MICA基因多态性与习惯性流产、不孕症的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)研究湖南和湖北地区汉族人群中MICA基因多态性分布特征;(2)研究MICA基因多态性与习惯性流产、不孕症的关系,并进一步探讨可能的分子机制。
     方法:(1)PCR-SSP法分析162例湖南地区汉族人群和193例湖北地区汉族人群MICA基因外显子2-4的多态性,并与其他人群中该基因的分布进行比较;(2)PCR-SSP方法检测56例习惯性流产患者和78例正常对照的MICA基因外显子2-4多态性分布,并进行相关性分析;(3)PCR-SSP法检测214例不孕症患者MICA基因外显子2-4多态分布,ELISA法检测患者血清抗沙眼衣原体IgG抗体,并进行相关性分析;(4)直接测序法确定HeLa细胞和U373细胞的MICA基因型;通过实时定量PCR、Western blot和流式细胞术分别从mRNA、蛋白质水平检测沙眼衣原体感染HeLa细胞和U373细胞后,不同时间点(0h、12h、24h、36h)MICA mRNA、MICA总蛋白和细胞膜表面MICA分子的变化,并通过体外细胞毒实验检测NK细胞对沙眼衣原体感染的HeLa细胞和U373细胞在不同时间点(0h、12h、24h、36h)的杀伤效应。
     结果:(1)湖南汉族人群中共检测到11个MICA等位基因,其中MICA*00801/02等位基因频率最高(40.4%),其次为MICA*00201/020(20.1%)和MICA*010(17.3%),MICA*019(0.3%)和MICA*031(0.3%)等位基因频率最低;湖北汉族人群中共检测到13个MICA等位基因,其中MICA*00801/02等位基因频率最高(33.7%),其次为MICA*010(18.4%)、MICA*00201/020(13.9%)和MICA*01201/02(9.6%),MICA*005(0.5%)和MICA*027(0.5%)等位基因频率最低;两个地方人群MICA等位基因分布频率与其他人群(朝鲜人、泰国人、美洲白人和非洲裔美洲人)比较,有显著性差异(P<0.05);(2)习惯性流产患者组中共检测出8个MICA等位基因,其中MICA*00801/02等位基因分布频率较高而MICA*018等位基因分布频率最低;正常对照组中共检出9个MICA等位基因,经统计学分析,其中也是MICA*00801/02等位基因分布频率较高,而MICA*005和MICA*01201/02等位基因分布频率最低,习惯性流产患者与正常对照组之间MICA各等位基因分布频率均无显著性差异(P>0.05);(3)有输卵管病理改变的不孕症患者中66.7%(42/63)的个体抗沙眼衣原体IgG抗体阳性,而无输卵管病理改变的不孕症患者中仅39.1%(59/151)的个体抗沙眼衣原体IgG抗体阳性(OR:3.12,95%CI:1.68-5.78,P=0.004),高水平的抗沙眼衣原体IgG抗体增加了不孕症患者输卵管发生病理改变的风险性(OR:6.88,95%CI:3.34-14.20,P=0.001);根据抗沙眼衣原体IgG抗体是否为阳性对不孕症患者进行分组,两组中共检测到9个MICA等位基因,其中等位基因MICA*008在两组间的分布存在差异,抗沙眼衣原体IgG抗体阴性的不孕症患者组MICA*008分布频率显著高于抗沙眼衣原体IgG抗体阳性的不孕症患者组(38.1%:22.3%,P=0.0004,Pc=0.00367,OR:2.14,95%CI:1.40-3.28);根据是否存在输卵管病理改变对不孕症患者进行分组,两组间MICA等位基因分布频率无显著性差异(P>0.05);根据是否有输卵管病理改变对抗沙眼衣原体IgG抗体阳性的不孕症患者进行分组,两组间MICA等位基因分布频率无显著性差异(P>0.05);(4)HeLa细胞为MICA*008纯合子,U373细胞为MICA*001纯合子;沙眼衣原体感染HeLa细胞和U373细胞0h-36h时两细胞的MICA mRNA变化趋势相同,其中0h时MICA mRNA均有低水平的表达,12h时表达水平升高,24-36h时表达水平降低;沙眼衣原体感染HeLa细胞0h-36h时MICA蛋白表达水平未降低;沙眼衣原体感染U373细胞0h-12h时MICA蛋白表达水平降低不明显,24h-36h时蛋白表达水平降低;沙眼衣原体感染HeLa细胞0h-36h时细胞膜MICA蛋白表达水平较稳定,沙眼衣原体感染U373细胞0h-12h时细胞膜MICA蛋白表达水平变化不明显,24h-36h时表达水平降低;随感染时间的延长(0h-36h),NK细胞对沙眼衣原体感染HeLa细胞的杀伤效应不断增高;NK细胞对沙眼衣原感染的U373细胞12h杀伤效应增高,24h-36h杀伤效应降低。
     结论:(1)湖南和湖北汉族人群MICA外显子2-4等位基因的分布频率与其他人群之间存在差异,其中MICA*00801/02等位基因分布频率均较高;(2)MICA外显子2-4等位基因多态性分布与习惯性流产之间无相关性;(3)不孕症患者抗沙眼衣原体IgG抗体水平与其输卵管病理改变相关;(4)不孕症患者MICA*008等位基因分布频率与抗沙眼衣原体IgG抗体负相关;(5)不孕症患者MICA基因的多态性分布与输卵管病理改变、沙眼衣原体感染引起的输卵管病理改变之间均无相关性;(6)感染沙眼衣原体后HeLa细胞和U373细胞MICA mRNA表达水平的变化相同,但MICA总蛋白和细胞膜MICA蛋白表达的变化不同;(7)NK细胞对感染沙眼衣原体的HeLa细胞和U373细胞杀伤效应不同。
Objective:(1)To investigate the polymorphism of MICA gene in Han nationality population of Hunan province and Hubei province.(2) To investigate the associations of polymorphism of MICA gene with Recurrent Spontaneous Abortion (RSA) and infertility, and to explore further the possible molecular mechanisms on the basis of results of associations of MICA gene.
     Methods:(1)Samples of 162 random individuals in Hunan province and 193 random ones in Hubei province with Han nationality were genotyped by PCR-SSP to analyze the frequencies of MICA exon 2-4 alleles, which were cmoparied with the frequencies of MICA alleles of other nationalities.(2) MICA exon 2-4 alleles were genotyped in 56 RSA patients and 78 healthy controls through PCR-SSP method, and the association was analyzed at the same time.(3)MICA exon 2-4 alleles were genotyped in 214 infertile women recruited through PCR-SSP method. Anti-Chlamydia trachomatis IgG antibodies were determined by ELISA method. The associations between prevalence of Anti-Chlamydia trachomatis IgG antibodies,tubal pathology and MICA allele polymorphism were further analyzed. (4) The genotypes of HeLa cell and U373 cells were determined by sequencing method. MICA mRNA, total MICA protein and cell surface MICA protein of HeLa and U373 cells were analyzed at different time points (0h、12h、24h、36h) after Chlamydia trachomatis infection through quantity realt-ime PCR, Western blotting and flow cytometry, respectively. Cytocity of NK cell to HeLa and U373 cells was measured at different time points (0h、12h、24h、36h) after Chlamydia trachomatis infection through in vitro cytocity method.
     Results:(1)11 alleles were found in Han nationality population of Hunan province, among which MICA*00801/02 (40.4%) was the dominant allele. The others were MICA*00201/020 (20.1%)and MICA*010(17.3%),etc.The rarest alleles were MICA*019 (0.3%)and MICA*031 (0.3%).In Han nationality population of Hubei province,13 alleles were determined, among which MICA*00801/02 was the dominant MICA allele, accounted for 33.7%.The others were MICA*010 (18.4%), MICA*00201/020(13.9%), MICA*01201/02(9.6%), respectively. The rarest alleles were MICA*005 (0.5%)and MICA*027 (0.5%).MICA allele frequencies were significantly different between Hunan and Hubei Han nationality population and ones from Korean, Thais,Caucasian and African American populations (P<0.05).(2) 8 MICA alleles were detected in RSA group.MICA*00801/02 is the dominant MICA allele, and the rarest allele is MICA*018.9 MICA alleles were found in normal control group.MICA*00801/02 is also the dominant MICA allele, and the rarest allele is MICA*005 and MICA*01201/02.Allele frequencies of MICA exon 2-4 in RSA patients was not significantly different from ones in control group (P>0.05).(3) Women with tubal infertility more often had antibodies to Chlamydia trachomatis(66.7% versus 39.1%;OR 3.12,95% CI 1.68-5.78,P=0.004) than infertile women without tubal pathology. High level of anti-Chlamydia trachomatis IgG antibodies increased the risk of severe tubal pathology (OR 6.88,95% CI 3.34-14.20, P=0.001).The prevalence of MICA alleles were assessed and compared between infertile women with and without anti-Chlamydia trachomatis IgG antibodies.There were 9 MICA alleles found in two groups.Among them, The frequency of the MICA*008 allele was significantly higher in infertile patients without anti-Chlamydia trachomatis IgG antibodies than ones with anti-Chlamydia trachomatis IgG antibodies (38.1% versus 22.3%,P=0.0004,Pc=0.00367,OR=2.14,95%CI:1.4-3.28).The comparison of MICA alleles was also made between infertile women with or without tubal pathology.The allele distribution in infertile women with tubal pathology was similar to the distribution in women without tubal pathology. No statistical significant differences were found in the MICA allele frequencies for tubal pathology (P>0.05).Though a significant association was clearly observed between high levels of antibodies against anti-Chlamydia trachomatis antibodies and tubal pathology, no significant differences were found in the MICA allele frequencies between anti-Chlamydia trachomatis IgG antibody positive infertile women with or without tubal pathology (P>0.05).(4) HeLa cells were MICA*008 homozygote, and U373 cells MICA*001 homozygote. After Chlamydia trachomatis infection, the changes of MICA mRNA in HeLa and U373 cells were similar, which was expressed at low level at Oh time point, increased significantly highly at 12h time point, and slowly decreased during the period from 24h to 36h. After Chlamydia trachomatis infection, total MICA protein of HeLa cells never obviously decreased during the whole infection period. However, in Chlamydia trachomatis infected U373 cells, total MICA protein ascended only a little during the period from Oh to 12h time point, then began to decrease from 24h to 36h time point. After infection, MICA molecules on the HeLa cell membrane surface never obviously decreased. MICA molecules on the U373 cell membrane surface were changed unobviously during the period from Oh to 24h, but they were obviously down-regulated during 24h to 36h time points.Cytocity of NK cell to HeLa cells infected by Chlamydia trachomatis was improved gradually during the whole infection period. But this is not true in infected U373 cells.At 12h time point after infection, the cytocity of NK cell to U373 cell increased a little, then began to step down from 24h to 36h time point.
     Conclusions:(1)MICA exon 2-4 allele frequencies were significantly different between Han nationality population of Hunan and Hubei provinces and ones from other races.MICA*00801/02 was the dominant allele in Han nationalty population in both Hunan and Hubei province.(2) The polymorphism of MICA exon 2~4 was not associated with RSA. (3)Anti-Chlamydia trachomatis IgG antibodies were associated with tubal pathology of infertile women. (4) MICA*008 allele was significantly reverse associated with the anti-Chlamydia trachomatis IgG antibodies in infertile women.(5)No statistical significant differences were found between polymorphism of MICA allele frequencies,tubal pathology and tubal pathology induced by Chlamydia trachomatis infection.(6) The effects of Chlamydia trachomatis infection on MICA mRNA of HeLa and U373 cells were similar, while its effects on total MICA proteins and membrane MICA proteins of two cells different. (7) The discrepancy of cytocity of NK cell to Chlamydia trachomatis infected HeLa and U373 cells was found.
引文
[1]Fuertes MB,Girart MV, Molinero LL, et al. Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity. J Immunol,2008,180(7):4606-4614.
    [2]Gupta M, Graham J, McNeeny B, et al. MHC class I chain-related gene-A is associated with IA2 and IAA but not GAD in Swedish type 1 diabetes mellitus. Ann N Y Acad Sci,2006,1079:229-239.
    [3]Rodriguez-Rodero S,Rodrigo L, Fdez-Morera JL, et al. MHC class I chain-related gene B promoter polymorphisms and celiac disease. Hum Immunol,2006,67(3):208-214.
    [4]Torn C, Gupta M, Sanjeevi CB, et al.Different HLA-DR-DQ and MHC class I chain-related gene A (MICA) genotypes in autoimmune and nonautoimmune gestational diabetes in a Swedish population. Hum Immunol,2004,65 (12):1443-1450.
    [5]Chen JR, Lee YJ, Chen T, et al.MHC class I chain-related gene A (MICA) polymorphism and the different histological types of cervical cancer. Neoplasma,2005,52(5):369-373.
    [6]Ding Y, Xia B,Lu M, et al.MHC class I chain-related gene A-A5.1 allele is associated with ulcerative colitis in Chinese population. Clin Exp Immunol, 2005,142(1):193-198.
    [7]Seo JW, Walter L,Gunther E. Genomic analysis of MIC genes in rhesus macaques. Tissue Antigens,2001,58 (3):159-165.
    [8]Dunn DS, Ota M, Inoko H, et al.Association of MHC dimorphic Alu insertions with HLA class I and MIC genes in Japanese HLA-B48 haplotypes. Tissue Antigens,2003,62(3):259-262.
    [9]Doxiadis GG, Heijmans CM, Otting N, et al. MIC gene polymorphism and haplotype diversity in rhesus macaques.Tissue Antigens,2007,69 (3):212-219.
    [10]de Groot NG, Garcia CA, Verschoor EJ, et al. Reduced MIC gene repertoire variation in West African chimpanzees as compared to humans. Mol Biol Evol, 2005,22(6):1375-1385.
    [11]Averdam A, Seelke S,Grutzner I, et al.Genotyping and segregation analyses indicate the presence of only two functional MIC genes in rhesus macaques. Immunogenetics,2007,59 (3):247-251.
    [12]Ahmad T, Marshall SE, Mulcahy-Hawes K, et al.High resolution MIC genotyping:design and application to the investigation of inflammatory bowel disease susceptibility. Tissue Antigens,2002,60(2):164-179.
    [13]Bahram S,Bresnahan M, Geraghty DE, et al. A second lineage of mammalian major histocompatibility complex class I genes.Proc Natl Acad Sci U S A, 1994,91(14):6259-6263.
    [14]Tieng V, Le Bouguenec C, du Merle L, et al.Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc Natl Acad Sci U S A,2002,99(5):2977-2982.
    [15]Zhang Y, Han M, Vorhaben R, et al. Study of MICA alleles in 201 African Americans by multiplexed single nucleotide extension (MSNE) typing. Hum Immunol,2003,64(1):130-136.
    [16]Bao SH, Wang XP, Lin QD, et al.The investigation on the value of repeat and combination test of ACA and anti-beta2-GPI antibody in women with recurrent spontaneous abortion. Am J Reprod Immunol,2008,60(4):372-378.
    [17]Perricone C, De Carolis C, Giacomelli R, et al.High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion:a potential new hypothesis. Rheumatology (Oxford),2007,46(10):1574-1578.
    [18]Takakuwa K, Adachi H, Hataya I, et al.Molecular genetic studies of HLA-DRB1 alleles in patients with unexplained recurrent abortion in the Japanese population. Hum Reprod,2003,18(4):728-733.
    [19]Abbas A, Tripathi P, Naik S,et al.Analysis of human leukocyte antigen (HLA)-G polymorphism in normal women and in women with recurrent spontaneous abortions.Eur J Immunogenet,2004,31 (6):275-278.
    [20]Varla-Leftherioti M, Spyropoulou-Vlachou M, Niokou D, et al.Natural killer (NK) cell receptors' repertoire in couples with recurrent spontaneous abortions. Am J Reprod Immunol,2003,49(3):183-191.
    [21]Gilman-Sachs A, DuChateau BK, Aslakson CJ, et al.Natural killer (NK) cell subsets and NK cell cytotoxicity in women with histories of recurrent spontaneous abortions.Am J Reprod Immunol,1999,41(1):99-105.
    [22]Fukui A,Ntrivalas E,Gilman-Sachs A,et al.Expression of natural cytotoxicity receptors and a2V-ATPase on peripheral blood NK cell subsets in women with recurrent spontaneous abortions and implantation failures. Am J Reprod Immunol,2006,56 (5-6):312-320.
    [23]Perricone R, Di Muzio G, Perricone C, et al. High levels of peripheral blood NK cells in women suffering from recurrent spontaneous abortion are reverted from high-dose intravenous immunoglobulins. Am J Reprod Immunol,2006, 55(3):232-239.
    [24]Lachapelle MH, Miron P, Hemmings R, et al. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome.J Immunol,1996,156(10):4027-4034.
    [25]Andalib A, Rezaie A, Oreizy F, et al.A study on stress, depression and NK cytotoxic potential in women with recurrent spontaneous abortion. Iran J Allergy Asthma Immunol,2006,5(1):9-16.
    [26]Wang Q, Li TC, Wu YP, et al. Reappraisal of peripheral NK cells in women with recurrent miscarriage.Reprod Biomed Online,2008,17(6):814-819.
    [27]Shakhar K, Rosenne E, Loewenthal R, et al.High NK cell activity in recurrent miscarriage:what are we really measuring? Hum Reprod,2006,21 (9):2421-2425.
    [28]Vargas RG, Bompeixe EP, Franca PP, et al. Activating killer cell immunoglobulin-like receptor genes'association with recurrent miscarriage. Am J Reprod Immunol,2009,62(1):34-43.
    [29]Takeshita T. Diagnosis and treatment of recurrent miscarriage associated with immunologic disorders:Is paternal lymphocyte immunization a relic of the past? J Nippon Med Sch,2004,71 (5):308-313.
    [30]Sugiura-Ogasawara M, Ozaki Y, Sonta S, et al.Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod,2005,20 (8):2325-2329.
    [31]Shakhar K, Ben-Eliyahu S,Loewenthal R, et al.Differences in number and activity of peripheral natural killer cells in primary versus secondary recurrent miscarriage. Fertil Steril,2003,80(2):368-375.
    [32]Jerzak M, Kniotek M, Mrozek J, et al.Sildenafil citrate decreased natural killer cell activity and enhanced chance of successful pregnancy in women with a history of recurrent miscarriage. Fertil Steril,2008,90(5):1848-1853.
    [33]Hiby SE, Regan L, Lo W, et al. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod,2008,23 (4):972-976.
    [34]Kinnunen AH, Surcel HM, Lehtinen M, et al.HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis-related tubal factor infertility:a case-control study. Hum Reprod,2002,17 (8):2073-2078.
    [35]Cohen CR, Sinei SS,Bukusi EA, et al. Human leukocyte antigen class II DQ alleles associated with Chlamydia trachomatis tubal infertility. Obstet Gynecol, 2000,95(1):72-77.
    [36]Zou Y, Mirbaha F,Stastny P. Contact inhibition causes strong downregulation of expression of MICA in human fibroblasts and decreased NK cell killing. Hum Immunol,2006,67(3):183-187.
    [37]Ostberg JR, Dayanc BE, Yuan M, et al.Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol,2007,82 (5):1322-1331.
    [38]Molinero LL, Domaica CI, Fuertes MB, et al. Intracellular expression of MICA in activated CD4 T lymphocytes and protection from NK cell-mediated MICA-dependent cytotoxicity. Hum Immunol,2006,67 (3):170-182.
    [39]Menier C, Riteau B, Carosella ED, et al.MICA triggering signal for NK cell tumor lysis is counteracted by HLA-G1-mediated inhibitory signal.Int J Cancer,2002,100(1):63-70.
    [40]Kloss M, Decker P, Baltz KM, et al. Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. J Immunol,2008,181(10):6711-6719.
    [41]Elsner L, Flugge PF, Lozano J, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells.J Cell Mol Med,2009.
    [42]Eleme K, Taner SB, Onfelt B, et al. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D.J Exp Med,2004,199(7):1005-1010.
    [43]Zou Y,Stastny P.Alternatively spliced forms of MICA and MICB lacking exon 3 in a human cell line and evidence of presence of similar RNA in human peripheral blood mononuclear cells. Immunogenetics,2002,54 (9):671-674.
    [44]Liu CJ, Lui MT, Chen HL, et al.MICA and MICB overexpression in oral squamous cell carcinoma. J Oral Pathol Med,2007,36(1):43-47.
    [45]Chung-Ji L, Yann-Jinn L, Hsin-Fu L, et al. The increase in the frequency of MICA gene A6 allele in oral squamous cell carcinoma. J Oral Pathol Med, 2002,31(6):323-328.
    [46]Tamaki S,Sanefuzi N, Kawakami M, et al. Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients.Hum Immunol,2008,69(2):88-93.
    [47]Schrambach S, Ardizzone M, Leymarie V, et al.In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One, 2007,2(6):e518.
    [48]Lo SS, Lee YJ, Wu CW, et al. The increase of MICA gene A9 allele associated with gastric cancer and less schirrous change. Br J Cancer,2004,90 (9):1809-1813.
    [49]Kopp R, Glas J, Lau-Werner U, et al. Association of MICA-TM and MICB C1_2_A microsatellite polymorphisms with tumor progression in patients with colorectal cancer. J Clin Immunol,2009,29(4):545-554.
    [50]Douik H,Ben Chaaben A,Attia Romdhane N,et al. Association of MICA-129 polymorphism with nasopharyngeal cancer risk in a Tunisian population. Hum Immunol,2009,70(1):45-48.
    [51]Clayton A,Tabi Z. Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis,2005,34(3):206-213.
    [52]Holdenrieder S, Stieber P, Peterfi A, et al.Soluble MICB in malignant diseases:analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother,2006,55(12):1584-1589.
    [53]Holdenrieder S,Stieber P, Peterfi A, et al. Soluble MICA in malignant diseases.Int J Cancer,2006,118(3):684-687.
    [54]Li K, Mandai M, Hamanishi J, et al. Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer:high expression of ULBP2 is an indicator of poor prognosis.Cancer Immunol Immunother,2009,58 (5):641-652.
    [55]Xiao P, Xue L, Che LH, et al. Expression and roles of MICA in human osteosarcoma. Histopathology,2008,52(5):640-642.
    [56]Song H, Kim J, Cosman D, et al. Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol,2006,239 (1):22-30.
    [57]Zou Y, Yang X, Jiang X, et al. High levels of soluble Major Histocompatibility Complex class I related chain A (MICA) are associated with biliary cast syndrome after liver transplantation. Transpl Immunol,2009, 21(4):210-214.
    [58]Tamaki S,Kawakami M, Yamanaka Y, et al. Relationship between soluble MICA and the MICA A5.1 homozygous genotype in patients with oral squamous cell carcinoma. Clin Immunol,2009,130 (3):331-337.
    [59]Rebmann V, Schutt P, Brandhorst D, et al. Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients.Clin Immunol,2007,123(1):114-120.
    [60]Boukouaci W, Busson M, Peffault de Latour R, et al.MICA-129 genotype, soluble MICA and anti-MICA antibodies as biomarkers of chronic graft versus host disease. Blood,2009.
    [61]Zou Y, Bresnahan W, Taylor RT, et al. Effect of human cytomegalovirus on expression of MHC class I-related chains A. J Immunol,2005,174 (5):3098-3104.
    [62]Wills MR, Ashiru O, Reeves MB, et al. Human cytomegalovirus encodes an MHC class I-like molecule(UL142) that functions to inhibit NK cell lysis. J Immunol,2005,175(11):7457-7465.
    [63]Park B, Kim Y, Shin J, et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity,2004,20(1):71-85.
    [64]Hassink GC, Barel MT, Van Voorden SB,et al.Ubiquitination of MHC class I heavy chains is essential for dislocation by human cytomegalovirus-encoded US2 but not US11.J Biol Chem,2006,281(40):30063-30071.
    [65]Barel MT, Hassink GC, van Voorden S, et al. Human cytomegalovirus-encoded US2 and US 11 target unassembled MHC class I heavy chains for degradation. Mol Immunol,2006,43 (8):1258-1266.
    [66]Munoz-Saa I, Cambra A, Pallares L, et al.Allelic diversity and affinity variants of MICA are imbalanced in Spanish patients with Behcet's disease. Scand J Immunol,2006,64(1):77-82.
    [67]Nishiyama M, Takahashi M, Manaka K, et al. Microsatellite polymorphisms of the MICA gene among Japanese patients with Behcet's disease. Can J Ophthalmol,2006,41 (2):210-215.
    [68]Field SF, Nejentsev S, Walker NM,et al. Sequencing-based genotyping and association analysis of the MICA and MICB genes in type 1 diabetes. Diabetes,2008,57(6):1753-1756.
    [69]Gambelunghe G, Brozzetti A, Ghaderi M, et al.MICA gene polymorphism in the pathogenesis of type 1 diabetes.Ann N Y Acad Sci,2007,1110:92-98.
    [70]Amroun H, Djoudi H, Busson M, et al.Early-onset ankylosing spondylitis is associated with a functional MICA polymorphism. Hum Immunol,2005,66 (10):1057-1061.
    [71]Goto K, Ota M, Ohno S, et al. MICA gene and ankylosing spondylitis:linkage analysis via a transmembrane-encoded triplet repeat polymorphism. Tissue Antigens,1997,49(5):503-507.
    [72]Rees MT, Downing J,Darke C.A typing system for the major histocompatibility complex class I chain related genes A and B using polymerase chain reaction with sequence-specific primers. Genet Test,2005,9 (2):93-110.
    [73]Raymond M RF.GENEPOP (Version 1.2):Population genetics software for exact test and ecumenicism. Heredity,1995,86 (3):248-249.
    [74]Pyo CW, Hur SS, Kim YK, et al.Distribution of MICA alleles and haplotypes associated with HLA in the Korean population. Hum Immunol,2003,64 (3):378-384.
    [75]Romphruk AV, Naruse TK, Romphruk A, et al.Diversity of MICA (PERB11.1)and HLA haplotypes in Northeastern Thais.Tissue Antigens, 2001,58(2):83-89.
    [76]King C,Feldman J, Waithaka Y, et al. Sexual risk behaviors and sexually transmitted infection prevalence in an outpatient psychiatry clinic.Sex Transm Dis,2008,35(10):877-882.
    [77]Steinle A, Li P, Morris DL, et al.Interactions of human NKG2D with its ligands MICA, MICB,and homologs of the mouse RAE-1 protein family. Immunogenetics,2001,53(4):279-287.
    [78]Hughes EH, Collins RW, Kondeatis E, et al. Associations of major histocompatibility complex class I chain-related molecule polymorphisms with Behcet's disease in Caucasian patients.Tissue Antigens,2005,66 (3):195-199.
    [79]Gupta M, Nikitina-Zake L, Zarghami M, et al.Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Hum Immunol,2003,64(5):553-561.
    [80]Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature,2002,419 (6908):734-738.
    [81]Raffaghello L, Prigione I, Airoldi I, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia,2004,6 (5):558-568.
    [82]Salih HR, Rammensee HG,Steinle A. Cutting edge:down-regulation of MICA on human tumors by proteolytic shedding. J Immunol,2002,169 (8):4098-4102.
    [83]Yan WH, Fan LA, Yang JQ, et al.HLA-G polymorphism in a Chinese Han population with recurrent spontaneous abortion. Int J Immunogenet,2006,33 (1):55-58.
    [84]Wilton A. Polymorphism of the human CD46 gene in normal individuals and in recurrent spontaneous abortion. Hum Immunol,1992,33(1):65-66.
    [85]Steffensen R, Christiansen OB,Bennett EP, et al. HLA-E polymorphism in patients with recurrent spontaneous abortion. Tissue Antigens,1998,52 (6):569-572.
    [86]Karhukorpi J, Laitinen T, Kivela H, et al. IL-1 receptor antagonist gene polymorphism in recurrent spontaneous abortion. J Reprod Immunol,2003,58 (1):61-67.
    [87]Li TC, Makris M, Tomsu M, et al. Recurrent miscarriage:aetiology, management and prognosis. Hum Reprod Update,2002,8 (5):463-481.
    [88]Regan L,Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol,2000,14 (5):839-854.
    [89]Exalto N. Recurrent miscarriage. International Congress Series,2005, 1279:247-250.
    [90]Sasaki T, Yamada H, Kato EH, et al.Increased frequency of HLA-DR4 allele in women with unexplained recurrent spontaneous abortions, detected by the method of PCR-SSP. J Reprod Immunol,1997,32(3):273-279.
    [91]Bainbridge DR, Ellis SA,Sargent IL. The short forms of HLA-G are unlikely to play a role in pregnancy because they are not expressed at the cell surface.J Reprod Immunol,2000,47(1):1-16.
    [92]van der Ven K, Pfeiffer K,Skrablin S.HLA-G polymorphisms and molecule function-questions and more questions--a review. Placenta,2000,21 Suppl A:S86-92.
    [93]Aldrich CL, Stephenson MD, Karrison T, et al. HLA-G genotypes and pregnancy outcome in couples with unexplained recurrent miscarriage. Mol Hum Reprod,2001,7(12):1167-1172.
    [94]Pfeiffer KA,Fimmers R, Engels G, et al. The HLA-G genotype is potentially associated with idiopathic recurrent spontaneous abortion. Mol Hum Reprod, 2001,7(4):373-378.
    [95]Zwirner NW, Fernandez-Vina MA,Stastny P. MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes.Immunogenetics,1998,47(2):139-148.
    [96]Zwirner NW, Dole K,Stastny P. Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes.Hum Immunol, 1999,60(4):323-330.
    [97]Hey NA, Li TC, Devine PL, et al. MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients.Hum Reprod,1995,10(10):2655-2662.
    [98]Aplin JD, Hey NA,Li TC. MUC1 as a cell surface and secretory component of endometrial epithelium:reduced levels in recurrent miscarriage. Am J Reprod Immunol,1996,35(3):261-266.
    [99]Aplin JD, Hey NA,Graham RA.Human endometrial MUC1 carries keratan sulfate:characteristic glycoforms in the luminal epithelium at receptivity. Glycobiology,1998,8(3):269-276.
    [100]Home AW, Lalani EN, Margara RA, et al.The effects of sex steroid hormones and interleukin-1-beta on MUC1 expression in endometrial epithelial cell lines. Reproduction,2006,131 (4):733-742.
    [101]Home AW, Lalani EN, Margara RA, et al. The expression pattern of MUC1 glycoforms and other biomarkers of endometrial receptivity in fertile and infertile women. Mol Reprod Dev,2005,72(2):216-229.
    [102]den Hartog JE, Land JA, Stassen FR, et al. Serological markers of persistent C. trachomatis infections in women with tubal factor subfertility. Hum Reprod, 2005,20(4):986-990.
    [103]Ville Y, Leruez M, Glowaczower E, et al.The role of Chlamydia trachomatis and Neisseria gonorrhoeae in the aetiology of ectopic pregnancy in Gabon. Br J Obstet Gynaecol,1991,98(12):1260-1266.
    [104]De Muylder X, Laga M, Tennstedt C, et al.The role of Neisseria gonorrhoeae and Chlamydia trachomatis in pelvic inflammatory disease and its sequelae in Zimbabwe. J Infect Dis,1990,162(2):501-505.
    [105]Morre SA, van den Brule AJ, Rozendaal L, et al.The natural course of asymptomatic Chlamydia trachomatis infections:45% clearance and no development of clinical PID after one-year follow-up.Int J STD AIDS,2002, 13 Suppl 2:12-18.
    [106]Hagiwara T. [Information from the complete genome sequence of Chlamydia trachomatis:an obligate intracellular pathogen of humans].Tanpakushitsu Kakusan Koso,2000,45(8):1367-1370.
    [107]Stephens RS,Kalman S, Lammel C, et al.Genome sequence of an obligate intracellular pathogen of humans:Chlamydia trachomatis.Science,1998,282 (5389):754-759.
    [108]Pinkerton SD,Layde PM. Using sexually transmitted disease incidence as a surrogate marker for HIV incidence in prevention trials:a modeling study. Sex Transm Dis,2002,29(5):298-307.
    [109]Wallin KL, Wiklund F, Luostarinen T, et al. A population-based prospective study of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer, 2002,101(4):371-374.
    [110]Anttila T, Tenkanen L, Lumme S, et al. Chlamydial antibodies and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev,2005,14(2):385-389.
    [111]Carvalho JP,Carvalho FM. Is Chlamydia-infected tubal fimbria the origin of ovarian cancer? Med Hypotheses,2008,71(5):690-693.
    [112]Cohen CR,Brunham RC.Pathogenesis of Chlamydia induced pelvic inflammatory disease.Sex Transm Infect,1999,75(1):21-24.
    [113]den Hartog JE, Ouburg S,Land JA, et al.Do host genetic traits in the bacterial sensing system play a role in the development of Chlamydia trachomatis-associated tubal pathology in subfertile women? BMC Infect Dis, 2006,6:122.
    [114]Bernstein RC,Yalcinkaya TM. Utilizing Chlamydia trachomatis IgG serology with HSG to diagnose tuboperitoneal-factor infertility. W V Med J,2003,99 (3):105-107.
    [115]Cetin MT, Vardar MA, Aridogan N, et al.Role of Chlamydia trachomatis infections in infertility due to tubal factor. Indian J Med Res,1992, 95:139-143.
    [116]Guerra-Infante FM,Carballo-Perea R,Zamora-Ruiz A,et al. Evaluation of an indirect immunofluorescence assay for detecting Chlamydia trachomatis as a method for diagnosing tubal factor infertility in Mexican women.Int J Fertil Womens Med,2003,48(2):74-82.
    [117]Pal S,Fielder TJ, Peterson EM, et al. Protection against infertility in a BALB/c mouse salpingitis model by intranasal immunization with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect Immun,1994,62 (8):3354-3362.
    [118]Patton DL, Askienazy-Elbhar M, Henry-Suchet J, et al.Detection of Chlamydia trachomatis in fallopian tube tissue in women with postinfectious tubal infertility. Am J Obstet Gynecol,1994,171(1):95-101.
    [119]Zana J, Thomas D, Muffat-Joly M, et al. An experimental model for salpingitis due to Chlamydia trachomatis and residual tubal infertility in the mouse. Hum Reprod,1990,5 (3):274-278.
    [120]den Hartog JE, Land JA, Stassen FR, et al. The role of chlamydia genus-specific and species-specific IgG antibody testing in predicting tubal disease in subfertile women. Hum Reprod,2004,19 (6):1380-1384.
    [121]Murillo LS, Land JA, Pleijster J, et al. Interleukin-1B (IL-1B) and interleukin-1 receptor antagonist (IL-1RN) gene polymorphisms are not associated with tubal pathology and Chlamydia trachomatis-related tubal factor subfertility. Hum Reprod,2003,18(11):2309-2314.
    [122]Malik A, Jain S, Rizvi M, et al. Chlamydia trachomatis infection in women with secondary infertility. Fertil Steril,2009,91(1):91-95.
    [123]Garnett GP. How much infertility does chlamydia cause? Sex Transm Infect, 2008,84(3):157-158.
    [124]Omo-Aghoja LO, Okonofua FE, Onemu SO, et al.Association of Chlamydia trachomatis serology with tubal infertility in Nigerian women. J Obstet Gynaecol Res,2007,33 (5):688-695.
    [125]Tukur J, Shittu SO,Abdul AM.A case control study of active genital Chlamydia trachomatis infection among patients with tubal infertility in northern Nigeria. Trop Doct,2006,36(1):14-16.
    [126]Arya R, Mannion PT, Woodcock K, et al.Incidence of genital Chlamydia trachomatis infection in the male partners attending an infertility clinic.J Obstet Gynaecol,2005,25(4):364-367.
    [127]Cortinas P, Munoz MG, Loureiro CL, et al. Follicular fluid antibodies to Chlamydia trachomatis and human heat shock protein-60 kDa and infertility in women. Arch Med Res,2004,35(2):121-125.
    [128]Sharma K, Aggarwal A,Arora U. Seroprevalence of Chlamydia trachomatis in women with bad obstetric history and infertility. Indian J Med Sci,2002,56 (5):216-217.
    [129]Veenemans LM,van der Linden PJ. The value of Chlamydia trachomatis antibody testing in predicting tubal factor infertility. Hum Reprod,2002,17 (3):695-698.
    [130]Perquin DA, Beersma MF, de Craen AJ, et al.The value of Chlamydia trachomatis-specific IgG antibody testing and hysterosalpingography for predicting tubal pathology and occurrence of pregnancy. Fertil Steril,2007,88 (1):224-226.
    [131]den Hartog JE, Morre SA,Land JA. Chlamydia trachomatis-associated tubal factor subfertility:Immunogenetic aspects and serological screening. Hum Reprod Update,2006,12 (6):719-730.
    [132]Cohen CR, Gichui J, Rukaria R, et al.Immunogenetic correlates for Chlamydia trachomatis-associated tubal infertility. Obstet Gynecol,2003,101 (3):438-444.
    [133]Zhong G, Liu L, Fan T, et al. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells.J Exp Med,2000,191(9):1525-1534.
    [134]Srivastava P, Jha R, Bas S,et al. In infertile women, cells from Chlamydia trachomatis infected sites release higher levels of interferon-gamma, interleukin-10 and tumor necrosis factor-alpha upon heat-shock-protein stimulation than fertile women. Reprod Biol Endocrinol,2008,6:20.
    [135]Bauer S,Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science,1999,285 (5428):727-729.
    [136]Gaudieri S,Leelayuwat C,Townend DC, et al.Allelic and interlocus comparison of the PERB11 multigene family in the MHC.Immunogenetics, 1997,45(3):209-216.
    [137]Visser CJ, Tilanus MG, Tatari Z, et al. Sequencing-based typing of MICA reveals 33 alleles:a study on linkage with classical HLA genes. Immunogenetics,1999,49 (6):561-566.
    [138]Petersdorf EW, Shuler KB,Longton GM, et al. Population study of allelic diversity in the human MHC class I-related MIC-A gene. Immunogenetics, 1999,49(7-8):605-612.
    [139]Zhang Y, Lazaro AM, Lavingia B, et al. Typing for all known MICA alleles by group-specific PCR and SSOP.Hum Immunol,2001,62(6):620-631.
    [140]Bjartling C, Osser S,Johnsson A, et al.Clinical manifestations and epidemiology of the new genetic variant of Chlamydia trachomatis. Sex Transm Dis,2009,36(9):529-535.
    [141]Porras C, Safaeian M, Gonzalez P, et al. Epidemiology of genital Chlamydia trachomatis infection among young women in Costa Rica. Sex Transm Dis, 2008,35(5):461-468.
    [142]Chen MY,Donovan B.Genital Chlamydia trachomatis infection in Australia: epidemiology and clinical implications. Sex Health,2004,1 (4):189-196.
    [143]Norman J. Epidemiology of female genital Chlamydia trachomatis infections. Best Pract Res Clin Obstet Gynaecol,2002,16(6):775-787.
    [144]Yu JT, Tang WY, Lau KH, et al. Asymptomatic urethral infection in male sexually transmitted disease clinic attendees. Int J STD AIDS,2008,19 (3):155-158.
    [145]Wang Q, Liang G, Ye S, et al. Prevalence and epidemiologic correlates of sexually transmitted Chlamydia trachomatis infection in a selected population. Chin Med Sci J,1993,8(2):107-110.
    [146]Rowhani-Rahbar A, Niccolai LM, Dunne DW, et al.Comparative epidemiology of Chlamydia trachomatis infection among men attending sexually transmitted disease clinics with and without indication for testing. Int J STD AIDS,2006,17(7):453-458.
    [147]Rietmeijer CA, Judson FN, Van Hensbroek MB,et al. Unsuspected Chlamydia trachomatis infection in heterosexual men attending a sexually transmitted diseases clinic:evaluation of risk factors and screening methods. Sex Transm Dis,1991,18(1):28-35.
    [148]Drew RJ, Cormican M, Machale E, et al. Low rate of co-infection in patients presenting with Chlamydia trachomatis to a sexually transmitted infection clinic in Galway, Ireland. Int J STD AIDS,2007,18(11):796.
    [149]Hook CE, Telyatnikova N, Goodall JC, et al.Effects of Chlamydia trachomatis infection on the expression of natural killer (NK) cell ligands and susceptibility to NK cell lysis. Clin Exp Immunol,2004,138(1):54-60.
    [150]Bilenki L, Wang S,Yang J, et al. NK T cell activation promotes Chlamydia trachomatis infection in vivo.J Immunol,2005,175(5):3197-3206.
    [151]Grotenbreg GM, Roan NR, Guillen E, et al.Discovery of CD8+T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers.Proc Natl Acad Sci U S A,2008,105(10):3831-3836.
    [152]Gondek DC, Roan NR,Starnbach MN.T cell responses in the absence of IFN-gamma exacerbate uterine infection with Chlamydia trachomatis. J Immunol,2009,183(2):1313-1319.
    [153]Cragnolini JJ, Garcia-Medel N,de Castro JA. Endogenous processing and presentation of T-cell epitopes from Chlamydia trachomatis with relevance in HLA-B27-associated reactive arthritis. Mol Cell Proteomics,2009,8 (8):1850-1859.
    [154]Beatty WL.Lysosome repair enables host cell survival and bacterial persistence following Chlamydia trachomatis infection. Cell Microbiol,2007, 9(9):2141-2152.
    [155]Starnbach MN,Loomis WP,Ovendale P, et al. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+T cell response.J Immunol,2003,171 (9):4742-4749.
    [156]Perry LL, Su H, Feilzer K, et al. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J Immunol,1999,162 (6):3541-3548.
    [157]Nagarajan UM, Ojcius DM, Stahl L, et al. Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4,but largely dependent on MyD88.J Immunol,2005,175 (1):450-460.
    [158]Huston WM, Theodoropoulos C, Mathews SA, et al. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol,2008,8:190.
    [159]Al-Zeer MA, Al-Younes HM, Braun PR, et al. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One,2009,4 (2):e4588.
    [160]Yang X, HayGlass KT,Brunham RC.Genetically determined differences in IL-10 and IFN-gamma responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J Immunol,1996,156 (11):4338-4344.
    [161]Nettelnbreker E, Zeidler H, Bartels H, et al.Studies of persistent infection by Chlamydia trachomatis serovar K in TPA-differentiated U937 cells and the role of IFN-gamma. J Med Microbiol,1998,47(2):141-149.
    [162]Zambello R, Falco M, Della Chiesa M, et al. Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood,2003,102(5):1797-1805.
    [163]Uhrberg M. Shaping the human NK cell repertoire:an epigenetic glance at KIR gene regulation. Mol Immunol,2005,42 (4):471-475.
    [164]Shah N,Shpall EJ. NK antibody therapy:KIR-ative intent. Blood,2009,114 (13):2567-2568.
    [165]Morvan M, David G, Sebille V, et al. Autologous and allogeneic HLA KIR ligand environments and activating KIR control KIR NK-cell functions. Eur J Immunol,2008,38(12):3474-3486.
    [166]Korbel DS, Norman PJ, Newman KC, et al.Killer Ig-like receptor (KIR) genotype predicts the capacity of human KIR-positive CD56dim NK cells to respond to pathogen-associated signals.J Immunol,2009,182 (10):6426-6434.
    [167]Huard B,Karlsson L,Triebel F. KIR down-regulation on NK cells is associated with down-regulation of activating receptors and NK cell inactivation. Eur J Immunol,2001,31(6):1728-1735.
    [168]Diermayr S, Himmelreich H, Durovic B, et al.NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood,2008,111(3):1428-1436.
    [169]Zamai L, Galeotti L, Zotto GD, et al. Identification of a NCR(+)/NKG2D(+)/LFA-1(low)/CD94(-)immature human NK cell subset. Cytometry A,2009.
    [170]Soriani A, Zingoni A, Cerboni C, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood,2009,113(15):3503-3511.
    [171]Roda-Navarro P,Reyburn HT. The traffic of the NKG2D/Dap10 receptor complex during natural killer (NK) cell activation. J Biol Chem,2009,284 (24):16463-16472.
    [172]Domaica CI, Fuertes MB,Rossi LE, et al.Tumour-experienced T cells promote NK cell activity through trogocytosis of NKG2D and NKp46 ligands. EMBO Rep,2009,10 (8):908-915.
    [173]Basu S, Eriksson M, Pioli PA, et al. Human uterine NK cells interact with uterine macrophages via NKG2D upon stimulation with PAMPs.Am J Reprod Immunol,2009,61(1):52-61.
    [174]O'Connell CM, Ionova IA, Quayle AJ, et al.Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions.Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem,2006,281(3):1652-1659.
    [175]Menon-Johansson AS, Winston A, Matthews G, et al. The first point prevalence study of genital Chlamydia trachomatis infection in young male inmates in the UK. Int J STD AIDS,2005,16(12):799-801.
    [176]Hafner L, Beagley K,Timms P.Chlamydia trachomatis infection:host immune responses and potential vaccines. Mucosal Immunol,2008,1(2):116-130.
    [177]Gotz HM, Veldhuijzen IK, Habbema JD, et al. Prediction of Chlamydia trachomatis infection:application of a scoring rule to other populations. Sex Transm Dis,2006,33(6):374-380.
    [178]Burckhardt F, Warner P,Young H.What is the impact of change in diagnostic test method on surveillance data trends in Chlamydia trachomatis infection? Sex Transm Infect,2006,82(1):24-30.
    [179]Bakken IJ, Nordbo SA,Skjeldestad FE. Chlamydia trachomatis testing patterns and prevalence of genital chlamydial infection among young men and women in central Norway 1990-2003:a population-based registry study. Sex Transm Dis,2006,33(1):26-30.
    [180]Andersen B, Ostergaard L, Thomsen RW, et al.Chlamydia trachomatis infection and risk of ectopic pregnancy. Sex Transm Dis,2007,34(1):59; author reply 60.
    [181]Al-Ramahi M,Mahafzah A, Saleh S,et al. Prevalence of Chlamydia trachomatis infection in infertile women at a university hospital in Jordan. East Mediterr Health J,2008,14(5):1148-1154.
    [182]Agrawal T, Vats V, Wallace PK, et al. Role of cervical dendritic cell subsets, co-stimulatory molecules, cytokine secretion profile and beta-estradiol in development of sequalae to Chlamydia trachomatis infection. Reprod Biol Endocrinol,2008,6:46.
    [183]Wilkowska-Trojniel M, Zdrodowska-Stefanow B,Ostaszewska-Puchalska I, et al.Chlamydia trachomatis urogenital infection in women with infertility. Adv Med Sci,2009,54(1):82-85.
    [184]Ray K. Chlamydia trachomatis & infertility. Indian J Med Res,2006,123 (6):730-734.
    [185]Morre SA, Murillo LS,Bruggeman CA, et al. The role that the functional Asp299Gly polymorphism in the toll-like receptor-4 gene plays in susceptibility to Chlamydia trachomatis-associated tubal infertility. J Infect Dis,2003,187(2):341-342;author reply 342-343.
    [186]Malik A, Jain S,Hakim S,et al. Chlamydia trachomatis infection & female infertility. Indian J Med Res,2006,123 (6):770-775.
    [187]El Qouqa IA, Shubair ME, Al Jarousha AM, et al.Prevalence of Chlamydia trachomatis among women attending gynecology and infertility clinics in Gaza,Palestine. Int J Infect Dis,2009,13(3):334-341.
    [188]Ying S,Christian JG, Paschen SA, et al.Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular Inhibitor of Apoptosis Proteins and Mcl-1.Microbes Infect,2008,10(1):97-101.
    [189]Wahl C, Maier S,Marre R, et al.Chlamydia pneumoniae induces the expression of inhibitor of apoptosis 2 (c-IAP2) in a human monocytic cell line by an NF-kappaB-dependent pathway. Int J Med Microbiol,2003,293 (5):377-381.
    [190]Sharma M,Rudel T. Apoptosis resistance in Chlamydia-infected cells:a fate worse than death? FEMS Immunol Med Microbiol,2009,55(2):154-161.
    [191]Schwarzenbacher R,Stenner-Liewen F,Liewen H,et al. Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis.J Biol Chem,2004,279 (28):29320-29324.
    [192]Qiu H, Fan Y, Joyee AG, et al.Type I IFNs enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local macrophages.J Immunol,2008,181 (3):2092-2102.
    [193]Miyairi I,Byrne GI.Chlamydia and programmed cell death. Curr Opin Microbiol,2006,9(1):102-108.
    [194]Carratelli CR, Rizzo A, Catania MR, et al.Chlamydia pneumoniae infections prevent the programmed cell death on THP-1 cell line.FEMS Microbiol Lett, 2002,215(1):69-74.
    [195]Misaghi S, Balsara ZR, Catic A, et al.Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol, 2006,61(1):142-150.
    [196]Zhong G, Fan T,Liu L.Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1.J Exp Med,1999,189(12):1931-1938.
    [197]Lanier LL.NK cell receptors. Annu Rev Immunol,1998,16:359-393.
    [198]Suemizu H, Radosavljevic M, Kimura M, et al.A basolateral sorting motif in the MICA cytoplasmic tail. Proc Natl Acad Sci U S A,2002,99 (5):2971-2976.
    [199]Thomas M, Boname JM, Field S, et al. Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci U S A,2008,105 (5):1656-1661.
    [200]Sun J,Schoborg RV. The host adherens junction molecule nectin-1 is degraded by chlamydial protease-like activity factor (CPAF) in Chlamydia trachomatis-infected genital epithelial cells. Microbes Infect,2009,11 (1):12-19.
    [201]Pirbhai M, Dong F, Zhong Y, et al.The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells.J Biol Chem,2006,281(42):31495-31501.
    [202]Huang Z, Feng Y, Chen D, et al. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF.Cell Host Microbe,2008,4 (6):529-542.
    [203]Dong F, Sharma J, Xiao Y, et al.Intramolecular dimerization is required for the chlamydia-secreted protease CPAF to degrade host transcriptional factors. Infect Immun,2004,72(7):3869-3875.
    [204]Chen D, Chai J, Hart PJ, et al. Identifying catalytic residues in CPAF,a Chlamydia-secreted protease. Arch Biochem Biophys,2009,485(1):16-23.
    [205]Zhong G, Fan P, Ji H, et al. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors.J Exp Med,2001,193(8):935-942.
    [1]Moretta L, Bottino C, Pende D, et al. Human natural killer cells:their origin, receptors and function. Eur J Immunol,2002,32 (5):1205-1211.
    [2]Vivier E,Romagne F. Good news, bad news for missing-self recognition by NK cells:autoimmune control but viral evasion. Immunity,2007,26 (5):549-551.
    [3]Watzl C.The NKG2D receptor and its ligands-recognition beyond the "missing self? Microbes Infect,2003,5(1):31-37.
    [4]Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol,2003,3(10):781-790.
    [5]Mistry AR,O'Callaghan CA.Regulation of ligands for the activating receptor NKG2D.Immunology,2007,121 (4):439-447.
    [6]Gumperz JE, Miyake S,Yamamura T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med,2002,195 (5):625-636.
    [7]Jamieson AM, Diefenbach A, McMahon CW, et al.The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity,2002, 17(1):19-29.
    [8]Eagle RA,Trowsdale J. Promiscuity and the single receptor:NKG2D.Nat Rev Immunol,2007,7(9):737-744.
    [9]Groh V, Bruhl A, El-Gabalawy H, et al. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci U S A,2003,100(16):9452-9457.
    [10]Bahram S,Inoko H, Shiina T, et al.MIC and other NKG2D ligands:from none to too many. Curr Opin Immunol,2005,17 (5):505-509.
    [11]Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity,2001,14(2):123-133.
    [12]Suemizu H, Radosavljevic M, Kimura M, et al.A basolateral sorting motif in the MICA cytoplasmic tail. Proc Natl Acad Sci U S A,2002,99 (5):2971-2976.
    [13]Li Z, Groh V, Strong RK, et al.A single amino acid substitution causes loss of expression of a MICA allele. Immunogenetics,2000,51 (3):246-248.
    [14]Zhang Y, Han M, Vorhaben R, et al.Study of MICA alleles in 201 African Americans by multiplexed single nucleotide extension (MSNE) typing. Hum Immunol,2003,64(1):130-136.
    [15]Romphruk AV, Naruse TK, Romphruk A, et al.Diversity of MICA (PERB11.1) and HLA haplotypes in Northeastern Thais.Tissue Antigens,2001,58 (2):83-89.
    [16]Pyo CW, Hur SS,Kim YK, et al.Distribution of MICA alleles and haplotypes associated with HLA in the Korean population. Hum Immunol,2003,64 (3):378-384.
    [17]Piancatelli D, Del Beato T, Oumhani K, et al.MICA polymorphism in a population from north Morocco, Metalsa Berbers, using sequence-based typing.Hum Immunol,2005,66(8):931-936.
    [18]Clare R.Iley MTR, Jonathan Downing, John H. Lazarus, Christopher Darke. MICA and MICB polymorphism in the Senegalese.Human Immunology, 2004,65 (9-10,Supplement 1):S92.
    [19]Ota M, Katsuyama Y, Mizuki N, et al. Trinucleotide repeat polymorphism within exon 5 of the MICA gene (MHC class I chain-related gene A):allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italian. Tissue Antigens, 1997,49(5):448-454.
    [20]Fodil N, Laloux L, Wanner V,et al.Allelic repertoire of the human MHC class I MICA gene.Immunogenetics,1996,44 (5):351-357.
    [21]Yisun Fan YZ, Peter Stastny. Distribution of MICB polymorphism in caucasian and African American subjects by SBT and PCR-SSP. Human Immunology,2006,67 (Supplement 1):S149.
    [22]Martinez-Borra J, Rodrigo L, Rodriguez-Rodero S,et al.The allele MICB 0050204, over-represented in the Caucasian population, has an additional exon resulting from a new splice junction sequence. Hum Immunol,2007,68 (8):705-707.
    [23]Mok J, Bang D, Lee ES, et al. Strong association of MIC-A*009 of extracellular domains and MIC-A*A6 of transmembrane domain in Korean patients with Behcet's disease. Adv Exp Med Biol,2003,528:221-224.
    [24]Hughes EH, Collins RW, Kondeatis E, et al. Associations of major histocompatibility complex class I chain-related molecule polymorphisms with Behcet's disease in Caucasian patients.Tissue Antigens,2005,66 (3):195-199.
    [25]Kimura T, Goto K, Yabuki K, et al.Microsatellite polymorphism within the MICB gene among Japanese patients with Behcet's disease. Hum Immunol, 1998,59(8):500-502.
    [26]Singal DP, Li J,Zhang G. Microsatellite polymorphism of the MICA gene and susceptibility to rheumatoid arthritis.Clin Exp Rheumatol,2001,19 (4):451-452.
    [27]Gupta M, Nikitina-Zake L, Zarghami M, et al.Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Hum Immunol,2003,64 (5):553-561.
    [28]Ding Y, Xia B,Lu M, et al. MHC class I chain-related gene A-A5.1 allele is associated with ulcerative colitis in Chinese population. Clin Exp Immunol, 2005,142(1):193-198.
    [29]Li Y, Xia B, Lu M, et al.MICB0106 gene polymorphism is associated with ulcerative colitis in central China. Int J Colorectal Dis,2009.
    [30]Rodriguez-Rodero S,Rodrigo L, Fdez-Morera JL, et al.MHC class I chain-related gene B promoter polymorphisms and celiac disease. Hum Immunol,2006,67(3):208-214.
    [31]Patricia P. Francaa FR, Maria Da Graca Bicalho.MICA and MICB gene polymorphism and Recurrent Spontaneous Abortion. Human Immunology, 2008,69 (Supplement 1,):S45.
    [32]Zoodsma M, Nolte M, Schipper M, et al. Analysis of the entire HLA region in susceptibility for cervical cancer:a comprehensive study. J Med Genet,2005, 42 (8):e49.
    [33]Douik H, Ben Chaaben A, Attia Romdhane N, et al.Association of MICA-129 polymorphism with nasopharyngeal cancer risk in a Tunisian population. Hum Immunol,2009,70(1):45-48.
    [34]Kopp R, Glas J, Lau-Werner U, et al. Association of MICA-TM and MICB C1_2_A microsatellite polymorphisms with tumor progression in patients with colorectal cancer. J Clin Immunol,2009,29(4):545-554.
    [35]Lo SS,Lee YJ, Wu CW, et al.The increase of MICA gene A9 allele associated with gastric cancer and less schirrous change. Br J Cancer,2004,90 (9):1809-1813.
    [36]Shirts BH, Kim JJ, Reich S,et al. Polymorphisms in MICB are associated with human herpes virus seropositivity and schizophrenia risk. Schizophr Res,2007, 94(1-3):342-353.
    [37]Mei B, Luo Q, Du K, et al.Association of MICA gene polymorphisms with Chlamydia trachomatis infection and related tubal pathology in infertile women. Hum Reprod,2009.
    [38]Chalupny NJ, Sutherland CL, Lawrence WA, et al. ULBP4 is a novel ligand for human NKG2D.Biochem Biophys Res Commun,2003,305(1):129-135.
    [39]Poggi A, Prevosto C, Massaro AM, et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering:role of NKp30 and NKG2D receptors.J Immunol,2005,175(10):6352-6360.
    [40]Aida K, Russomando G, Kikuchi M, et al.High frequency of MIC null haplotype (HLA-B48-MICA-del-MICB*0107 N) in the Angaite Amerindian community in Paraguay. Immunogenetics,2002,54 (6):439-441.
    [41]Groh V, Bahram S, Bauer S,et al.Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A,1996,93 (22):12445-12450.
    [42]Venkataraman GM, Suciu D, Groh V, et al.Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D.J Immunol,2007,178(2):961-969.
    [43]Gasser S,Orsulic S,Brown EJ, et al.The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature,2005,436 (7054):1186-1190.
    [44]Stern-Ginossar N,Mandelboim O.An integrated view of the regulation of NKG2D ligands.Immunology,2009,128(1):1-6.
    [45]Nedvetzki S,Sowinski S,Eagle RA, et al.Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood,2007,109(9):3776-3785.
    [46]Boissel N, Rea D, Tieng V,et al.BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia.
    J Immunol,2006,176(8):5108-5116.
    [47]Stern-Ginossar N, Gur C, Biton M, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D.Nat Immunol,2008,9(9):1065-1073.
    [48]Hornstein E,Shomron N. Canalization of development by microRNAs.Nat Genet,2006,38 Suppl:S20-24.
    [49]Varghese J,Cohen SM.microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev,2007,21(18):2277-2282.
    [50]Leung AK,Sharp PA.microRNAs:a safeguard against turmoil? Cell,2007, 130(4):581-585.
    [51]Vasudevan S,Tong Y,Steitz JA.Switching from repression to activation: microRNAs can up-regulate translation. Science,2007,318 (5858):1931-1934.
    [52]Nice TJ, Coscoy L,Raulet DH. Posttranslational regulation of the NKG2D ligand Multl in response to cell stress.J Exp Med,2009,206 (2):287-298.
    [53]Cerwenka A, Bakker AB,McClanahan T, et al.Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity,2000,12 (6):721-727.
    [54]Guerra N,Tan YX,Joncker NT, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity,2008,28 (4):571-580.
    [55]Doubrovina ES, Doubrovin MM, Vider E, et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol,2003,171(12):6891-6899.
    [56]Groh V, Wu J, Yee C, et al.Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature,2002,419 (6908):734-738.
    [57]Ebihara T, Masuda H, Akazawa T, et al. Induction of NKG2D ligands on human dendritic cells by TLR ligand stimulation and RNA virus infection.Int Immunol,2007,19(10):1145-1155.
    [58]Schrama D, Terheyden P, Otto K, et al. Expression of the NKG2D ligand UL16 binding protein-1 (ULBP-1)on dendritic cells.Eur J Immunol,2006,36 (1):65-72.
    [59]Cerboni C, Zingoni A, Cippitelli M, et al.Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis.Blood,2007,110 (2):606-615.
    [60]Rabinovich BA, Li J, Shannon J, et al. Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells.J Immunol,2003,170 (7):3572-3576.
    [61]Wu J, Song Y, Bakker AB,et al.An activating immunoreceptor complex formed by NKG2D and DAP10. Science,1999,285 (5428):730-732.
    [62]Diefenbach A, Tomasello E, Lucas M, et al.Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D.Nat Immunol,2002,3(12):1142-1149.
    [63]Rosen DB,Araki M, Hamerman JA, et al.A Structural basis for the association of DAP12 with mouse, but not human, NKG2D.J Immunol,2004, 173(4):2470-2478.
    [64]Ogasawara K,Lanier LL. NKG2D in NK and T cell-mediated immunity. J Clin Immunol,2005,25(6):534-540.
    [65]Billadeau DD, Upshaw JL, Schoon RA, et al. NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol,2003,4(6):557-564.
    [66]Oppenheim DE, Roberts SJ, Clarke SL, et al.Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance.Nat Immunol,2005,6 (9):928-937.
    [67]Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+T cells.Blood,2004,103 (8):3065-3072.
    [68]Li P, Morris DL, Willcox BE, et al.Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol,2001,2(5):443-451.
    [69]Radaev S,Rostro B, Brooks AG,et al.Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity,2001,15(6):1039-1049.
    [70]Hanna J, Gonen-Gross T, Fitchett J, et al.Novel APC-like properties of human NK cells directly regulate T cell activation.J Clin Invest,2004,114 (11):1612-1623.
    [71]Roda-Navarro P, Vales-Gomez M,Chisholm SE,et al. Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function.Proc Natl Acad Sci U S A,2006,103 (30):11258-11263.
    [72]Markiewicz MA, Carayannopoulos LN, Naidenko OV, et al.Costimulation through NKG2D enhances murine CD8+CTL function:similarities and differences between NKG2D and CD28 costimulation. J Immunol,2005,175 (5):2825-2833.
    [73]Diefenbach A, Jamieson AM, Liu SD, et al.Ligands for the murine NKG2D receptor:expression by tumor cells and activation of NK cells and macrophages.Nat Immunol,2000,1 (2):119-126.
    [74]Sollid LM.Coeliac disease:dissecting a complex inflammatory disorder. Nat Rev Immunol,2002,2 (9):647-655.
    [75]Maiuri L, Ciacci C, Auricchio S,et al.Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology,2000,119 (4):996-1006.
    [76]Mention JJ, Ben Ahmed M, Begue B, et al.Interleukin 15:a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology,2003,125 (3):730-745.
    [77]Meresse B,Chen Z, Ciszewski C, et al.Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity,2004,21 (3):357-366.
    [78]Ogasawara K, Hamerman JA, Hsin H, et al.Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity,2003,18(1):41-51.
    [79]Busche A,Goldmann T, Naumann U,et al. Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A. Hum Gene Ther,2006,17(2):135-146.
    [80]Carbone E, Neri P, Mesuraca M, et al.HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells.Blood,2005,105(1):251-258.
    [81]Groh V, Rhinehart R, Secrist H, et al.Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB.Proc Natl Acad Sci U S A,1999,96(12):6879-6884.
    [82]Groh V, Steinle A, Bauer S,et al.Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells.Science,1998,279 (5357):1737-1740.
    [83]Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood,2003, 102(4):1389-1396.
    [84]Pende D, Rivera P, Marcenaro S,et al.Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes:analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res,2002,62 (21):6178-6186.
    [85]Cerwenka A, Baron JL,Lanier LL. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1)permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo.Proc Natl Acad Sci U S A,2001,98 (20):11521-11526.
    [86]Diefenbach A, Jensen ER, Jamieson AM, et al.Rael and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature,2001,413 (6852):165-171.
    [87]Westwood JA, Kelly JM, Tanner JE, et al. Cutting edge:novel priming of tumor-specific immunity by NKG2D-triggered NK cell-mediated tumor rejection and Thl-independent CD4+T cell pathway. J Immunol,2004,172 (2):757-761.
    [88]Girardi M, Oppenheim DE, Steele CR, et al.Regulation of cutaneous malignancy by gammadelta T cells.Science,2001,294 (5542):605-609.
    [89]Smyth MJ, Swann J, Cretney E, et al.NKG2D function protects the host from tumor initiation. J Exp Med,2005,202 (5):583-588.
    [90]Raffaghello L, Prigione I, Airoldi I, et al. Mechanisms of immune evasion of human neuroblastoma. Cancer Lett,2005,228(1-2):155-161.
    [91]Vetter CS,Lieb W, Brocker EB,et al.Loss of nonclassical MHC molecules MIC-A/B expression during progression of uveal melanoma. Br J Cancer, 2004,91(8):1495-1499.
    [92]Wang Z, Zhang L, Qiao A, et al.Activation of CXCR4 triggers ubiquitination and down-regulation of major histocompatibility complex class I (MHC-I) on epithelioid carcinoma HeLa cells.J Biol Chem,2008,283(7):3951-3959.
    [93]Le Maux Chansac B, Moretta A, Vergnon I, et al.NK cells infiltrating a MHC class I-deficient lung adenocarcinoma display impaired cytotoxic activity toward autologous tumor cells associated with altered NK cell-triggering receptors.J Immunol,2005,175(9):5790-5798.
    [94]Jinushi M, Takehara T, Tatsumi T, et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas.J Hepatol,2005,43 (6):1013-1020.
    [95]Sconocchia G, Lau M,Provenzano M,et al.The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions.Blood,2005,106(10):3666-3672.
    [96]Wu JD, Higgins LM, Steinle A, et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest,2004,114 (4):560-568.
    [97]Holdenrieder S,Stieber P, Peterfi A, et al. Soluble MICA in malignant diseases. Int J Cancer,2006,118 (3):684-687.
    [98]Waldhauer I,Steinle A.Proteolytic release of soluble UL16-binding protein 2 from tumor cells.Cancer Res,2006,66(5):2520-2526.
    [99]Lee JC,Lee KM, Kim DW, et al. Elevated TGF-betal secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients.J Immunol,2004,172(12):7335-7340.
    [100]Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo.Cancer Res,2004,64 (20):7596-7603.
    [101]Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med,2004,10(9):942-949.
    [102]Ghiringhelli F, Menard C, Terme M, et al.CD4+CD25+regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med,2005,202 (8):1075-1085.
    [103]Smyth MJ, Teng MW, Swann J, et al. CD4+CD25+T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol,2006,176 (3):1582-1587.
    [104]Bui JD, Carayannopoulos LN, Lanier LL, et al. IFN-dependent down-regulation of the NKG2D ligand H60 on tumors.J Immunol,2006,176 (2):905-913.
    [105]Hankey KG, Drachenberg CB,Papadimitriou JC,et al.MIC expression in renal and pancreatic allografts.Transplantation,2002,73 (2):304-306.
    [106]Quiroga I, Salio M, Koo DD, et al.Expression of MHC class I-related Chain B (MICB) molecules on renal transplant biopsies.Transplantation,2006,81 (8):1196-1203.
    [107]Suarez-Alvarez B, Lopez-Vazquez A, Gonzalez MZ, et al.The relationship of anti-MICA antibodies and MICA expression with heart allograft rejection.Am J Transplant,2007,7 (7):1842-1848.
    [108]Ascon DB,Lopez-Briones S,Liu M, et al.Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol,2006,177 (5):3380-3387.
    [109]Feng L, Cheng F, Ye Z, et al. The effect of renal ischemia-reperfusion injury on expression of RAE-1 and H60 in mice kidney. Transplant Proc,2006,38 (7):2195-2198.
    [110]Seiler M, Brabcova I, Viklicky O, et al. Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation. Am J Transplant,2007,7 (2):423-433.
    [111]Kaiser BK, Yim D, Chow IT, et al.Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands.Nature,2007,447 (7143):482-486.
    [112]Salih HR, Holdenrieder S,Steinle A.Soluble NKG2D ligands:prevalence, release, and functional impact. Front Biosci,2008,13:3448-3456.
    [113]Suarez-Alvarez B, Lopez-Vazquez A, Diaz-Molina B, et al.The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection.Transplantation,2006, 82(3):354-361.
    [114]Sumitran-Holgersson S, Wilczek HE, Holgersson J, et al. Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts.Transplantation, 2002,74(2):268-277.
    [115]Terasaki PI, Ozawa M,Castro R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival.Am J Transplant,2007,7 (2):408-415.
    [116]Zou Y, Stastny P, Susal C, et al.Antibodies against MICA antigens and kidney-transplant rejection. N Engl J Med,2007,357(13):1293-1300.
    [117]Ogasawara K, Benjamin J, Takaki R, et al.Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts.Nat Immunol, 2005,6(9):938-945.
    [118]Kitchens WH, Uehara S,Chase CM, et al.The changing role of natural killer cells in solid organ rejection and tolerance.Transplantation,2006,81 (6):811-817.
    [119]Kim J, Chang CK, Hayden T, et al. The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection. J Immunol,2007, 179(10):6416-6420.
    [120]Kroemer A, Xiao X, Degauque N, et al.The innate NK cells, allograft rejection, and a key role for IL-15.J Immunol,2008,180(12):7818-7826.
    [121]Uehara S, Chase CM, Kitchens WH, et al.NK cells can trigger allograft vasculopathy:the role of hybrid resistance in solid organ allografts.J Immunol, 2005,175(5):3424-3430.
    [122]Jinushi M, Takehara T, Kanto T, et al.Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation:impairment in chronic hepatitis C virus infection. J Immunol,2003, 170(3):1249-1256.
    [123]Guan H, Moretto M, Bzik DJ, et al. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway. J Immunol,2007,179 (1):590-596.
    [124]Qiao Y, Liu B,Li Z. Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells.Cancer Immun, 2008,8:12.
    [125]Draghi M, Pashine A, Sanjanwala B,et al. NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J Immunol,2007,178 (5):2688-2698.
    [126]Bauer S,Groh V, Wu J, et al.Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science,1999,285 (5428):727-729.
    [127]Tieng V, Le Bouguenec C, du Merle L, et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA.Proc Natl Acad Sci U S A,2002,99(5):2977-2982.
    [128]Siren J, Sareneva T, Pirhonen J, et al.Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages.J Gen Virol,2004,85 (Pt 8):2357-2364.
    [129]Hamerman JA, Ogasawara K,Lanier LL. Cutting edge:Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol, 2004,172(4):2001-2005.
    [130]Krug A, French AR, Barchet W, et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity,2004,21(1):107-119.
    [131]Andoniou CE, van Dommelen SL, Voigt V, et al.Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol,2005,6(10):1011-1019.
    [132]Cerwenka A,Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol,2001,1(1):41-49.
    [133]Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells.Nat Immunol,2001,2(3):255-260.
    [134]Wills MR, Ashiru O, Reeves MB, et al. Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis.J Immunol,2005,175(11):7457-7465.
    [135]Chalupny NJ, Rein-Weston A, Dosch S,et al.Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142.Biochem Biophys Res Commun,2006,346(1):175-181.
    [136]Dunn C, Chalupny NJ, Sutherland CL, et al.Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med,2003,197 (11):1427-1439.
    [137]Vales-Gomez M, Browne H,Reyburn HT. Expression of the UL16 glycoprotein of Human Cytomegalovirus protects the virus-infected cell from attack by natural killer cells.BMC Immunol,2003,4:4.
    [138]Welte SA, Sinzger C, Lutz SZ, et al.Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol,2003,33(1):194-203.
    [139]Nachmani D, Stern-Ginossar N, Sarid R, et al.Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells.Cell Host Microbe,2009,5 (4):376-385.
    [140]Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA.Science,2007,317 (5836):376-381.
    [141]Germain C, Larbouret C,Cesson V, et al. MHC class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells.Clin Cancer Res,2005,11 (20):7516-7522.
    [142]Zhou H, Luo Y, Kaplan CD, et al.A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood,2006,107 (8):3251-3257.
    [143]Zhou H, Luo Y, Lo JF, et al. DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc Natl Acad Sci U S A,2005,102(31):10846-10851.
    [144]Zhang T, Lemoi BA,Sentman CL. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood,2005,106(5):1544-1551.
    [145]Teng MW, Kershaw MH, Hayakawa Y, et al.T cells gene-engineered with DAP12 mediate effector function in an NKG2D-dependent and major histocompatibility complex-independent manner. J Biol Chem,2005,280 (46):38235-38241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700