activating NF-B. Nature 2003;424:197-801.
    [14]Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol.1999; 187:127-37.
    [15]Brown JM, Wilson G. Apoptosis genes and resistance to cancer therapy:what does the experimental and clinical data tell us? Cancer Biol Ther.2003;2:477-90.
    [16]Bourgarel-Rey V, Vallee S, Rimet O, et al. Involvement of nuclear factor B in c-myc induction by tubulin polymerization inhibitors. Mol Pharmacol.2001;59: 1165-70.
    [17]Tergaonkar V, Pando M, Vafa O, Wahl G, Verma 1. p53 stabilization is decreased upon NF-kappa B activation:a role for NF-kappa B in acquisition of resistance to chemotherapy. Cancer Cell.2002; 1:493-503.
    [18]Wang W, Cassidy J, O'Brien V, Ryan KM, CoUie-Duguid E. Mechanistic and predictive profiling of 5-fluorouracil resistance in human cancer cells. Cancer Res. 2004;64:8167-76.
    [19]Sjostrom J. Predictive factors for response to chemotherapyin advanced breast cancer. Acta Oncol.2002; 41:334-45.
    [20]Cocquyt VF, Blondeel PN, Depypere HT, et al. Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol.2003; 29:361-67.
    [21]Mathieu MC, Rouzier R, Llombart-Cussac A, et al. The poor responsiveness of infiltrating lobular breast carcinomas to neoadjuvant chemotherapy can be explained by their biological profile. EurJ Cancer.2004;40:342-51.
    [22]Pich A, Chiusa L, Navone R. Prognostic relevance of cell proliferation in head and neck tumors. Ann Oncol.2004; 15:1319-29.
    [231 van Diest PJ, van de Wall E, Baak JP. Prognostic value of proliferation in invasive breast cancer:a review. J Clin Pathol.2004,57:615-81.
    [24]Petit T.Wilt M, Velten M, Millon R, Rodier JF, Borel C et al. Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase Ⅱ alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer.2004;40:205-11.
    [25]Billgren AM, Rutqvist LE, Tani E, et al. Proliferating fraction during neoadjuvant chemotherapy of primary breast cancer in relation to objective local response and relapse-free survival. Acta Oncol.1999;38:597-601.
    [26]Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy:predictive markers and relation with outcome. Br J Cancer.2003; 88:406-12.
    [27]Sjostrom J. Predictive factors for response to chemotherapy in advanced breast cancer. Acta Oncol.2002;41:334-45.
    [28]Matros E, Ahingang CW, Richardson AL, Iglehart JD. Genomic approaches in cancer biology. Surgery.2004; 136:511-18.
    [29]Huang E, Cheng SH, Dressman H, et al. Gene expression preditors of breast cancer outcomes. Lancet.2003;361:1590-96.
    [30]Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet.2003;362:362-69.
    [31]Fernandez-Sanchez M, Gamboa-Dominguez A, Uribe N, et al. Clinical and pathological predictors of response to neoadjuvant anthracycline chemotherapy in locally advanced breast cancer. Medical Oncology.2006;23:171-183.
    [32]Prisack HB, Karreman C, Modlich O, et al. Predictive biological markers for response of invasive breast cancer to anthracycline/cyclophosphamide-based primary (radio-) chemotherapy. Anticancer Research.2005;25:4615-4621.
    [33]Pu RT, Schott AF, Sturtz DE, Griffith KA, Kleer CG. Pathologic features of breast cancer associated with complete response to neoadjuvant chemotherapy: importance of tumor necrosis. American Journal of Surgical Pathology.2005;29: 354-358.
    [34]Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy:results of a randomized trial in human epidermal growth factor receptor 2- positive operable breast cancer. Journal of Clinical Oncology.2005;23:3676-3685.
    [35]张阳德.生物信息学.北京:科学出版社,2004.237-247.
    [36]Arrell DK, Neverova I, Van Eyk JE. Cardiovascular proteomics:evolution and potential. Circ Res.2001,88(8):763-773.
    [37]查锡良.医学分子生物学.北京:人民卫生出版社,2002.264.
    [38]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis.1995; 16: 1090-1094.
    [39]Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. Pharmacogenomics.2000; 1:395-416.
    [40]Issaq HJ, Veenstra TD, Conrads TP, et al. The SELDI-TOF MS approach to proteomics:protein profiling and biomarker identification. Biochem Biophys Res Commun.2002;292:587-592.
    [41]Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis.2000; 21: 1164-1177.
    [42]Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. Pharmacogenomics.2000; 1:395-416.
    [43]Diamond DL, Kimball JR, Krisanaprakornkit S, et al. Detection of beta-defensins secreted by human oral epithelial cells. J Immunol Methods.2001;256:65-76.
    [44]White CN, Chan DW, Zhang Z. Bioinformatics strategies for Proteomic Profiling [J]. Clin Biochem.2004;37:636-641.
    [45]Boguski MS, McIntosh MW. Biomedical informatics for proteomics. Nature. 2003; 422:233-237.
    [46]Narayanan A, Keedwell EC, Olsson B. Artificial intelligence techniques for bioinformatics. Appl Bioinformatics.2002; 1:191-222.
    [47]Xiang Z, Yang Y, Ma X, et al. Microarray expression profiling:analysis and applications. Curr Opin Drug Discov Devel.2003;6:384-395.
    [48]Ball G, Mian S, Holding F, et al. An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics.2002; 18: 395-404.
    [49]Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem.2002;48: 1296-1304.
    [50]胡跃,余捷凯,张苏展,刘建,郑树.蛋白质指纹图谱在乳腺癌诊断与随访中的应用研究中国病理生理杂志.2010.26:700-704.
    [51]Sauter ER, Shan S, Hewett JE, et al. Proteomic analysis of nipple aspirate fluid using SELDI-TOF-MS. Int J Cancer.2005; 114:791-796.
    [52]Nakagawa T, Huang SK, Martinez SR, et al. Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis. Cancer Res.2006;66:11825-11830.
    [53]Shi Q, Harris LN, Lu X, et al. Declining plasma fibrinogen alpha fragment identifies HER2-positive breast cancer patients and reverts to normal levels after surgery. J Proteome Res.2006;5:2947-2955.
    [54]Chen YD, Zheng S, Yu JK, Hu X. Artificial neural networks analysis of surface enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin Cancer Res.2004; 10: 8380-8385.
    [55]de Bont JM, den Boer ML, Reddingius RE, et al. Identification of apolipoprotein A-Ⅱ in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling. Clin Chem.2006;52:1501-1509.
    [56]Wang JX, Yu JK, Wang L, et al. Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics.2006;6:5344-5349.
    [57]Yang SY, Xiao XY, Zhang WG, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer.2005;5:83.
    [58]Zhukov TA, Johanson RA, Cantor AB, et al. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer.2003;40:267-279.
    [59]Lin YW, Lin CY, Lai HC, et al. Plasma proteomic pattern as biomarkers for ovarian cancer. Int J Gynecol Cancer.2006;16:139-146.
    [60]Ye B, Cramer DW, Skates SJ, et al. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer:identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res.2003;9:2904-2911.
    [61]Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine- pancreas/ pancreatitis-associated protein Ⅰ as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res.2002;62:1868-1875.
    [62]Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res.2004; 10:860-868.
    [63]Su Y, Shen J, Qian H, et al. Diagnosis of gastric cancer using decision tree classification of mass spectral data. Cancer Sci.2006;98:37-43.
    [64]Fan Y, Wang J, Yang Y, et al. Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol.2010; 136:1243-1254.
    [65]Liu M, Li CF, Chen HS, et al. Differential expression of proteomics models of colorectal cancer, colorectal benign disease and healthy controls. Proteome Sci. 2010;8:16.
    [66]Xue A, Scarlett CJ, Chung L, et al. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Br J Cancer.2010;103:391-400.
    [67]Atahan K, Kupeli H, Gur S, et al. The value of serum biomarkers (Bc1, Bc2, Bc3) in the diagnosis of early breast cancer.Int J Med Sci.2011;8:148-155.
    [1]蒋知俭.医学统计学.北京:人民卫生出版社.1997.281-299.
    [2]余松林.医学统计学.北京:人民卫生出版社.2002.
    [3]宇传华,颜杰编著Excel与数据分析.北京:电子工业出版社,2002.
    [4]张文彤主编,世界优秀统计工具SPSS 11.0统计分析教程.北京:北京希望电子出版社,2002.
    [5]易丹辉主编,Statistica 6.0应用指南.北京:中国统计出版社,2002.
    [6]张阳德.生物信息学.北京:科学出版社,2004.237-247.
    [7]Cass R., DePietro J.1998. Computational intelligence methods for process discovery. Artificial intelligence,11:675-681.
    [8]边肇祺,张学工等编.模式识别(第二版).北京:清华大学出版社,2000.
    [9]Duda RO, Hart PE. Pattern Classification and Scene Analysis. NewYork:John wiley & sons.1973.
    [10]莫宏伟,金鸿章,王科俊,2002.基于生物体系的计算智能研究,信息技术,2:2 5-28.
    [11]Editorial.Computationalin telligencein bioinformatics.BioSystems.2003;72:1-4
    [12]Pao, Y.H. A computational intelligence perspective on process monitoring and optimization. Annual Review in Automatic Programming.1994; 19:25-30.
    [13]丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,1998.1-15,45-73.
    [14]Hagan, M.T., Demuth, H.B., Beale, M.H.,2002神经网络设计,(戴葵译).机械工业出版社,北京
    [15]楼顺天,施阳,1999.基于MATLAB的系统分析与设计—神经网络.西安电子科技大学出版社,西安.
    [16]飞思科技产品研发中心Matlab 6.5辅助神经网络分析与设计.北京:北京电子工业出版社,2003.
    [17]Valadimir N. Vapnik统计学习理论的本质.北京:清华大学出版社,2000.
    [18]J.P.Marques de Sa模式识别——原理、方法及应用.北京:清华大学出版社,2002.203-211.
    [19]边肇祺,张学工,等.模式识别.第二版.北京:清华大学出版社,2000.
    [20]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26:32-42.
    [21]Nello Cristianini & Jogn Shawe Jaylor. An Introduction to Support Vector Machines and other Kernel- based learning method.Cambridge University. Press 2000.
    [22]valadimir N. Vapnik著张学工译.统计学习理论的本质.北京:清华大学出版社,2000.
    [23]Krzanowski, W.J., Principles of Multivariate Analysis, Oxford University Press, Oxford,1988.
    [24]Seber, G.A.F., Multivariate Observations, Wiley, New York,1984.
    [25]Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol,2003,7(1): 55-63.
    [1]Hanrahan EO, Hennessy BT and Valero V. Neoadjuvant systemic therapy for breast cancer:an overview and review of recent clinical trials. Expert Opin Pharmacother.2005; 6:1477-1491.
    [2]Kaufmann M, von Minckwitz G and Rody A. Preoperative (neoadjuvant) systemic treatment of breast cancer. Breast.2005; 14:576-581.
    [3]Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights:international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol. 2005;16:1569-1583.
    [4]Mauri D, Pavlidis N, Ioarmidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer:A meta-analysis. J Natl Cancer hast.2005,97: 188-194.
    [51 Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer:findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 1997; 15:2483-2493.
    [6]Kuerer HM, Newman LA, Smith TL, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxombicin-based neoadjuvant chemotherapy. J Clin Oncol 1999; 17: 460-469.
    [7]Mamounas EP. NSABP protocol B-27. Preoperative doxombicin plus cyclophosphamide followed by preoperative or postoperative docetaxel. Oncology (Huntingt)1997; 11:37-40.
    [8]SchollSM, Fourquet A, Asselain B, et al. Neoadjuvant versus adjuvant chemotherapy in premenopausal patients with tumours considered too large for breast conserving surgery:preliminary results of a randomized trial:S6. Eur J Cancer 1994; 5:645-652.
    [9]Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. Pharmacogenomics.2000; 1:395-416.
    [10]Issaq HJ, Veenstra TD, Conrads TP, et al. The SELDI-TOF MS approach to proteomics:protein profiling and biomarker identification. Biochem Biophys Res Commun.2002,292:587-592.
    [11]陈主初,梁宋平.肿瘤蛋白质组学.长沙:湖南科学技术出版社,2002.49-52,168-171.
    [12]胡跃,张苏展.蛋白质芯片技术的研究及应用现状.浙江大学学报(医学版),2005;34:89-92.
    [13]Chen YD, Zheng S, Yu JK, et al. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin Cancer Res, 2004; 10:8380-8385.
    [14]Fan Y, Wang J, Yang Y, et al. Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol.2010; 136:1243-1254.
    [15]Liu M, Li CF, Chen HS, et al. Differential expression of proteomics models of colorectal cancer, colorectal benign disease and healthy controls. Proteome Sci. 2010;8:16.
    [16]Xue A, Scarlett CJ, Chung L, et al. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Br J Cancer.2010;103:391-400.
    [17]Atahan K, Kupeli H, Gur S, et al. The value of serum biomarkers (Bc1, Bc2, Bc3) in the diagnosis of early breast cancer.Int J Med Sci.2011;8:148-155.
    [18]Fisher B, Bryant J, Wolmark N, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol.1998; 16: 2672-2685.
    [19]Estevez LG, Gradishar WJ. Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res.2004; 10:3249-3261.
    [20]Amat S, Abrial C, Penault-Llorca F, et al. High prognostic significance of residual disease after neoadjuvant chemotherapy:a retrospective study in 710 patients with operable breast cancer. Breast Cancer Res Treat.2005; 94:255-263.
    [21]Burcombe RJ, Makris A, Richman PI, et al. Evaluation of ER, PgR, HER-2 and Ki-67 as predictors of response to neoadjuvant anthracycline chemotherapy for operable breast cancer. Br J Cancer.2005; 92:147-155.
    [22]Bozzetti C, Musolino A, Camisa R, et al. Evaluation of HER-2/neu amplification and other biological markers as predictors of response to neoadjuvant anthracycline-based chemotherapy in primary breast cancer:the role of anthracycline dose intensity. Am J Clin Oncol.2006; 29:171-177.
    [23]Kariya S, Ogawa Y, Nishioka A, et al. Relationship between hormonal receptors, HER-2, p53 protein, Bcl-2, and MIB-1 status and the antitumor effects of neoadjuvant anthracycline-based chemotherapy in invasive breast cancer patients. Radiat Med.2005; 23:189-194.
    [24]Learn PA, Yeh IT, McNutt M, et al. HER-2/neu expression as a predictor of response to neoadjuvant docetaxel in patients with operable breast carcinoma. Cancer.2005; 103:2252-2260.
    [25]Iwao-Koizumi K, Matoba R et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol.2005; 23:422-431.
    [26]Gianni L, Zambetti M, Clark K, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J clin Oncol.2005; 23:7265-7277.
    [27]James K, Eisenhauer E, Christian M, et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst.1999; 91:523-528.
    [28]Therasse P. Measuring the clinical response. What does it mean? Eur J Cancer. 2002;28:1817-1823.
    [29]夏其昌主编.蛋白质化学研究技术与进展.北京:科学出版社,1997.
    [30]Li JN, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem.2002, 48:1296-1304.
    [31]Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine[J]. Am J Pathol,2001,158:1491-1502.
    [32]Adam B, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res.2002;62:3609-3614.
    [33]Poon TCW, Yip TT, Chan ATC, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem.2003;49:752-760.
    [34]胡跃,张苏展,余捷凯,等.乳腺癌患者血清蛋白质指纹图谱检测及其临床意义.中华检验医学杂志.2004;27:646-648.
    [1]Ellis PA, Smith IE, McCarthy K, et al. Preoperative chemotherapy induces apoptosis in early breast cancer. Lancet.1997;349:849.
    [2]Chen ST, Pan TL, Tsai YC, et al. Proteomics reveals protein profile changes in doxorubicin-treated MCF-7 human breast cancer cells. Cance Lett. 2002;181:95-107.
    [3]Liotta LA, Ferrari M, Petricoin E. Clinical proteomics:written in blood. Nature.2003;425:905.
    [4]Conrads TP, Zhou M, Petricoin EF 3rd, etal. Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn.2003;3:411-420.
    [5]Demiray M, Ulukaya EE, Arslan M, et al. Response to neoadjuvant chemotherapy in breast cancer could be predictable by measuring a novel serum apoptosis product, caspase-cleaved cytokeratin 18:a prospective pilot study. Cancer Invest.2006,24:669-676.
    [6]Mazouni C, Hall A, Broglio K, et al. Kinetics of serum HER-2/neu changes in patients with HER-2-positive primary breast cancer after initiation of primary chemotherapy. Cancer,2007,109(3):496-501.
    [7]Liu M, Li CF, Chen HS, et al. Differential expression of proteomics models of colorectal cancer, colorectal benign disease and healthy controls. Proteome Sci.2010;8:16.
    [8]Xue A, Scarlett CJ, Chung L, et al. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Br J Cancer.2010; 103:391-400.
    [9]Su Y, Shen J, Qian H, et al. Diagnosis of gastric cancer using decision tree classification of mass spectral data. Cancer Sci.2006;98:37-43.
    [10]Fan Y, Wang J, Yang Y, et al. Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol.2010; 136:1243-1254.
    [11]Bell D, McDermott BJ. Intermedin (adrenomedullin-2):a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J Pharmacol.2008;153 Suppl 1:S247-62. Epub 2007 Oct 29.
    [12]Robert SS,Jr., Lin G, Grant B, et al. Intermedin is a new angiogenic growth factor. Am J Physiol Heart Circ Physiol.2009; 297:1040-1047.
    [13]Zudaire E, Martinez A, Cuttitta F. Adrenomedullin and cancer. Regulatory Peptides.2003; 112:175-183.
    [14]Garcia MA, Martin-Santamaria S, de Pascual-Teresa B, et al. Adrenomedullin: a new and promising target for drug discovery. Expert Opinionon Therapeutic Targets.2006; 10:303-317.
    [15]Nakamura M, Han B, Nunobiki O, Kakudo K. Adrenomedullin:a tumor progression factor via angiogenic control. Current Cancer Drug Targets. 2006;6:635-643.
    [16]Nikitenko LL, Fox SB, Kehoe S, et al. Adrenomedullin and tumour angiogenesis. British Journal of Cancer.2006;94:1-7.
    [17]Takeshi Niki, Sachiyo Izumi, Yumiko Saegusa, et al. MSSP promotes ras/myc cooperative cell transforming activity by binding to c-Myc. Genesto Cells. 2000;5:127-141.
    [18]Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology.2002; 122:531-544.
    [19]Boushey RP, Yusta B, DruckerDJ. Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res.2001;61:687-693.
    [20]Tavakkolizadeh A, Shen R, Abraham P, et al. Glucagon-like peptide2:a new treatment for chemotherapy-induced enteritis. J Surg Res.2000;91:77-82.
    [21]Martindale JL, Holbrook NJ. Cellular response to oxidative stress:signaling for suicide and survival, J Cell Physiol.2002; 192:1-15.
    [22]Bedard K, Krause K. The Nox family of ROS-generating NADPH oxidase: physigology and pathophysiology. Physiol Rev.2007;87:245-313.
    [23]Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002;84:131-141.
    [24]Chung YM, Kim JS, Yoo YD. A novel protein, Romol, induces ROS production in the mitochondria. Biochem Biophys Res Commun 2006; 347: 649-655.
    [25]Hwang IT, Chung YM, Kim JJ, et al. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem Biophys Res Commun 2007;359:304-310.
    [1]Jemal A, Siegel R, Ward E,et al. Cancer statistics 2009. CA Cancer J Clin 2009;59:225-249.
    [2]李连弟,饶克勤,张思维等.中国12市县1993年-1997年肿瘤发病和死亡登记资料统计分析.中国肿瘤2002:11:497—507.
    [3]上海市肿瘤研究所流行病学研究室.2000年上海市恶性肿瘤发病率.肿瘤.2003:23(6):532.
    [4]Fisher ER, Anderson S, Tan-Chiu E, et al. Fifteen-year prognostic discriminants for invasive breast carcinoma:National Surgical Adjuvant Breast and Bowel Project Protocol-06. Cancer.2001;91:1679-87.
    [5]Wilke LG, McCall LM, Posther KE,et al. Surgical complications associated with sentinel lymph node biopsy:results from a prospective international cooperative group trial. Ann Surg Oncol.2006;13:491-500.
    [6]Giuliano AE, Jones RC, Brennan M, Statman R. Sentinel lymphadenectomy in breast cancer. J Clin Oncol.1997; 15:2345-2350.
    [7]Changsri C, Prakash S, Sandweiss L, Bose S. Prediction of additional axillary metastasis of breast cancer following sentinel lymph node surgery. Breast J. 2004; 10:392-397.
    [81 Chu KU, Turner RR, Hansen NM, et al. Sentinel node metastasis in patients with breast carcinoma accurately predicts immunohisto-chemically detectable nonsentinel node metastasis. Ann Surg Oncol.1999;6:756-761.
    [9]Veronesi U, Paganelli G, Viale G, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med.2003;349:546-553.
    [10]Cazares LH, Adam BL, Ward MD, et al. Normal, benign, preneoplastic, and malignant prostate cell shave distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res.2002;8:2541-2552.
    [11]Duffy MJ. Predictive markers in breast and other cancers:a review. Clin Chem.2005;51:494-503.
    [12]Bast RC, Jr., Ravdin P, Hayes DF, et al.2000 update of recommendations for the use of tumor markers in breast and colorectal cancer:clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001; 19:1865-1878.
    [13]Dwek MV, Alaiya AA. Proteome analysis enables separate clustering of normal breast, benign breast, and breast cancer tissues. Br J Cancer. 2003;89:305-307.
    [14]Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem.2002;48:1296-1304.
    [15]Srinivas PR, Verma M, Zhao Y, Srivastava S. Proteomics for cancer biomarker discovery. Clin Chem.2002;48:1160-1169.
    [16]Wulfkuhle JD, McLean KC, Paweletz CP, et al. New approaches to proteomic analysis of breast cancer. Proteomics 2001; 1:1205-1215.
    [17]Fan Y, Wang J, Yang Y, et al. Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol.2010; 136:1243-1254.
    [18]Liu M, Li CF, Chen HS, et al. Differential expression of proteomics models of colorectal cancer, colorectal benign disease and healthy controls. Proteome Sci.2010;8:16.
    [19]Xue A, Scarlett CJ, Chung L, et al. Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Br J Cancer.2010; 103: 391-400.
    [20]Lelievre L, Houvenaeghel G, Buttarelli M, et al. Value o f the sentinel lymph node procedure in patients with large size breast cancer. Ann Surg Oncol. 2007,14:621-626.
    [21]Engel J, Lebeau A, Sauer H, et al. Are we wasting our time with the sentinel technique? Fifteen reasons to stop axilla dissection. Breast.2006,15:452-455.
    [22]Singletary S E. Breast cancer surgery for the 21 (st) century:the continuing evolution of minimally invasive treatments. Minerva Chir.2006,61:333-352.
    123] Patani NR, Dwek MV, Douek M. Predictors of axillary lymph node metastasis in breast cancer:a systematic review. Eur J Surg Oncol.2007; 33: 409-419.
    [24]Santamaria G, Velasco M, Farre X, et al. Power Doppler sonography of invasive breast carcinoma:does tumor vascularization contribute to prediction of axillary status? Radiology.2005;234:374-380.
    [25]Stadnik T W, Everaert H, Makkat S, et al. Breast imaging Preoperative breast cancer staging:comparison of USPIO-enhanced MR imaging and 18F-fluorodeoxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging- initial findings. Eur Radiol. 2006;16:2153-2160.
    [26]Chung A, Liou D, Karlan S, et al. Preoperative FDG-PET for axillary metastases in patients with breast cancer. Arch Surg.2006; 141:783-789.
    [27]Lumachi F, Tregnaghi A, Ferretti G, et al. Accuracy of ultrasonography and 99mTc-sestamibi scintimammography for assessing axillary lymph node status in breast cancer patients:a prospective study. Eur J Surg Oncol. 2006;32:933-936.
    [28]Susinia T, Norib J, Vanzib E, et al. Axillary ultrasound scanning in the follow-up of breast cancer patients undergoing sentinel node biopsy. Breast. 2007;16:190-196.
    [29]Patel HJ, Ramkissoon SH, Patel PS, Rameshwar P. Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Proc Natl Acad Sci USA.2005; 102:17436-17441.
    [30]Corcoran KE, Trzaska KA, Fernandes H, et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS ONE.2008;3:e2563.
    [31]Hennig IM, Laissue JA, Horisberger U, Reubi JC. Substance-P receptors in human primary neoplasms:Tumoral and vascular localization. Int J Cancer. 1995; 61:786-792.
    [32]Taborga M, Corcoran KE. Fernandes N, et al. G-coupled protein receptors and breast cancer progression:Potential drug targets. Mini Rev Med Chem. 2007;7:245-251.
    [1]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin. 2008;58:71-96.
    [2]Early Breast Cancer Trialists'Collaborative Group. Polychemotherapy for early breast cancer:an overview of the randomised trials. Lancet 1998;352:930-942.
    [3]Reis-Filho JS, Lakhani SR. The diagnosis and management of pre-invasive breast disease:genetic alterations in pre-invasive lesions.Breast Cancer Res. 2003; 5:313-319.
    [4]Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.Lancet.2005; 365:671-679.
    [5]Banks RE, Dunn MJ,Hochstrasser DF, et al. Proteomics:new perspectives,new biomedical opportunities.Lancet.2000;356:1749-1756.
    [6]Aebersold R, Anderson L,Caprioli R, et al. Perspective:a program to improve protein biomarker discovery for cancer. J Proteome Res.2005; 4:1104-1109.
    [7]Hondermarck H, Vercoutter-Edouart AS, Revillion F, et al. Proteomics of breast cancer for marker discovery and signal pathway profiling.Proteomics. 2001;1:1216-1232.
    [8]Simpson RJ, Bernhard OK, Greening DW, et al. Proteo-mics-driven cancer biomarker discovery:looking to the future.Curr Opin Chem Biol.2008; 12:72-77.
    [9]Nakagawa T, Huang SK, Martinez SR, et al. Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis. Cancer Res 2006;66:11825-11830.
    [10]Traub F, Feist H, Kreipe HH, et al. SELDI-MS-based expression profiling of ductal invasive and lobular invasive human breast carcinomas.Pathol Res Pract.2005; 201:763-770.
    [11]Cowherd SM, Espina VA, Petricoin EF Ⅲ, et al. Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays.Clin Breast Cancer.2004; 5:385-392.
    [12]Umar A, Dalebout JC, Timmermans AM, et al. Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry.Proteomics.2005; 5:2680-2688.
    [13]Sanders ME, Dias EC, Xu BJ, et al. Differentiating proteomic biomarkers in breast cancer by laser capture microdissection and MALDI MS.J Proteome Res.2008; 7:1500-1507.
    [14]Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers.Nature.2008; 452:571-579.
    [15]Petricoin EF, Zoon KC, Kohn EC, et al. Clinical proteomics:translating benchside promise into bedside reality.Nat Rev Drug Discov.2002; 1:683-695.
    [16]Conrads TP, Zhou M, Petricoin EF Ⅲ, et al. Cancer diagnosis using proteomic patterns.Expert Rev Mol Diagn.2003; 3:411-420.
    [17]Grizzle WE, Semmes OJ, Bigbee WL, et al. The need from review and understanding of SELDI/MALDI mass spectroscopy data prior to analysis. Cancer Inform.2005; 1:86-97.
    [18]Good DM, Thongboonkerd V, Novak J, et al. Body fluid proteomics for biomarker discovery:lessons from the past hold the key to success in the future.J Proteome Res.2007; 6:4549-4555.
    [19]Callesen AK, Vach W, Jorgensen PE, et al. Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer:a case-control study. J Proteome Res.2008; 7:1419-1426.
    [20]Shin S, Cazares L, Schneider H, et al. Serum biomarkers to differentiate benign and malignant mammographic lesions. J Am Coll Surg 2007;204:1065-1071.
    [21]Becker S, Cazares LH, Watson P, et al. Surfaced-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer.Ann Surg Oncol. 2004; 11:907-914.
    [22]Gast MC, Bonfrer JM, van Dulken EJ, et al. SELDI-TOF MS serum protein profiles in breast cancer:assessment of robustness and validity. Cancer Biomark.2006; 2:235-248.
    [23]Vlahou A, Laronga C, Wilson L, et al. A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer.2003; 4:203-209.
    [24]Laronga C, Becker S, Watson P, et al. SELDI-TOF serum profiling for prognostic and diagnostic classification of breast cancers. Dis Markers 2003; 19:229-238
    [251 Belluco C, Petricoin EF, Mammano E, et al. Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer. Ann Surg Oncol.2007; 14:2470-2476.
    [26]Li J, Orlandi R, White CN, et al. Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin Chem(Kyoto). 2005;51:2229-2235.
    [27]Mathelin C, Cromer A, Wendling C, et al. Serum biomarkers for detection of breast cancers:a prospective study. Breast Cancer Res Treat.2006;96:83-90.
    [28]Goncalves A, Esterni B, Bertucci F, et al. Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene.2006; 25:981-989.
    [29]Song J, Patel M, Rosenzweig CN, et al. Quantification of fragments of human serum inter-alpha-trypsin inhibitor heavy chain 4 by a surface-enhanced laser desorption/ionization-based immunoassay. Clin Chem.2006; 52:1045-1053.
    [30]Villanueva J, Shaffer DR, Philip J, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest.2006; 116:271-284.
    [31]Fung ET, Yip TT, Lomas L, et al. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer. 2005; 115:783-789.
    [32]Shi Q, Harris LN, Lu X, et al. Declining plasma fibrinogen alpha fragment identifies HER2-positive breast cancer patients and reverts to normal levels after surgery. J Proteome Res.2006;5:2947-2955.
    [33]He J, Gornbein J, Shen D, et al. Detection of breast cancer biomarkers in nipple aspirate fluid by SELDI-TOF and their identification by combined liquid chromatography-tandem mass spectrometry. Int J Oncol.2007; 30:145-154.
    [34]Mendrinos S, Nolen JD, Styblo T, et al. Cytologic findings and protein expression profiles associated with ductal carcinoma of the breast in ductal lavage specimens using surface-enhanced laser desorption and ionization-time of flight mass spectrometry. Cancer.2005; 105:178-183.
    [35]Li J, Zhao J, Yu X, et al. Identification of biomarkers for breast cancer in nipple aspiration and ductal lavage fluid.Clin Cancer Res.2005; 11:8312-8320.
    [36]Sauter ER, Shan S, Hewett JE, et al. Proteomic analysis of nipple aspirate fluid using SELDI-TOF-MS. Int J Cancer.2005; 114:791-796.
    [37]Noble JL, Dua RS, Coulton GR, et al. A comparative proteinomic analysis of nipple aspiration fluid from healthy women and women with breast cancer.Eur J Cancer.2007; 43:2315-2320.
    [38]Streckfus CF, Bigler LR, Zwick M. The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva:a feasibility study. J Oral Pathol Med.2006; 35:292-300.
    [39]Ricolleau G, Charbonnel C, Lode L, et al. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics.2006;6:1963-1975.
    [40]Goncalves A, Charafe-Jauffret E, Bertucci F, et al. Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics.2008; 7:1420-1433.
    [41]Dekker LJ, Boogerd W, Stockhammer G, et al. MALDI-TOF mass spectrometry analysis of cerebrospinal fluid tryptic peptide profiles to diagnose leptomeningeal metastases in patients with breast cancer.Mol Cell Proteomics.2005; 4:1341-1349.
    [42]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA.2001; 98:10869-10874.
    [43]Brozkova K, Budinska E, Bouchal P, et al. Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression. Breast Cancer Res.2008; 10:R48
    [44]Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell.2006; 10:515-527.
    [45]Mian S, Ball G, Hornbuckle J, et al. A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics.2003; 3:1725-1737.
    [46]Dowling P, Maurya P, Meleady P, et al. Purification and identification of a 7.6-kDa protein in media conditioned by superinvasive cancer cells. Anticancer Res.2007; 27:1309-1317.
    [47]Heike Y, Hosokawa M, Osumi S, et al. Identification of serum proteins related to adverse effects induced by docetaxel infusion from protein expression profiles of serum using SELDI ProteinChip system. Anticancer Res.2005; 25:1197-1203.
    [48]Pusztai L, Gregory BW, Baggerly KA, et al. Pharmaco-proteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer. 2004; 100:1814-1822.
    [49]Habermann JK, Roblick UJ, Luke BT, et al. Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology.2006; 131:1020-1029.
    [50]Zhang Z, Bast RC Jr, Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 2004;64:5882-5890.
    [51]Bank U, Kruger S, Langner J, et al. Review:peptidases and peptidase inhibitors in the pathogenesis of diseases.Disturbances in the ubiquitin-mediated proteolytic system.Protease-antipro-tease imbalance in inflammatory reactions. Role of cathepsins in tumour progression. Adv Exp Med Biol.2000; 477:349-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700