基于芘的蛋白质荧光探针对的构筑及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们成功的构筑了小肽含芘荧光探针对,用于目标蛋白质的标记和检测。首先,我们成功的设计并合成了一种针对蜂毒素有特异性识别作用的荧光探针——芘丁酰基色氨酸(PLT;1),它在水溶液中对蜂毒素表现出很高的选择性和识别灵敏度(~0.50μM)。继而,我们引入芘丁酰基苯丙氨酸(PLP;2)和芘丁酰基谷氨酸(PLG;3)两个新型探针分子,并对比研究了它们与蜂毒素的荧光识别。结果表明探针分子1中的色氨酸基团在其与蜂毒素识别及形成excimer的过程中起着重要的作用。
     进而,为了更深入的研究1与蜂毒素的作用模式以及有效构筑小肽荧光探针对,我们对蜂毒素的氨基酸序列进行截取和定位突变,设计、合成并且表征了蜂毒素的几个类似肽Mlt-C-7、Mlt-C-9、Mlt-C-13、MltW19A-C-13和Mlt-N-14,并分别研究了1与它们的识别模式和作用机理。结果表明,小肽中KRKR碱性残基模块和Trp19的参与是诱导1产生GSD(Ground State Dimer)的两个必要条件。
     进一步,我们选取蜂毒素分子中14-26位氨基酸序列PALISWIKRKRQQ作为小肽类标签,用于构筑蛋白质荧光探针识别对,通过基因工程的方法对GST蛋白质进行标记,继而研究了1与小肽标记的GST蛋白的识别。结果表明,作为标签的Mlt-C-13能诱导1形成GSD,同时1对被标记的GST蛋白本身几乎没有作用。因此,Mlt-C-13和1可以作为一对小肽/荧光探针识别对,用于标记蛋白质,以进行荧光识别和检测。
     为进一步拓展探针1在蛋白质识别中的应用,最后我们对人类乳突病毒(Human Papillomavirus;HPV)表面衣壳蛋白L1、L2的氨基酸序列进行截取,设计、合成并且表征了一系列富含碱性氨基酸的小肽,并研究了它们与1的识别作用,以期进一步通过1对不同亚型的HPV病毒进行识别。结果表明HPV-16 L2CtW与1的相互作用产生了类似1/melittin的结果,即它也可以使1产生GSD,这表明1具有潜在的直接检测HPV病毒的可能。
     综上所述,我们基于探针分子芘丁酰基色氨酸与蜂毒素之间的特异性识别和相互作用,成功构筑了一个PALISWIKRKRQQ/PLT识别对,作为独特的蛋白质标记和识别体系。该识别体系在研究蛋白质的结构及功能、蛋白质分子之间的相互作用等方面都将具有一定的应用价值。
To make sensitive and specific biomolecular sensors is crucial for characterization of biomolecular interactions. It is also important for disease diagnostics, environmental monitoring and quality control in food production. Recently, fluorescence probes for proteins have been widely used to quickly detect the existence of protein and/or dynamic aspects of protein structure. The use of fluorescent probes has apparent advantages over other methods in sensitivity, selectivity and performance. In addition, fluorescent probes can be imaged in vivo, even in single living cells.
     Melittin is a cationic hemolytic peptide composed of 26 amino acids (NH2-GIGAVLKVLTTGLPALISWIKRKRQQ-CONH2). It is the main toxic component in the venom of the European honey bee. Melittin is water soluble and has the ability to spontaneously associate with natural and artificial membranes because of the amphiphilic property. So it is widely used as a convenient model for monitoring lipid-protein interactions in membranes, and also employed as a paradigm for protein-lipid interaction.
     We designed and synthesized N-[4(1-pyrene)-butyroyl]-L-tryptophan (PLT; 1) for recognizing melittin by combining a pyrene-containing fluorophore, 4-(1-pyrenyl)-butyric acid, with a tryptophan (recognizing group). 1 exhibited high sensitivity and selectivity for melittin in aqueous solution with the responded signal of specific excimer of pyrene and very low detected limit (0.5μM). This can be used in direct dectecting melittin in aqueous.
     Initial experiment was performed to detect whether an interaction of 1 and melittin occurred, which was proved by the changes in the emission max both for Trp in melittin and pyrene in 1. The interaction of 1 with melittin was also determined by measuring the fluorescence emission of 1 when bound to melittin. When excited by 340 nm, 1 alone had strong emission bands at 376 and 396 nm attributing to pyrene monomer. Further, the addition of 0.1 equivalent melittin to the solution containing 1 showed a new peak around 475 nm that obviously increased with the gradual addition of melittin. Meanwhile, a gradual decrease of emission intensity in the region of 370-400 nm was also clearly observed. We use the value of the fluorescence intensity ratio I475/I376 as a function of the concentration of melittin to demonstrate the responsive ability of 1 to melittin. 0.5μM melittin can be detected easily with a value of I475/I376 close to 0.1. When the concentration of melittin was increased up to 2.5μM, the value of I475/I376 became constant, suggesting a saturated binding between 1 and melittin where 4 mol of 1 may be bound per mol of melittin. Such a proposed ratio was further proved by the method of continuous variation (Job’s plot).
     It is proposed that an electrostatic interaction can be formed between melittin and 1 as the involved basic sequence in melittin (K and R) in former and carboxylic group in later, and therefore induces the formation of ground-state dimmer (GSD) of pyrene at its surface. If such a proposal is correct, similar phenomenon should be occur at the surface of other proteins with high pI as melittin (for example, lysozyme, ribonuclease A and cytochrome C) and do not occur for the proteins with middle pI (as hemoglobin, myoglobin) or low pI (BSA, insulin) at identical neutral condition. To test the recognize mechanism, we use other proteins such as BSA, ribonuclease A, lysozyme,hemoglobin and Cytochrome C (sorted by pI) to test the interaction with 1. But all these proteins can not induce 1 to form ground-state dimer (GSD). Then, we adapt the conformation of melittin by adjusting the salt or pH. We found the change in secondary structure have no effect in recognizing. We also designed and synthesized the analog of 1, N-[4(1-pyrene) butyroyl]- L -phenylalanine (PLP; 2) and N-[4(1-pyrene)-butyroyl]-L-glutamic acid (PLG; 3), but after the displacement of the tryptophan, melittin can not induce 2 or 3 to form GSD, this means that the indole ring of tryptophan is very important in recognizing.
     In order to get the peptide sequences which can interact with 1, we designed several peptides, such as N-terminal of melittin (from 1 to 14 aa), C-terminal of melittin (14-26 aa), the positive charge region of melittin (20-26 aa) and so on. Data shows that only the charge interaction can not induce 1 to form GSD. The Trp19 in melittin showed very important role to induce 1 to GSD. The mutant C-terminal 13 aa peptide of melittin in Trp19 to Ala19 can not induce 1 to GSD. The binding of adjacent -KRKR- region in melittin to 1 may facilitate an ideal opportunity for pyrene GSD formation between four 1 at melittin surface. A careful investigation of 1 binding to peptides of melittin indicated two structural requirements for these changes in fluorescence. First, an ionic interaction of the anion in 1 and Arg/Lys residues (close to C-terminal). Second, a complex of the peptide and 1 provides the necessary“structured”environment for the formation of pyrene GSD.
     We measured CD spectra to test if the addition of 1 to melittin can induce a conformation change of melittin or other peptides. Observed from the spectra, at the low concentration of such peptides, it showed that the addition of 1 to these peptides does not change the secondary structure.
     Then we designed, expressed and purified the GST-Melittin-C-13 by E.coli expression system and found the expressed protein can induce 1 to GSD. The results suggested that Mlt-C-13 can be used as a tag for target protein detection, with the further assistence of 1. Such a study using 1 as a probe model provided a foundation for further biophysical examination of recognition and mechanisms clarify between it and proteins.
     We also designed some analogs such as N-terminal and C-terminal of HPV16-L1 and HPV16-L2 to test if these peptides can interact with 1. Data shows that only the HPV-16 L2CtW can induce 1 to form GSD, which means 1 may be used as a fluorescence probe to directly detect HPV.
     In conclusion, we use a single amino acid linked with pyrene as a biosensor for recognition of melittin by monitoring the pyrene GSD fluorescence peak. Sub-micromolar level (< 0.5μM) of melittin can be detected easily at neutral pH in aqueous. Furthermore, the specific region of PALISWIRKRKQQ in the C-terminal of melittin induced the formation of pyrene GSD efficient, such a region can be used as a labeling peptide to target protein and further detection by using 1.
引文
[1] HINNER M J. EMBL Chemical Biology Meeting 2008: New Views and Interviews [J]. ACS Chemical Biology, 2009, 4: 13-17.
    [2] WELLS W. Chemical biology: the promise, and confusion, of adolescence [J]. Chem. Biol., 1999, 6: R209-211.
    [3] WALDMANN H, FAMULOK M. Chemistry meets biology [J]. ChemBioChem, 2001, 2: 3-6.
    [4] PRESCHER J A, BERTOZZI C R. Chemistry in living systems [J]. Nat Chem Biol, 2005, 1: 13-21.
    [5] MORRISON K L, WEISS G A. The origins of chemical biology [J]. Nat Chem Biol, 2006, 2: 3-6.
    [6] GRABOWSKI K, BARINGHAUS K H, SCHNEIDER G. Scaffold diversity of natural products: inspiration for combinatorial library design [J]. Nat Prod Rep, 2008, 25: 892-904.
    [7] STURM M B, TYLER P C, EVANS G B, et al. Transition state analogues rescue ribosomes from saporin-L1 ribosome inactivating protein [J]. Biochemistry, 2009, 48: 9941-9948.
    [8] DOVE A. High-throughput screening goes to school [J]. Nat Meth, 2007, 4: 523-532.
    [9] GRIBBON P, SEWING A. High-throughput drug discovery: what can we expect from HTS? [J]. Drug Discov Today, 2005, 10: 17-22.
    [10] HOPKINS A L, WITTY M J, NWAKA S. Mission possible [J]. Nature, 2007, 449: 166-169.
    [11] PAYNE D J, GWYNN M N, HOLMES D J, et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery [J]. Nat Rev Drug Discov, 2007, 6: 29-40.
    [12] VERDINE G L. Drugging the "undruggable" [J]. Harvey Lect, 2006, 102: 1-15.
    [13] RUTHENBURG A J, WANG W, GRAYBOSCH D M, et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex [J]. Nat Struct Mol Biol, 2006, 13: 704-712.
    [14] VERDINE G L, WALENSKY L D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members [J]. Clin Cancer Res, 2007, 13: 7264-7270.
    [15] KUTCHUKIAN P S, YANG J S, VERDINE G L, et al. All-atom model for stabilization of alpha-helical structure in peptides by hydrocarbon staples [J]. J Am Chem Soc, 2009, 131: 4622-4627.
    [16] PLUMMER K A, CAROTHERS J M, YOSHIMURA M, et al. In vitro selection of RNA aptamers against a composite small molecule-protein surface [J]. Nucleic Acids Res, 2005, 33: 5602-5610.
    [17] URANO Y, ASANUMA D, HAMA Y, et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes [J]. Nat Med, 2009, 15: 104-109.
    [18] BRUNSVELD L, KUHLMANN J, ALEXANDROV K, et al. Lipidated ras and rab peptides and proteins--synthesis, structure, and function [J]. Angew Chem Int Ed Engl, 2006, 45: 6622-6646.
    [19] GELB M H, BRUNSVELD L, HRYCYNA C A, et al. Therapeutic intervention based on protein prenylation and associated modifications [J]. Nat Chem Biol, 2006, 2: 518-528.
    [20] BRUNSVELD L, KUHLMANN J, WALDMANN H. Synthesis of palmitoylated Ras-peptides and -proteins [J]. Methods, 2006, 40: 151-165.
    [21] WONG C H. Protein glycosylation: new challenges and opportunities [J]. J Org Chem, 2005, 70: 4219-4225.
    [22] FLAVELL R R, HUSE M, GOGER M, et al. Efficient semisynthesis of a tetraphosphorylated analogue of the Type I TGFbeta receptor [J]. Org Lett, 2002, 4: 165-168.
    [23] GUTSMIEDL K, WIRGES C T, EHMKE V, et al. Copper-free "click" modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition [J]. Org Lett, 2009, 11: 2405-2408.
    [24] LUDWIG C, SCHWARZER D, MOOTZ H D. Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction [J]. J Biol Chem, 2008, 283: 25264-25272.
    [25] PRESTWICH G D. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery [J]. Acc Chem Res, 2008, 41: 139-148.
    [26] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc., 1977, 99: 5215-5217.
    [27] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering [J]. Chem. Soc. Rev., 1998, 27: 241-250.
    [28] ALTSCHUH D, ONCUL S, DEMCHENKO A P. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors [J]. J Mol Recognit, 2006, 19: 459-477.
    [29] KNEMEYER J P, MARME N, SAUER M. Probes for detection of specific DNA sequences at the single-molecule level [J]. Anal Chem, 2000, 72: 3717-3724.
    [30] MATOUSCHEK A, KELLIS J T, JR., SERRANO L, et al. Mapping the transition state and pathway of protein folding by protein engineering [J]. Nature, 1989, 340: 122-126.
    [31] SERRANO L, KELLIS J T, JR., CANN P, et al. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability [J]. J Mol Biol, 1992, 224: 783-804.
    [32] SERRANO L, MATOUSCHEK A, FERSHT A R. The folding of an enzyme. VI. The folding pathway of barnase: comparison with theoretical models [J]. J Mol Biol, 1992, 224: 847-859.
    [33] MATOUSCHEK A, SERRANO L, MEIERING E M, et al. The folding of an enzyme. V. H/2H exchange-nuclear magnetic resonance studies on the folding pathway of barnase: complementarity to and agreement with protein engineering studies [J]. J Mol Biol, 1992, 224: 837-845.
    [34] MATOUSCHEK A, SERRANO L, FERSHT A R. The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure [J]. J Mol Biol, 1992, 224: 819-835.
    [35] SERRANO L, MATOUSCHEK A, FERSHT A R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure [J]. J Mol Biol, 1992, 224: 805-818.
    [36] FERSHT A R, MATOUSCHEK A, SERRANO L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding [J]. J Mol Biol, 1992, 224: 771-782.
    [37] DECLERCK N, DUTARTRE H, RECEVEUR V, et al. Dimer stabilization upon activation of the transcriptional antiterminator LicT [J]. J Mol Biol, 2001, 314: 671-681.
    [38] PIERCE D W, BOXER S G. Stark effect spectroscopy of tryptophan [J]. Biophys. J., 1995, 68: 1583-1591.
    [39] HELLINGA H W, MARVIN J S. Protein engineering and the development of generic biosensors [J]. Trends Biotechnol, 1998, 16: 183-189.
    [40] GLAZER A N. Light guides. Directional energy transfer in a photosynthetic antenna [J]. J Biol Chem, 1989, 264: 1-4.
    [41] FISCHER A J, LAGARIAS J C. Harnessing phytochrome's glowing potential [J]. Proc Natl Acad Sci U S A, 2004, 101: 17334-17339.
    [42] TOOLEY A J, GLAZER A N. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunit in a heterologous host [J]. J Bacteriol, 2002, 184: 4666-4671.
    [43] WAGGONER A. Fluorescent labels for proteomics and genomics [J]. Curr Opin Chem Biol, 2006, 10: 62-66.
    [44] PRASHER D C, ECKENRODE V K, WARD W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene, 1992, 111: 229-233.
    [45] TSIEN R Y. The green fluorescent protein [J]. Annu Rev Biochem, 1998, 67: 509-544.
    [46] LUKYANOV K A, CHUDAKOV D M, LUKYANOV S, et al. Innovation: Photoactivatable fluorescent proteins [J]. Nat Rev Mol Cell Biol, 2005, 6: 885-891.
    [47] MATZ M V, LABAS Y A, UGALDE J. Evolution of function and color in GFP-like proteins [J]. Methods Biochem Anal, 2006, 47: 139-161.
    [48] CHUDAKOV D M, LUKYANOV S, LUKYANOV K A. Fluorescent proteins as a toolkit for in vivo imaging [J]. Trends Biotechnol, 2005, 23: 605-613.
    [49] ZHANG J, CAMPBELL R E, TING A Y, et al. Creating new fluorescent probes for cell biology [J]. Nat Rev Mol Cell Biol, 2002, 3: 906-918.
    [50] SHANER N C, STEINBACH P A, TSIEN R Y. A guide to choosing fluorescent proteins [J]. Nat Methods, 2005, 2: 905-909.
    [51] PEDELACQ J D, CABANTOUS S, TRAN T, et al. Engineering and characterization of a superfolder green fluorescent protein [J]. Nat Biotechnol, 2006, 24: 79-88.
    [52] OJIDA A, HONDA K, SHINMI D, et al. Oligo-Asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins [J]. J Am Chem Soc, 2006, 128: 10452-10459.
    [53] LIN C W, TING A Y. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells [J]. J Am Chem Soc, 2006, 128: 4542-4543.
    [54] SATO H, IKEDA M, SUZUKI K, et al. Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase [J]. Biochemistry, 1996, 35: 13072-13080.
    [55] TAKI M, SHIOTA M, TAIRA K. Transglutaminase-mediated N- and C-terminal fluorescein labeling of a protein can support the native activity of the modified protein [J]. Protein Eng Des Sel, 2004, 17: 119-126.
    [56] HU B H, MESSERSMITH P B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels [J]. J Am Chem Soc, 2003, 125: 14298-14299.
    [57] GHAEMMAGHAMI S, HUH W K, BOWER K, et al. Global analysis of protein expression in yeast [J]. Nature, 2003, 425: 737-741.
    [58] EVANS M J, CRAVATT B F. Mechanism-based profiling of enzyme families [J]. Chem Rev, 2006, 106: 3279-3301.
    [59] SCHMIDINGER H, HERMETTER A, BIRNER-GRUENBERGER R. Activity-based proteomics: enzymatic activity profiling in complex proteomes [J]. Amino Acids, 2006, 30: 333-350.
    [60] SPEERS A E, CRAVATT B F. Chemical strategies for activity-based proteomics [J]. ChemBioChem, 2004, 5: 41-47.
    [61] BERGER A B, VITORINO P M, BOGYO M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery [J]. Am J Pharmacogenomics, 2004, 4: 371-381.
    [62] SPEERS A E, CRAVATT B F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics [J]. J Am Chem Soc, 2005, 127: 10018-10019.
    [63] PATRICELLI M P, GIANG D K, STAMP L M, et al. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes [J]. Proteomics, 2001, 1: 1067-1071.
    [64] BERKERS C R, VERDOES M, LICHTMAN E, et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib [J]. Nat Methods, 2005, 2: 357-362.
    [65] SCHMIDINGER H, BIRNER-GRUENBERGER R, RIESENHUBER G, et al. Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases [J]. ChemBioChem, 2005, 6: 1776-1781.
    [66] GREENBAUM D, BARUCH A, HAYRAPETIAN L, et al. Chemical approaches for functionally probing the proteome [J]. Mol Cell Proteomics, 2002, 1: 60-68.
    [67] CHAN E W, CHATTOPADHAYA S, PANICKER R C, et al. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases [J]. J Am Chem Soc, 2004, 126: 14435-14446.
    [68] MAHARA A, IWASE R, SAKAMOTO T, et al. Bispyrene-conjugated 2'-O-methyloligonucleotide as a highly specific RNA-recognition probe [J]. Angew Chem Int Ed Engl, 2002, 41: 3648-3650, 3518.
    [69] JOYCE J A, BARUCH A, CHEHADE K, et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis [J]. Cancer Cell, 2004, 5: 443-453.
    [70] BLUM G, MULLINS S R, KEREN K, et al. Dynamic imaging of protease activity with fluorescently quenched activity-based probes [J]. Nat Chem Biol, 2005, 1: 203-209.
    [71] MARTIN B R, GIEPMANS B N, ADAMS S R, et al. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity [J]. Nat Biotechnol, 2005, 23: 1308-1314.
    [72] YANG J S, LIN C S, HWANG C Y. Cu2+-induced blue shift of the pyrene excimer emission: a new signal transduction mode of pyrene probes [J]. Org Lett, 2001, 3: 889-892.
    [73] LIAO J H, CHEN C T, FANG J M. A novel phosphate chemosensor utilizing anion-induced fluorescence change [J]. Org Lett, 2002, 4: 561-564.
    [74] SAHOO D, NARAYANASWAMI V, KAY C M, et al. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III [J]. Biochemistry, 2000, 39: 6594-6601.
    [75] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307: 538-544.
    [76] JAISWAL J K, SIMON S M. Potentials and pitfalls of fluorescent quantum dots for biological imaging [J]. Trends Cell Biol, 2004, 14: 497-504.
    [77] GAO X, YANG L, PETROS J A, et al. In vivo molecular and cellular imaging with quantum dots [J]. Curr Opin Biotechnol, 2005, 16: 63-72.
    [78] ALIVISATOS A P, GU W, LARABELL C. Quantum dots as cellular probes [J]. Annu Rev Biomed Eng, 2005, 7: 55-76.
    [79] PINAUD F, MICHALET X, BENTOLILA L A, et al. Advances in fluorescence imaging with quantum dot bio-probes [J]. Biomaterials, 2006, 27: 1679-1687.
    [80] GIEPMANS B N, DEERINCK T J, SMARR B L, et al. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots [J]. Nat Methods, 2005, 2: 743-749.
    [81] LEE T H, GONZALEZ J I, ZHENG J, et al. Single-molecule optoelectronics [J]. Acc Chem Res, 2005, 38: 534-541.
    [82] GIEPMANS B N, ADAMS S R, ELLISMAN M H, et al. The fluorescent toolbox for assessing protein location and function [J]. Science, 2006, 312: 217-224.
    [83] GRONEMEYER T, GODIN G, JOHNSSON K. Adding value to fusion proteins through covalent labelling [J]. Curr Opin Biotechnol, 2005, 16: 453-458.
    [84] MILLER L W, CORNISH V W. Selective chemical labeling of proteins in living cells [J]. Curr Opin Chem Biol, 2005, 9: 56-61.
    [85] GRIFFIN B A, ADAMS S R, TSIEN R Y. Specific covalent labeling of recombinant protein molecules inside live cells [J]. Science, 1998, 281: 269-272.
    [86] ANDRESEN M, SCHMITZ-SALUE R, JAKOBS S. Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging [J]. Mol Biol Cell, 2004, 15: 5616-5622.
    [87] TSAI P S, FRIEDMAN B, IFARRAGUERRI A I, et al. All-optical histology using ultrashort laser pulses [J]. Neuron, 2003, 39: 27-41.
    [88] KELLER P J, PAMPALONI F, STELZER E H. Life sciences require the third dimension [J]. Curr Opin Cell Biol, 2006, 18: 117-124.
    [89] NTZIACHRISTOS V, RIPOLL J, WANG L V, et al. Looking and listening to light: the evolution of whole-body photonic imaging [J]. Nat Biotechnol, 2005, 23: 313-320.
    [90] CLEMONS P A. Complex phenotypic assays in high-throughput screening [J]. Curr Opin Chem Biol, 2004, 8: 334-338.
    [91] HABERMANN E. Bee and wasp venoms [J]. Science, 1972, 177: 314-322.
    [92] TALBOT J C, DUFOURCQ J, DE BONY J, et al. Conformational change and self association of monomeric melittin [J]. FEBS Lett, 1979, 102: 191-193.
    [93] TERWILLIGER T C, EISENBERG D. The structure of melittin. II. Interpretation of the structure [J]. J Biol Chem, 1982, 257: 6016-6022.
    [94] PEREZ-PAYA E, HOUGHTEN R A, BLONDELLE S E. The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins [J]. J Biol Chem, 1995, 270: 1048-1056.
    [95] LADOKHIN A S, WHITE S H. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin [J]. J Mol Biol, 1999, 285: 1363-1369.
    [96] HARTINGS M R, GRAY H B, WINKLER J R. Probing melittin helix-coil equilibria in solutions and vesicles [J]. J Phys Chem B, 2008, 112: 3202-3207.
    [97] DEMPSEY C E. The actions of melittin on membranes [J]. Biochim Biophys Acta, 1990, 1031: 143-161.
    [98] LEE D G, PARK J H, SHIN S Y, et al. Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure [J]. Biochem Mol Biol Int, 1997, 43: 489-498.
    [99] SUBBALAKSHMI C, NAGARAJ R, SITARAM N. Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity [J]. FEBS Lett, 1999, 448: 62-66.
    [100] RAGHURAMAN H, CHATTOPADHYAY A. Melittin: a membrane-active peptide with diverse functions [J]. Biosci Rep, 2007, 27: 189-223.
    [101] SHARON M, OREN Z, SHAI Y, et al. 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids [J]. Biochemistry, 1999, 38: 15305-15316.
    [102] MATSUZAKI K, YONEYAMA S, MIYAJIMA K. Pore formation and translocation of melittin [J]. Biophys J, 1997, 73: 831-838.
    [103] ASTHANA N, YADAV S P, GHOSH J K. Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity [J]. J Biol Chem, 2004, 279: 55042-55050.
    [104] TERWILLIGER T C, EISENBERG D. The structure of melittin. I. Structure determination and partial refinement [J]. J Biol Chem, 1982, 257: 6010-6015.
    [105] IKURA T, GO N, INAGAKI F. Refined structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by 2D-NMR and distance geometry calculation [J]. Proteins, 1991, 9: 81-89.
    [106] NAITO A, NAGAO T, NORISADA K, et al. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy [J]. Biophys J, 2000, 78: 2405-2417.
    [107] BECUCCI L, GUIDELLI R. Kinetics of channel formation in bilayer lipid membranes (BLMs) and tethered BLMs: monazomycin and melittin [J]. Langmuir, 2007, 23: 5601-5608.
    [108] CONSTANTINESCU I, LAFLEUR M. Influence of the lipid composition on the kinetics of concerted insertion and folding of melittin in bilayers [J]. Biochim Biophys Acta, 2004, 1667: 26-37.
    [109] LEE M T, CHEN F Y, HUANG H W. Energetics of pore formation induced by membrane active peptides [J]. Biochemistry, 2004, 43: 3590-3599.
    [110] RAGHURAMAN H, CHATTOPADHYAY A. Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach [J]. Biochim Biophys Acta, 2004, 1665: 29-39.
    [111] OREN Z, SHAI Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study [J]. Biochemistry, 1997, 36: 1826-1835.
    [112] OREN Z, HONG J, SHAI Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity [J]. J Biol Chem, 1997, 272: 14643-14649.
    [113] YANG L, HARROUN T A, WEISS T M, et al. Barrel-stave model or toroidal model? A case study on melittin pores [J]. Biophys J, 2001, 81: 1475-1485.
    [114] MANNA M, MUKHOPADHYAY C. Cause and effect of melittin-induced pore formation: a computational approach [J]. Langmuir, 2009, 25: 12235-12242.
    [115] BARNHAM K J, MONKS S A, HINDS M G, et al. Solution structure of a polypeptide from the N terminus of the HIV protein Nef [J]. Biochemistry, 1997, 36: 5970-5980.
    [116] YALCIN M, SAVCI V. Cardiovascular effects of centrally injected melittin in hemorrhaged hypotensive rats: the investigation of peripheral mechanisms [J]. Neuropeptides, 2007, 41: 465-475.
    [117] STUHLMEIER K M. Apis mellifera venom and melittin block neither NF-kappa B-p50-DNA interactions nor the activation of NF-kappa B, instead they activate the transcription of proinflammatory genes and the release of reactive oxygen intermediates [J]. J Immunol, 2007, 179: 655-664.
    [118] WACHINGER M, SAERMARK T, ERFLE V. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells [J]. FEBS Lett, 1992, 309: 235-241.
    [119] SONG C C, LU X, CHENG B B, et al. [Effects of melittin on growth and angiogenesis of human hepatocellular carcinoma BEL-7402 cell xenografts in nude mice] [J]. Ai Zheng, 2007, 26: 1315-1322.
    [120] LI B, GU W, ZHANG C, et al. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin [J]. Onkologie, 2006, 29: 367-371.
    [121] CHO H J, JEONG Y J, PARK K K, et al. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms [J]. J Ethnopharmacol, 2010, 127: 662-668.
    [122] YANG L, CUI F, SHI K, et al. Design of High Payload PLGA Nanoparticles Containing Melittin/Sodium Dodecyl Sulfate Complex by the Hydrophobic Ion-Pairing Technique [J]. Drug Dev Ind Pharm, 2009, 1-9.
    [123] GIACOMETTI A, CIRIONI O, KAMYSZ W, et al. In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1-7)M(2-9)NH(2) on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics [J]. Diagn Microbiol Infect Dis, 2004, 49: 197-200.
    [124] GIACOMETTI A, CIRIONI O, KAMYSZ W, et al. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii [J]. Peptides, 2003, 24: 1315-1318.
    [125] SCALONI A, MIRAGLIA N, ORRU S, et al. Topology of the calmodulin-melittin complex [J]. J Mol Biol, 1998, 277: 945-958.
    [126] CONDIE C C, QUAY S C. Conformational studies of aqueous melittin. Characteristics of a fluorescent probe binding site [J]. J Biol Chem, 1983, 258: 8231-8234.
    [127] QUAY S C, CONDIE C C. Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction [J]. Biochemistry, 1983, 22: 695-700.
    [128] QUAY S C, TRONSON L P. Conformational studies of aqueous melittin: determination of ionization constants of lysine-21 and lysine-23 by reactivity toward 2,4,6-trinitrobenzenesulfonate [J]. Biochemistry, 1983, 22: 700-707.
    [1] SCHULER B, EATON W A. Protein folding studied by single-molecule FRET [J]. Curr Opin Struct Biol, 2008, 18: 16-26.
    [2] GLASSCOCK J M, ZHU Y, CHOWDHURY P, et al. Using an amino acid fluorescence resonance energy transfer pair to probe protein unfolding: application to the villin headpiece subdomain and the LysM domain [J]. Biochemistry, 2008, 47: 11070-11076.
    [3] MIYAKE-STONER S J, MILLER A M, HAMMILL J T, et al. Probing protein folding using site-specifically encoded unnatural amino acids as FRET donors with tryptophan [J]. Biochemistry, 2009, 48: 5953-5962.
    [4] ENANDER K, DOLPHIN G T, LIEDBERG B, et al. A versatile polypeptide platform for integrated recognition and reporting: affinity arrays for protein-ligand interaction analysis [J]. Chemistry, 2004, 10: 2375-2385.
    [5] LOOGER L L, DWYER M A, SMITH J J, et al. Computational design of receptor and sensor proteins with novel functions [J]. Nature, 2003, 423: 185-190.
    [6] MARVIN J S, CORCORAN E E, HATTANGADI N A, et al. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors [J]. Proc Natl Acad Sci U S A, 1997, 94: 4366-4371.
    [7] SCALLEY M L, YI Q, GU H, et al. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L [J]. Biochemistry, 1997, 36: 3373-3382.
    [8] EPSTEIN H F, SCHECHTER A N, CHEN R F, et al. Folding of staphylococcal nuclease: kinetic studies of two processes in acid renaturation [J]. J Mol Biol, 1971, 60: 499-508.
    [9] BEECHEM J M. Global analysis of biochemical and biophysical data [J]. Methods Enzymol, 1992, 210: 37-54.
    [10] KNUTSON J R, WALBRIDGE D G, BRAND L. Decay-associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase [J]. Biochemistry, 1982, 21: 4671-4679.
    [11] ZHANG R G, JOACHIMIAK A, LAWSON C L, et al. The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA affinity [J]. Nature, 1987, 327: 591-597.
    [12] HYNES T R, FOX R O. The crystal structure of staphylococcal nuclease refined at 1.7 A resolution [J]. Proteins, 1991, 10: 92-105.
    [13] YIN J, JING G. Tryptophan 140 is important, but serine 141 Is essential for the formation of the integrated conformation of staphylococcal nuclease [J]. J Biochem, 2000, 128: 113-119.
    [14] HARVEY A R, EHLERT E, DE WIT J, et al. Use of GFP to analyze morphology, connectivity, and function of cells in the central nervous system [J]. Methods Mol Biol, 2009, 515: 63-95.
    [15] HAILEY D W, LIPPINCOTT-SCHWARTZ J. Using photoactivatable proteins to monitor autophagosome lifetime [J]. Methods Enzymol, 2009, 452: 25-45.
    [16] HEINZE K G, COSTANTINO S, DE KONINCK P, et al. Beyond photobleaching, laser illumination unbinds fluorescent proteins [J]. J Phys Chem B, 2009, 113: 5225-5233.
    [17] HOFFMAN R M. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins [J]. Clin Exp Metastasis, 2009, 26: 345-355.
    [18] ALTSCHUH D, ONCUL S, DEMCHENKO A P. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors [J]. J Mol Recognit, 2006, 19: 459-477.
    [19] DAWSON E D, MOORE C L, DANKBAR D M, et al. Identification of A/H5N1 influenza viruses using a single gene diagnostic microarray [J]. Anal Chem, 2007, 79: 378-384.
    [20] LI H W, LI Y, DANG Y Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for mercury(II) ions [J]. Chem Commun (Camb), 2009, 4453-4455.
    [21] MARTI A A, LI X, JOCKUSCH S, et al. Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy [J]. Nucleic Acids Res, 2006, 34: 3161-3168.
    [22] MA L J, LIU Y F, WU Y. A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water [J]. Chem Commun (Camb), 2006, 2702-2704.
    [23] KUMAR C V, BURANAPRAPUK A. Site-Specific Photocleavage of Proteins [J]. Angew Chem Int Ed Engl, 1997, 36: 2085-2087.
    [24] KUMAR C V, BURANAPRAPUK A, SZE H C. Large chiral discrimination of a molecular probe by bovine serum albumin [J]. Chem Commun (Camb), 2001, 297-298.
    [25] LI L, MOHWALD H. Photoinduced vectorial charge transfer across walls of hollow microcapsules [J]. Angew Chem Int Ed Engl, 2004, 43: 360-363.
    [26] HAYASHITA T, QING D, MINAGAWA M, et al. Highly selective recognition of lead ion in water by a podand fluoroionophore/gamma-cyclodextrin complex sensor [J]. Chem Commun (Camb), 2003, 2160-2161.
    [27] SUZUKI I, UI M, YAMAUCHI A. Supramolecular probe for bicarbonate exhibiting anomalous pyrene fluorescence in aqueous media [J]. J Am Chem Soc, 2006, 128: 4498-4499.
    [28] HWANG H, TAYLOR J S. Role of base stacking and sequence context in the inhibition of yeast DNA polymerase eta by pyrene nucleotide [J]. Biochemistry, 2004, 43: 14612-14623.
    [29] LE GUYADER L, LE ROUX C, MAZERES S, et al. Changes of the membrane lipid organization characterized by means of a new cholesterol-pyrene probe [J]. Biophys J, 2007, 93: 4462-4473.
    [30] LIANG L, TAJMIR-RIAHI H A, SUBIRADE M. Interaction of beta-lactoglobulin with resveratrol and its biological implications [J]. Biomacromolecules, 2008, 9: 50-56.
    [31] DUFOUR E, GENOT C, HAERTLE T. beta-Lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy [J]. Biochim Biophys Acta, 1994, 1205: 105-112.
    [32] LAKOWICZ J R, WEBER G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules [J]. Biochemistry, 1973, 12: 4161-4170.
    [33] WEI X F, LIU H Z. The interaction between Triton X-100 and bovine serum albumin [J]. Chinese Journal of Analytical Chemistry, 2000, 28: 699-701.
    [34] MISHRA B, BARIK A, PRIYADARSINI K I, et al. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins [J]. Journal of Chemical Sciences, 2005, 117: 641-647.
    [35] GAO H, WANG Y N, FAN Y G, et al. Interactions of some modified mono- and bis-beta-cyclodextrins with bovine serum albumin [J]. Bioorg Med Chem, 2006, 14: 131-137.
    [36] TOGASHI D M, RYDER A G. A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer [J]. J Fluoresc, 2008, 18: 519-526.
    [37] TAN H S, GERLACH E D, DIMATTIO A S. Sensitive assay procedure for ethambutol hydrochloride via charge transfer complex formation [J]. J Pharm Sci, 1977, 66: 766-769.
    [38] TERWILLIGER T C, EISENBERG D. The structure of melittin. I. Structure determination and partial refinement [J]. J Biol Chem, 1982, 257: 6010-6015.
    [39] TERWILLIGER T C, EISENBERG D. The structure of melittin. II. Interpretation of the structure [J]. J Biol Chem, 1982, 257: 6016-6022.
    [40] GAO J, WHITESIDES G M. Using protein charge ladders to estimate the effective charges and molecular weights of proteins in solution [J]. Anal Chem, 1997, 69: 575-580.
    [41] CHEN Y M, YU C J, CHENG T L, et al. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles [J]. Langmuir, 2008, 24: 3654-3660.
    [42] WU C, WANG C, YAN L, et al. Pyrene excimer nucleic acid probes for biomolecule signaling [J]. J Biomed Nanotechnol, 2009, 5: 495-504.
    [43] KHAJEHPOUR M, TROXLER T, NANDA V, et al. Melittin as model system for probing interactions between proteins and cyclodextrins [J]. Proteins, 2004, 55: 275-287.
    [44] NIEMZ A, TIRRELL D A. Self-association and membrane-binding behavior of melittins containing trifluoroleucine [J]. J Am Chem Soc, 2001, 123: 7407-7413.
    [45] ANDERSSON A, BIVERSTAHL H, NORDIN J, et al. The membrane-induced structure of melittin is correlated with the fluidity of the lipids [J]. Biochim Biophys Acta, 2007, 1768: 115-121.
    [46] RAGHURAMAN H, GANGULY S, CHATTOPADHYAY A. Effect of ionic strength on the organization and dynamics of membrane-bound melittin [J]. Biophys Chem, 2006, 124: 115-124.
    [47] WEAVER A J, KEMPLE M D, BRAUNER J W, et al. Fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR characterization of the structure and dynamics of synthetic melittin and melittin analogues in lipid environments [J]. Biochemistry, 1992, 31: 1301-1313.
    [1] ROSS D C, CRIM J W, BROWN M R, et al. Toxic and antifeeding actions of melittin in the corn earworm, Heliothis zea (Boddie): comparisons to bee venom and the insecticides chlorpyriphos and cyromazine [J]. Toxicon, 1987, 25: 307-313.
    [2] LOWY P H, SARMIENTO L, MITCHELL H K. Polypeptides minimine and melittin from bee venom: effects on Drosophila [J]. Arch Biochem Biophys, 1971, 145: 338-343.
    [3] PEREZ-PAYA E, HOUGHTEN R A, BLONDELLE S E. Determination of the secondary structure of selected melittin analogues with different haemolytic activities [J]. Biochem J, 1994, 299 ( Pt 2): 587-591.
    [4] ASTHANA N, YADAV S P, GHOSH J K. Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity [J]. J Biol Chem, 2004, 279: 55042-55050.
    [5] GOMARA M J, NIR S, NIEVA J L. Effects of sphingomyelin on melittin pore formation [J]. Biochim Biophys Acta, 2003, 1612: 83-89.
    [1] DEMPSEY C E. The actions of melittin on membranes [J]. Biochim Biophys Acta, 1990, 1031: 143-161.
    [2] SUBBALAKSHMI C, NAGARAJ R, SITARAM N. Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity [J]. FEBS Lett, 1999, 448: 62-66.
    [3] LEE D G, PARK J H, SHIN S Y, et al. Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure [J]. Biochem Mol Biol Int, 1997, 43: 489-498.
    [4] RAGHURAMAN H, CHATTOPADHYAY A. Melittin: a membrane-active peptide with diverse functions [J]. Biosci Rep, 2007, 27: 189-223.
    [5] JORGENSEN F, ADAMSKI F M, TATE W P, et al. Release factor-dependent false stops are infrequent in Escherichia coli [J]. J Mol Biol, 1993, 230: 41-50.
    [6] WIKSTROM P M, LIND L K, BERG D E, et al. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli [J]. J Mol Biol, 1992, 224: 949-966.
    [7] DE SMIT M H, VAN DUIN J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data [J]. J Mol Biol, 1994, 244: 144-150.
    [8] SCHAUDER B, MCCARTHY J E. The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: translation and stability of mRNAs in vivo [J]. Gene, 1989, 78: 59-72.
    [9] JOSEPH S, DAVID W R. Molecular Cloning: A Laboratory Munual, 3rd ed [M]. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.
    [10] NAKAMURA Y, GOJOBORI T, IKEMURA T. Codon usage tabulated from international DNA sequence databases: status for the year 2000 [J]. Nucleic Acids Res, 2000, 28: 292.
    [1] MULLER M, VISCIDI R P, SUN Y, et al. Antibodies to HPV-16 E6 and E7 proteins as markers for HPV-16-associated invasive cervical cancer [J]. Virology, 1992, 187: 508-514.
    [2] ZUR HAUSEN H, MEINHOF W, SCHEIBER W, et al. Attempts to detect virus-secific DNA in human tumors. I. Nucleic acid hybridizations with complementary RNA of human wart virus [J]. Int J Cancer, 1974, 13: 650-656.
    [3] BOSHART M, GISSMANN L, IKENBERG H, et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer [J]. EMBO J, 1984, 3: 1151-1157.
    [4] ZUR HAUSEN H. Condylomata acuminata and human genital cancer [J]. Cancer Res, 1976, 36: 794.
    [5] DURST M, GISSMANN L, IKENBERG H, et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions [J]. Proc Natl Acad Sci U S A, 1983, 80: 3812-3815.
    [6] PARKIN D M, BRAY F, FERLAY J, et al. Global cancer statistics, 2002 [J]. CA Cancer J Clin, 2005, 55: 74-108.
    [7] BHARADWAJ M, HUSSAIN S, NASARE V, et al. HPV & HPV vaccination: issues in developing countries [J]. Indian J Med Res, 2009, 130: 327-333.
    [8] ZUR HAUSEN H. Viruses in human cancers [J]. Science, 1991, 254: 1167-1173.
    [9] BOSCH F X, BURCHELL A N, SCHIFFMAN M, et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia [J]. Vaccine, 2008, 26 Suppl 10: K1-16.
    [10] BOSCH F X. Epidemiology of human papillomavirus infections: new options for cervical cancer prevention [J]. Salud Publica Mex, 2003, 45 Suppl 3: S326-339.
    [11] MUNOZ N, BOSCH F X, DE SANJOSE S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N Engl J Med, 2003, 348: 518-527.
    [12] VILLA L L, COSTA R L, PETTA C A, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial [J]. Lancet Oncol, 2005, 6: 271-278.
    [13] HARPER D M, FRANCO E L, WHEELER C, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial [J]. Lancet, 2004, 364: 1757-1765.
    [14] PAZ DE LA ROSA G, MONROY-GARCIA A, MORA-GARCIA MDE L, et al. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice [J]. Virol J, 2009, 6: 2.
    [15] BAZAN S B, DE ALENCAR MUNIZ CHAVES A, AIRES K A, et al. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris [J]. Arch Virol, 2009, 154: 1609-1617.
    [16] ZHOU J, SUN X Y, LOUIS K, et al. Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence [J]. J Virol, 1994, 68: 619-625.
    [17] NAGAI N. Molecular biologic study on the carcinogenesis of HPV in uterine cervical cancer and related lesions--analysis of HPV types 16, 18 E6/E7 gene mRNA [J]. Nippon Sanka Fujinka Gakkai Zasshi, 1990, 42: 823-833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700