TRAF6基因沉默对内毒素炎症反应的抑制效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分内毒素刺激对TRAF6基因表达的影响
     目的:观察内毒素刺激对小鼠RAW264.7巨噬细胞肿瘤坏死因子受体相关因子6(TNF receptor-associated factor-6, TRAF6)基因表达的影响,阐明内毒素刺激与TRAF6基因表达的关系。
     方法:RAW264.7细胞分为LPS组、地塞米松组、姜黄素组、实验对照组和正常对照组。LPS组以终浓度为100μg/L LPS刺激;地塞米松组以终浓度为0.5 mg/L地塞米松预处理8 h,姜黄素组以终浓度为20μmol/L姜黄素预处理8 h;实验对照组用含DMSO(浓度<0.1%)的DMEM培养液培养,正常对照组作为实验对照不予以任何处理。LPS刺激2 h、4 h、8 h和16 h后,免疫细胞化学染色检测TRAF6蛋白表达,realtime-PCR检测TRAF6 mRNA表达;LPS刺激8 h时Western blot检测TRAF6蛋白,在mRNA水平和蛋白质水平检测内毒素刺激对TRAF6基因表达的影响。
     结果:小鼠RAW264.7细胞中TRAF6 mRNA的正常表达量相对较低,当LPS刺激4 h时,TRAF6 mRNA表达明显增加;随着时间延长其表达进一步增加,至16 h时,TRAF6 mRNA表达达到高峰。用地塞米松和姜黄素干预后,TRAF6 mRNA表达量均低于同一时间LPS组(P<0.05),但始终高于正常水平。同一时间点地塞米松组与姜黄素组比较无明显差异(P>0.05),实验对照组细胞TRAF6 mRNA表达水平较正常对照组无明显变化(P>0.05)。Western blot检测TRAF6蛋白表达,结果与TRAF6 mRNA结果相似。
     结论:TRAF6 mRNA及TRAF6蛋白表达与LPS刺激有明确的时效关系。
     第二部分TRAF6 siRNA表达质粒的构建和筛选
     实验一TRAF6 siRNA表达质粒的构建与鉴定
     目的:构建针对小鼠TRAF6基因的短发夹RNA (short hairpin RNA, shRNA)真核表达载体,为下一步的细胞转染奠定基础。
     方法:在NCBI的Nucleotide库中检索小鼠TRAF6 mRNA序列,应用Invitrogen公司的在线设计软件BLOCK-iTTM RNAi Designer,针对小鼠TRAF6 mRNA设计筛选4条siRNA序列。体外合成编码短发夹RNA序列的DNA寡核苷酸单链,经退火成互补双链,将相应的双链DNA被插入pGCsi-U6/GFP/Hygro质粒中,构建重组质粒pGCsi-TRAF6-shRNA1、2、3、4。将重组质粒转化进E.coli DH5a,最后以PCR法分析鉴定阳性重组质粒并进行DNA测序。在紫外分光光度计上OD260和OD280读取吸光度值,检测质粒DNA的浓度。
     结果:siRNA寡核苷酸单链成功退火,合成双链DNA模板,凝胶电泳可见,59 bpMark处呈现清晰条带。靶向TRAF6 mRNA的4种重组质粒载体pGCsi-TRAF6-shRNA,经酶切和DNA测序分析,shRNA编码序列与设计的片段完全一致,证实重组质粒载体构建成功。4种重组质粒DNA OD260/OD280比值均在1.8~2.0之间,质粒DNA质量良好,符合实验要求,为下一步体外、体内实验奠定了基础。
     结论:靶向TRAF6基因的重组质粒载体pGCsi-TRAF6-shRNA构建成功,为研究TRAF6对内毒素炎症反应的调控作用奠定基础。
     实验二TRAF6基因沉默优化序列的筛选和确认
     目的:将TRAF6基因特异性重组质粒载体pGCsi-TRAF6-shRNA转染RAW 264.7细胞,检测TRAF6基因在mRNA和蛋白质水平的表达情况,体外筛选干扰小鼠RAW264.7细胞TRAF6基因的最佳重组质粒载体pGCsi-TRAF6-shRNA。
     方法:使用不同比例的DNA质粒/脂质体复合物,将重组质粒转染至RAW 264.7细胞,荧光显微镜观察转染效果。重组质粒转染细胞48 h后,应用MTT法检测转染重组质粒pGCsi-TRAF6-shRNA后细胞活性的变化,realtime-PCR和Western blot检测转染细胞TRAF6基因的mRNA和蛋白质表达,体外筛选出对TRAF6基因表达具有最佳抑制效果的重组质粒。
     结果:荧光显微镜分析转染效率显示,DNA(g)/Trans Fectin(L)为2:5时重组质粒转染效率最高。MTT检测结果显示,重组质粒pGCsi-TRAF6-shRNA1、2能显著抑制RAW264.7细胞的增殖活性,与正常对照组相比有显著差异(P<0.01)。realtime-PCR结果显示,pGCsi-TRAF6-shRNA1、2组细胞TRAF6 mRNA表达水平显著降低。其中,pGCsi-TRAF6-shRNA 1对RAW264.7细胞TRAF6基因表达的抑制作用最为显著,抑制率为65.25%,与正常对照组相比具有明显差异(P<0.05)。Western blot检测结果显示,pGCsi-TRAF6-shRNA1对靶基因蛋白表达抑制作用最明显,TRAF6基因蛋白表达抑制率为60.07%,与正常对照组相比差异显著(P<0.05)。
     结论:pGCsi-TRAF6-shRNA1真核表达载体可在体外高效地抑制TTRAF6基因表达,为进一步研究TRAF6基因沉默对内毒素炎症反应的影响奠定基础。
     第三部分TRAF6 siRNA对RAW264.7细胞内毒素炎症的影响
     目的体外研究TRAF6沉默基因对RAW 264.7细胞内毒素炎症反应的影响。
     方法实验分为5组:(A)pTRAF6-shRNA1(即pGCsi-TRAF6-shRNA1)组,质粒pTRAF6-shRNA1+LPS; (B)阳性对照组,姜黄素(20μmol/L)+LPS; (C)阴性对照组,空白质粒±LPS;(D)空白对照组,仅予100μg/L LPS刺激;(E)正常对照组,正常培养不予任何处理。LPS刺激后0 h、4 h、8 h和16 h,收集细胞上清,ELISA法测定上清液中TNF-α、IL-1β、TGF-β1。LPS刺激24 h后,收集细胞,realtime PCR方法检测TRAF6、IL-6、COX-2 mRNA, Western blot检测细胞核内NF-κB p65蛋白表达。
     结果100μg/L LPS刺激各组RAW264.7细胞后,细胞上清液中TNF-α、IL-1β、TGF-β1表达量都明显增加,与正常对照组相比差异显著(P<0.01),其中TNF-α、IL-1β在8 h内达高峰,TGF-β1在16 h达高峰,说明LPS刺激可引起细胞TNF-α、IL-1β、TGF-β1分泌。将pTRAF6-shRNA1转染RAW264.7细胞后,TNF-α、IL-1β、TGF-β1增长率均明显低于阴性对照组和空白对照组(P<0.01)。Realtime PCR检测结果显示,pTRAF6-shRNA1组IL-6、COX-2 mRNA表达明显下调,与正常对照组比较有显著差异。Western blot结果表明,pTRAF6-shRNA1组细胞核内NF-κB p65蛋白表达明显减少。
     结论重组质粒pTRAF6-shRNA可能通过抑制LPS诱导的NF-κB p65核转位,降低相关炎症细胞因子和介质的分泌,抑制RAW264.7细胞内毒素炎症反应。
     第四部分TRAF6siRNA对急性肝衰竭内毒素炎症小鼠的保护作用
     实验一不同转染方式对GFP表达质粒在小鼠肝脏的表达影响
     目的:研究经流体力学注射、门静脉和腹腔常规注射3种不同途径注射GFP表达质粒后,目的基因在小鼠肝脏的表达情况及其转基因效率。
     方法:将裸质粒或脂质体包裹的质粒DNA分别应用流体力学注射、门静脉及腹腔常规注射法注入同种异体小鼠体内,48 h后分别取血和肝组织,常规生化方法检测血清谷丙转氨酶(ALT)和总胆红素(TB),HE染色检测肝组织病理变化,新鲜组织冰冻切片观察3种转染途径对质粒DNA在小鼠肝脏的表达影响。
     结果:注射48 h后,腹腔常规注射组与正常组比较,ALT和TB的升高幅度较小,与流体力学注射组比较该差异无统计学意义(P>0.05),且各组内脂质体复合物组与裸质粒组比较差异无统计学意义(P>0.05)。常规石蜡切片HE染色显示,HI组及PV组小鼠肝细胞轻度水肿,各组内裸质粒组和脂质体复合物组之间无明显差异。流体力学注射组及门静脉常规注射组均可见大量绿色荧光蛋白表达,两组的荧光表达量差异无统计学意义(P>0.05),腹腔注射组小鼠的肝脏仅见少量的绿色荧光表达,但三组内脂质体/质粒DNA复合物组绿色荧光表达量均明显高于裸质粒组(P<0.05)。
     结论:应用流体力学注射及门静脉常规注射脂质体/质粒DNA复合物途径,目的基因均在小鼠肝脏高效表达,两种途径无明显差异,流体力学注射可广泛用于肝靶向性的活体基因转染。
     实验二TRAF6siRNA对急性肝衰竭内毒素炎症小鼠的保护作用
     目的:研究TRAF6沉默基因对LPS/D-GalN诱导的急性肝衰竭内毒素炎症小鼠的作用及其可能的机制。
     方法:BALB/c小鼠随机分为正常对照组、急性肝衰竭(ALF)模型组、阳性对照(姜黄素)组、阴性对照(空白质粒)组和RNAi(pTRAF6-shRNA1)组。采用流体力学注射法将pTRAF6-shRNA1表达质粒转染小鼠,24 h后重复注射一次。第二次注射后24 h,予LPS(20μg/kg)联合D-氨基半乳糖(D-GalN,600 mg/kg)制做急性肝衰竭内毒素炎症模型。观察小鼠存活率,并于造模后16 h,采用常规生化方法血清ALT、AST,免疫组化染色检测iNOS和NF-κB p65在肝细胞的表达;Realtime-PCR检测TRAF6、IL-6、COX-2及NF-κB p65 mRNA的表达;Western blot检测总蛋白和细胞核内NF-κB p65的表达;造模后4、8、16 h,ELISA检测血清TNF-α、IL-1β及TGF-β1水平变化。
     结果:荧光显微镜观察显示真核表达质粒pTRAF6-shRNA1成功转染进入小鼠肝组织。pTRAF6-shRNA1可明显抑制小鼠肝组织TRAF6 mRNA和TRAF6蛋白表达(P<0.01),其中TRAF6 mRNA表达抑制率为60.13%, TRAF6蛋白抑制率为52.08%,与正常小鼠比较均有显著性差异(P<0.01)。LPS/D-GalN腹腔注射16 h后,小鼠血清ALT、AST水平及肝组织病理学检测显示造模成功。RNAi (pTRAF6-shRNA1)组小鼠72h的存活率为49.3%,高于其它组(姜黄素组为36.2%). pTRAF6-shRNA1可明显降低小鼠血清ALT和AST水平,与ALF模型组比较有显著意义(P<0.01)。Realtime-PCR结果显示RNAi组小鼠IL-6、COX-2及NF-κB p65 mRNA表达下降,与ALF模型组比较有显著意义(P<0.01)。ELISA检测显示RNAi组小鼠血浆TNF-α、IL-1β及TGF-β1水平上调,但始终明显低于同时间点ALF模型组,TNF-α、IL-1p于8 h达到峰值,TGF-β1于16 h达到峰值。免疫组化染色显示RNAi组iNOS蛋白表达较ALF模型组降低。姜黄素组与RNAi组比较无显著差异(P>0.05),姜黄素有降低转氨酶,对阻止TNF-α、IL-1β、IL-6、COX-2及iNOS升高有一定作用。Western blot技术显示ALF模型组小鼠肝组织中总蛋白和胞核NF-κB p65表达均增加;pTRAF6-shRNA1组小鼠肝组织总蛋白NF-κB p65表达水平显著高于正常组小鼠总蛋白NF-κB p65水平(P<0.01),但较ALF模型组比较无明显变化(P>0.05),胞核NF-κB p65明显降低,与ALF模型组比较有显著性差异(P<0.05)。结果提示TRAF6基因沉默,不仅能降低细胞NF-κB p65表达水平,还能明显抑制NF-κB p65核转位。
     结论:pTRAF6-shRNA1可能通过下调NF-κB p65水平,抑制炎症相关细胞因子和炎性介质表达水平,从而减轻内毒素/半乳糖诱导的小鼠急性肝损伤。
Part I Effects of LPS on Expression of TRAF6 gene in RAW264.7 cells
     Objective:To study the effects of LPS on the expression of TRAF6 mRNA in RAW264.7 cells.
     Methods:RAW264.7 cells were divided into five groups, lipopolysaccharide (LPS) group, dexamethasone (DM) group, curcumin (Cur) group, experiment control group and normal control group. Cells in LPS group were added LPS (100μg/L) in cell culture. Cells in Cur group or DM group were pretreated with dexamethasone (0.5 mg/L) or curcumin (20μmol/L) for 8 hours. Cells in experiment control group were treated with DMEM culture media with DMSO (<0.1%). No treatment was done for the normal control group. The expression of TRAF6 was determined by immunocytochemical staining and realtime-PCR at 2,4,8 and 16 hours after LPS stimulation. TRAF6 protein expression was determined by Western blotting at 8 h after LPS stimulation. In order to elucidate the relation between LPS and expression of TRAF6 gene, our studies revealed the effects of LPS on expression of TRAF6 gene both at the mRNA and protein levels.
     Results:The expressed mRNA of TRAF6 gene was detected by realtime-PCR. There was the low expression of TRAF6 mRNA in RAW264.7 cells. When RAW264.7 cells were continually stimulated with LPS (100μg/L), the number of expression increased markedly, and peaked at 16h. In RAW264.7 cells, the expressions of TRAF6 mRNA were much lower than those in LPS group at the corresponding time points (P<0.05). Howere, the expression of TRAF6 mRNA was still higher than normal level. Expressions of TRAF6 mRNA in DM group shown no significant difference as compared with those in Cur group at the corresponding time points (P>0.05). Levels of TRAF6 mRNA were unobviously changed in the experiment and normal control group (P>0.05). The expressed protein of TRAF6 gene was detected with Western blot. The statistics show that there are a lot of similarities between realtime-PCR and Western blotting/Immunocytochemical staining.
     Conclusions:There are tight relations between LPS and expression of TRAF6 gene.
     Part II The Construction and Screening of TRAF6-shRNA expressing Plasmid The first experiment:
     Construction and identification of expression plasmid for mouse TRAF6
     Objective:To construct the eukaryotic expression plasmid expressing shRNA targeting TNF receptor-associated factor-6 (TRAF6) gene as a tool for following experiments.
     Methods:TRAF6 mRNA sequence of mouse was retrieved in nucleotide library of NCBI. According to guidelines for shRNA design, four pairs of oligos for hairpin RNA which targeted mice TRAF6 gene were chemically synthesized. Coding sequences of short hairpin RNA DNA single-strands were synthesized in vitro. The annealed oligos were inserted into the down stream of U6 promoter of linearized pGCsi-U6/GFP/Hygro vector to construct RNA interference (RNAi) plasmid (pGCsi-TRAF6-shRNA) respectively.
     Results:The shRNA expression plasmid was constructed, and the inserted sequence was confirmed by restrict endonuclease digestion and DNA sequencing.
     Conclusions:The siRNA plasmid targeting mice TRAF6 gene was successfully constructeded and can be applied to study the function of TRAF6 on LPS-induced inflammatory reaction in vitro and in vivo.
     The second experiment:
     Identification and Screening of TRAF6 Gene silencing optimization sequences
     Objective:To select TRAF6 (TNF receptor-associated factor-6) shRNA (short hairpin RNA) eukaryotic expression plasmid that can inhibit TRAF6 gene expression in Raw 264.7 cells.
     Methods:To get most effective and optimal dosage pTRAF6-shRNA, the four vectors were transfected into Raw 264.7 cell with different ratio between plasmid (g) and Trans Fectin (L), the expression of fluorescence and efficiency of transfection were detected by fluorescence microscopy. Forty-eight hours after pTRAF6-shRNA transfection with the best ratio of plasmid (g) and Trans Fectin (L), proliferation of transfected cells was measured with MTT assay, and the levels of TRAF6 mRNA and TRAF6 protein were detected by realtime-PCR and Western blot, respectively.
     Results:The ratio of 2:5 between plasmid (g) and Trans Fectin (L) were considered as the most ratio. The results of MTT in transfected cells were significantly decreased compared with that of. The results of realtime-PCR revealed that pTRAF6-shRNA1 can markedly inhibit the expression of TRAF6 mRNA (the inhibition rate was 75.25%), comparing with the normal control group (P<0.05). The results of Western blotting indicated that pTRAF6-shRNAl can markedly inhibit the expression of TRAF6 protein (the inhibition rate was 70.07%), comparing with the normal control group (P<0.05).
     Conclusions:The construct of pTRAF6shRNA1 successfully interfered in the TRAF6 gene expression in vitro, and it can be applied to study the function of TRAF6 on LPS-induced inflammatory reaction.
     PartⅢInfluence of TRAF6 siRNA on LPS-induced inflammation in vitro
     Objective:To investigate the influences of silencing TRAF6 gene by RNA interference (RNAi) on LPS-induced inflammation in vitro.
     Methods:Cells were divided into five groups:(A) pTRAF6-shRNA1 (pGCsi-TRAF6-shRNA1)group, pTRAF6-shRNA1+LPS; (B) positive control group, curcumin (20μmol/L) +LPS; (C) negative control group, blank plasmid+LPS; (D) blank control group, stimulated with LPS(100μg/L); (E) normal control group, maintained in DMEM without any intervention. siRNA recombinant expression vector targeting TRAF6 gene was transfected into RAW264.7. The effect of siRNA recombinant expression vector was detected by Realtime PCR and Western blot. The cells were cultured for 48h after the second pTRAF6-shRNA transfection, and stimulated by LPS (100μg/L), and then supernatants were harvested after 0h,4h,8h and 16h. TNF-α, IL-1βand TGF-β1 were assayed by ELISA. TRAF6, IL-6, COX-2 mRNA were detected by real-time PCR, and intranuclear NF-κB P65 protein level were examined by Western blotting.
     Results:ELISA indicated that the secretions of TNF-α, IL-1βand TGF-β1 were markedly higher than those of normal cells (P<0.01) at 4h,8h and 16h after LPS stimulation, and peaked in a short time, TNF-α, IL-1βat 8h, TGF-β1 at 16h respectively. After LPS stimulation with TRAF6 gene knocked down, the rates of increase of those cytokines were significantly inhibited than that in single LPS stimulation (P<0.01). The experiment indicated that TRAF6-shRNA could down regulate the expression of IL-6, COX-2 mRNA. In the same way, it could significantly inhibit the activation of NF-κB.
     Conclusions:pTRAF6-shRNA1 inhibited inflammatory reaction which stimulated by LPS resulting from inflammatory cytokines and mediators suppression through NF-κB levels down-regulation in RAW264.7 cell.
     PartⅣTNF Receptor-associated Factor 6 Gene Silencing Ameliorates Acute Liver Failure in Mice
     The first experiment:
     Comparison of Three Nonviral Transfection Methods for GFP Plasmid Expression in Liver of Mice
     Objective:To compare the transfection efficiency and the expression intensity of a green fluorescent protein (GFP) reporter gene in liver of mice by using three nonviral transfection methods, i.e., hydrodynamic injection, portal vein injection and peritoneal injection.
     Methods:The naked GFP plasmid or liposome encapsulated plasmid were injected via the tail vein or portal vein or abdominal cavity of different mice with homogeneity. The blood and liver were harvested 48 h after injection, and the contents of alanine aminotransferase (ALT) and total bilirubin (TB) were detected in serum. HE staining was used to observe the pathological changes of liver tissues. Meanwhile, the expression intensity of GFP was evaluated by fluorescence microscopy.
     Results:The levels of ALT and TB in peritoneal injection (PI) group were little higher than that in normal group at 48h after injection, and there is no significant difference comparing with hydrodynamic injection (HI) group (P>0.05). Furthermore, there was no statistically significant difference between liposome-DNA compound and naked plasmid DNA in same group (P>0.05). HE staining of liver indicated that dropsy in hepatocytes could be seen in HI and portal vein (PV) groups. Of the three transfection methods employed, hydrodynamic gene delivery and portal vein injection conferred the stronger expression of GFP with similar transfection efficiency (P>0.05). However, after encapsulated by liposome, the expression levels of GFP are significantly higher than that of naked plasmid DNA (P<0.05).
     Conclusions:High level gene expression in mouse liver can be achieved by hydrodynamic injection or portal vein injection of liposome encapsulated plasmid DNA, and hepatic delivery of foreign gene can be accomplished by hydrodynamics-based injection.
     The second experiment:
     TNF Receptor-associated Factor 6 Gene Silencing Ameliorates Acute Liver Failure in Mice
     Objective:To investigate the influence and protective mechanism of tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6) gene silencing on inflamation in LPS/D-galactosamine (D-GalN)-induced acute liver failure (ALF) mice.
     Methods:BALB/c mice were divided into five groups, normal control group, ALF model group, positive control (curcumin, Cur) group, negative control (blank plasmid) group and RNAi (pTRAF6-shRNA1) group. Specific expressing plasmid pTRAF6-shRNAl was delivered into BALB/c mice repeatedly by hydrodynamics-based gene transfection. LPS (20μg/kg) plus D-GalN (600 mg/kg) were injected intraperitoneally into mice after the first injection of plasmid DNA for 48 hours. The survival of mice was examined and blood samples were collected from the retro-orbital plexus each mouse, at 4, 8 and 16h after LPS/D-GalN injection. Serum [TNF-a, interleukin (IL)-1β, transforming growth factor (TGF)-β1] were measured by ELISA kits respectively. Sixteen hours after the injection of LPS/D-GalN, serum were gathered from the eyeball to measure aminotransferase (ALT) and aspartate aminotransferase (AST) using a colorimetric analyzer. TRAF6, IL-6, cyclooxygenease (COX)-2 and NF-κB p65 mRNA levels were detected by realtime-PCR. Expression features of inducible nitric oxide synthase (iNOS) and NF-κB in liver tissue were detected in immunohistochemistry. NF-κB p65 in the nuclear extracts were assessed by Western blotting.
     Results:Results bright green fluorescence of the transfected cells in mice liver sections can be observed under fluorescent microscopesafter transfection. The recombinant plasmid pTRAF6-shRNA1 could be expressed in liver tissues of mice. Our results show that TRAF6 mRNA expression was remarkably reduced by 60.13% in mice liver during the experiment period. Concomitantly, pTRAF6-shRNA1 decreased serum transaminases levels and increased survival of mice. The amounts of mRNA of interleukin (IL)-6 and cyclooxygenease-2(COX-2), the productions of inflammatory cytokines [TNF-α, IL-1βand transforming growth factor (TGF)-β1], and the expression of inducible nitric oxide synthase (iNOS) in liver were significantly lower in pTRAF6-shRNAl group than that in pNi-shRNA control group. Moreover, NF-κB p65 levels in the total cellular and the nuclear extracts were effectively inhibited by pTRAF6-shRNA1. This may due to the inhibition of NF-κB activity specified with decreased expression of inflammatory cytokines and inflammatory mediators.
     Conclusions:pTRAF6-shRNA1 inhibited inflammation resulting from inflammatory cytokines and mediators suppression through levels down-regulation in LPS/D-GalN-stimulated mice. pTRAF6-shRNA1 successful alleviated LPS/D-GalN induced acute liver injury in vivo, which has implications for our understanding of the role of TRAF6 gene silencing in LPS/D-GalN-mediated liver injury and for the development of new therapies for human ALF.
引文
1. Jalan R, Pollok A, Shah SH, et al. Liver derived pro-inflammatory cytokines may be important in producing intracranial hypertension in acute liver failure. J Hepatol.2002, 37:536-538.
    2. Gill, Riaz Q. MD Sterling, Richard K. MD. Acute Liver Failure Journal of Clinical Gastroenterology,J Clin Gastroenterol.2001,33:191-198.
    3. Schwabe RF, Brenner DA. Mechanisms of liver injury. TNF-alpha induced liver injury: role of IKK, JNK,and ROS pathways. Am J Physiol Gastrointes Liver Physiol.2006, 290:583-589.
    4.赵世峰.急性肝衰竭动物模型的建立.世界急危重病医学杂志.2006,3(2):1224
    -1228.
    5.韩德五.肠源性内毒素血症所致“继发性肝损伤”的临床依据.世界华人消化杂志.1999.12:1055.
    6.韩德五.肝功能衰竭发病机制的研究—肠源性内毒素血症假说.中华肝脏病杂志.1995,3(3):134.
    7. Belladonna ML, Vacca C, Volpi C, et al. IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine.2006,34:161-169.
    8. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol.2006,6:111-30.
    9. Kenji Hyoudou, Makiya Nishikawa, Yuki Kobayashi. Analysis of in vivo nuclear factor-kappaB activation during liver inflammation in mice:prevention by catalase delivery. Molecular Pharmacology.2007,11:446-453.
    10. Lomaga MA, Yeh WC, Sarosi let al.TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev.1999,13(8):1015-24.
    11. Katie J. Loniewski, Sonika Patial, et al. Sensitivity of TLR4-and-7-induced NF-κB1 p105-TPL2-ERK pathway to TNF-receptor-associated-factor-6 revealed by RNAi in mouse macrophages [J]. Molecular Immunology.2007,44,3715-3723.
    12. Yang YJ, Chen W, Carrigan SO, et al. TRAF6 Specifically Contributes to Fc epsilon RI-mediated Cytokine Production but Not Mast Cell Degranulation [J]. Biol. Chem. 2008,283,32110-32118.
    13. Fabiana S. Machado, Lisia Esper, Alexandra Dias, et al. Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6[J]. Experimental Medicine.2008,205,1077-1086.
    14. Yumiko Imai, Keiji Kuba, G. Greg Neely, et al. Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury. Cell.2008,133, 235-249.
    15. Lewis DL, Hagstrom JE, Loomis AG, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet.2002,32:107-8.
    16. McCaffrey, AP, Meuse et al. RNA interference in adult mice. Nature.2002,418:38-39.
    1. Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro:the polymerase chainreaction. Symb Quant Biol.1986,51:263-273.
    2. Saiki RK, Scharf S, Faliina F, et al. Enzymatic amplification of beta-globin genomic sequences and restrictionsite analysis for diagnosis of sickle cell anemia. Science.1985, 230(4732):1350-1354.
    3. Chung H W. Reverse transcriptase PCR (RT-PCR) and quantitative-competitive PCR (QC-PCR) [J]. Exp Mol Med.2001,33 (Suppll):85-89.
    4. Proudnikov D, Yuferov V, Zhou Y, et al. Optimizing primer-probe design for fluorescent PCR. [J]. JNeuro science Methods.2003,123:31-45.
    5. Bustin SA.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J]. JMolEndocrinol.2000,25(2):169-193.
    6. Joseph A. Whelan, Nick B. Russell, Michael A. Whelan. A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods.2003, (278):261-269.
    7. Mackay IM,Arden KE,Nitsche A.Real-time PCR in virology [J]. Nucleic Acids Res, 2002,30(6):1292-1300.
    8. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001,25:402-408.
    9. Poxton IR. Immunoblotting techniques. Curr Opin Immunol.1990,2:905-909
    10. Medzhitov R, Preston-Hurlburt P, Janeway CA. A humman homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature.1997,388:394-397.
    11. Poltorak A, Smirnoval I, He X, et al. Defective LPS signaling in C3H/HeJ and C57BL
    /10 ScCr mice:mutation in TLR4 gene. Science.1988,288:2085-2088.
    12. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol.2006,6:111-130.
    13. Kenji Hyoudou, Makiya Nishikawa, Yuki Kobayashi. Analysis of in vivo nuclear factor-kappaB activation during liver inflammation in mice:prevention by catalase delivery. Molecular Pharmacology.2007,71:446-453.
    14. Takashi Kobayashi, Matthew C. Walsh, et al. The role of TRAF6 in signal transduction and the immune response. Microbes and Infection.2004,6:1333-1338.
    15. Limei Qiu, Linsheng Song, Yundong Yu, et al. Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong Scallop Chlamys farreri. Fish Shellfish Immunology.2009,26:359-367.
    16. Belladonna ML, Vacca C, Volpi C, et al. IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine.2006,34:161-169.
    17. Liontas A, Yeger H, et al. Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res.2004,24 (2B):987-998.
    18. Shizhong ZHENG, Anping CHEN. Activation of PPARγ is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. J Biochem.2004,384(2):149-157.
    19. Zhang M, Deng CS, Zheng JJ, et al. Curcumin regulated shift from Thl to Th2 in trinitrobenzene sulphonic acid- induced chronic colitis [J]. Acta Pharmacol Sin.2006, 27(8):1071-1077.
    20. Madan B, Ghosh B. Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock, Shock.2003,19(1):91-96.
    21. Siddiqui AM, Cui XX, Wu RQ, et al. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferators-activated receptor-y[J]. CritCare Med.2006,34(7):1874-1882.
    22. Literat A, Su F, Norwicki M,et al. Regulation of pro-inflammatory cytokine expression by curcumin in hyaline mem-brane disease (HMD)[J]. Life Sci.2001,70(3):253-267.
    23.李军,孙梅,吴玉斌,等.内毒素诱导新生大鼠肝损伤及地塞米松的保护作用.中国当代儿科杂志.2002,4:1-4.
    24.李洪霞,张进川,赵亚力,等.地塞米松对急性肺损伤大鼠炎症介质/抗炎介质表达的影响.中国呼吸与危重监护杂志.2005,4:65-68.
    1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature.1998,391(6669):806-811.
    2. Marijori A. Matzke JA, Birchler. RNAi-mediated pathways in the nucleus. Nature. Reviews Genitics.2005,6(01):24-35.
    3. Lee Y, Drosha. The nuclear Rnase Ⅲ initiates microRNA processing. Nature.2003.425: 415-419.
    4. Tian X, Zhang P, Zamek-Gliszczynski MJ, et al. Knocking down transport:applications of RNA interference in the study of drug transport proteins. Drug Metab Rev.2005,37: 705-723.
    5. Inoue A, Sawata SY, Taira K. Molecular design and delivery of siRNA. J Drug Target. 2006,14 (7):448-455.
    6. Bosher JM, Labouesse M. RNA interference:genetic wand and genetic watchdog. Nat cell Biol.2000,2(2):E31-6.
    7. Caplen N.1, Parrish S, Imam F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA. 2001,98 (17):9742-9747.
    8. Meiter G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004,431(7006):343-349.
    9. Kong Q. RNAi:a novel strategy for the treatment of prion diseases. J Clin Invest.2006, 116(12):3101-3.
    10. Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent theraperutic targets for gene-silencing. Curr Drug Targets.2007,8(3):469-482.
    11. Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products. RNA. 2002,8(11):1454-1460.
    12. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature.2004,431(7006):371-378.
    13. Dykxhoorn DM, Lieberman J. Knocking down disease with siRNAs. Cell.2006,126 (2):231-235.
    14. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science.2002,296(5567):550-553.
    15. Patrick J, PaddisonA A, CaudyE B, et al. Short hairpin RNAs (shRNA) Induce sequence-specific silencing in mammalian cells. Research paper.2002,16:948-958.
    16. Zhang G, Gurtu V and Kain SR. An enhanced green fluorescent protein allows sensitive deyection of gene transfer in mammalian cells. Biochem Biophs Res Commun.1996, 227 (3):707-771.
    1. Gopalakrishnan B, Wolff J. siRNA and DNA transfer to cultured cells. Methods Mol Biol.2009,480:31-52.
    2. Pari GS, Keown WA. Experimental strategies in efficient transfection of mammalian cells:calcium phosphate and DEAE-dextran. Methods Mol Biol.1997,62:301-316.
    3. Jafari M, Chen P. Peptide mediated siRNA delivery. Curr Top Med Chem.2009,9(12): 1088-1097.
    4. Pirollo KF, Chang EH. Targeted delivery of small interfering RNA:approaching effective cancer therapies. Cancer Res.2008,68(5):1247-50.
    5. Stroh T, Erben U, Kuhl AA, Zeitz M, Siegmund B. Combined pulse electroporation-a novel strategy for highly efficient transfection of human and mouse cells. PLos One. 2010,5(3):9488.
    6. Hadj-Slimane R, Lepelletier Y, Lopez N, Garbay C, Raynaud F. Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Biochimie.2007,89(10):1234-1244.
    7. Neidhardt J, Wycisk K, Klockener-Gruissem B. Viral and nonviral gene therapy for treatment of retinal; diseases. Ophthalmologe.2005,102(8):764-71.
    8. Niidome T, Huang L. Gene therapy progress and prospects:non-viral vectors. Gene Then 2002,9:1647-1652.
    9. Verma IM, Somia N. Gene Therapy-Promises, problems and prospects. Nature.1997, 389:239-242.
    10.成党校,黄桂君.新型基因转染阳离子脂质体研究进展.国外医学药学分册,2000,27(5):257-265.
    11. Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH. Delivery of RNA interference. Cell Cycle.2006,5(18):2103-9.
    12.陈彦祥,乔卫红,等.阳离子脂质体的转染机制及转染效率影响因素.生物工程学报,2007,5:88-92.
    13. Okuda T, Kawaguchi Y, Okamoto H. Enhanced gene delivery and/or efficacy by functional peptide and protein. Curr Top Med Chem.2009,9(12):1098-108.
    14. Hu XX. RNA interference (RNAi) as novel approach for gene silencing. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2005,(6):1141-1144.
    15. Takahashi Y, Nishikawa M, Takakura Y. Nonviral vector-mediated RNA interference:its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev.2009,61(9):760-766.
    16. Kent OA, MacMillan AM. RNAi:running interference for the cell. Org Biomol Chem. 2004,2(14):1957-1960.
    1. Triantafilou M, Brandenburg K, Kusumoto S, et al. Combinational clus-tering of receptors following stimulation by bacterial products determines lipopolysaccharide responses [J]. Biochem J.2004,381(Pt2):527-536.
    2. Triantafilou M, Triantafilou K. Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide [J]. BiochemSocTrans.2004,32(Pt4):636-639.
    3. Triantafilou M, Triantafilou K. Receptor cluster formation duringactivation by bacterial products [J]. JEndotoxin Res.2003,9(5):331-335.
    4. Triantafilou M, Miyake K, Golenbock DT, et al. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation [J]. J Cell Sci.2002,115(Ptl2):2603-2611.
    5. Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family:scaffold mole-cules for cytokine receptors, kinases and their regulators. Cell Signal.2001,13(6): 389-400.
    6. Bharti AC, Aggarwal BB. Nuclear factor-kappa B and cancer:its role in prevention and therapy. Biochem Pharmacol.2002,64(5-6):883-888.
    7. Oku H, Nakazato H, Horikawa T, et al. Pirfenidone suppresses tumor necrosis factor-alpha, enhances interleukin-10 and protects mice from endotoxic shock. Eur J Pharmacol.2002,446(1-3):167-176.
    8. Beutler B, Du X, Poltorak A. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction:genetic and evolutionary studies. J Endotoxin Res. 2001,7(4):277-280.
    9. Joseph B, Kumaran V, Berishvili E, et al. Monocrotaline promotes transplanted cell engraftment and advances liver repopulation in rats via liver conditioning. Hepatology. 2006,44(6):1411-1420.
    10. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science.1985,229(4716): 869-871.
    11. Deitch EA. Tumor necrosis factor as the proximal mediator of sepsis or this too will pass. Crit Care Med,1995,23(9):1457-1462.
    12. Old LT. Tumor necrosis factor (TNF) [J]. science.1985,230(3):630-637.
    13. Scherbel U, Raghupathi R, Nakamura M, et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci USA.2003,96(15):8721-8726.
    14. Navarrete-Reyes AP, Montana-Alvarez M. Inflammaging. Aging inflammatory origin. Rev Invest Clin.2009,61 (4):327-336.
    15. Fukumura A, Tsutsumi M, Tsuchishima M, et al. Effect of the Inducer of Interleukin-6 (ME3738) on Rat Liver Treated With Ethanol.. Alcohol Clin Exp Res.2007,31:549-557.
    16. Kuzuhara H, Nakano Y, Yamashiat N, et al. Protective effects of alphal-acid glycoprotein and serum amyloid A on concanavalin A-induced liver failure via interleukin-6induction by ME3738. Eur J Pharmacol.2006,541:205-210.
    17. Jin X, Zimmers TA, Perez EA, et al. Paradoxical effects of short-and long-term interleukin-6. Hepatology.2006,43:474-484.
    18. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-depen-dent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. Clin Invest.2002,109:41-50.
    19. Otsuka M, Negishi Y, Aramaki Y. Involvement of phosphatidylinositol-3-kinase and ERK pathways in the production of TGF-β1 by macrophages treated with liposomes composed of phosphatidylserine. FEBS Lett.2007,581:325-330.
    20. Dambach DM, Andrews BA, Moulin F. New technologies and screening strategies for hepatotoxicity:use of in vitro models. Toxicol Pathol.2005,33(1):17-26.
    21. Samaka RM, Abdou AG, Abd El-Wahed MM, et al. Cyclooxygenase-2 expression in chronic gastritis and gastric carcinoma, correlation with prognostic parameters. J Egypt Natl Canc Inst.2006,18:363-374.
    22. Jain S, Chakraborty G, Raja R, et al. Prostaglandin E2 regulates tumor angiogenesis inprostate cancer. Cancer Res.2008,68:7750-7759.
    23.聂海祺,孙黎光,叶丽平.bFGF经Akt信号转导通路诱导胃癌BGC-823中COX-2和 NF-κB表达研究.中国医科大学学报.2007,36:116-118.
    24.裴锋,张克亮.核因子-κB和环氧合酶-2在胃癌组织中的表达与肿瘤微血管形成的关系.华中科技大学学报(医学版).2007,36:355-358.
    25. Chen F,Shi X. NF-kappaB, a pivotal t ranscription factor in silica-induced disease[J]. Mol. Cell Biochem.2002,234:169-179.
    26. Karin M, Ben Neish Y. Phosphorylation meets ubiquitination:the control of NF-κB activity [J]. Ann Rev Immunol.2000,18:621.
    27. Garg A, Aggawal BB. Nuclear t ranscription factor-KB as a target for cancer drug development [J]. Leukemia.2002,16:1053-1068.
    28. Mason NJ, Artis D, Hunter CA. New lessons from old pat hogens:what parasitic infections have taught us about t he role of nuclear factor-kappaB in the regulation of immunity [J]. Immunol Rev.2004,201:248.
    29. O'Donnell SM, Holm GH, Pierce JM, et al. Identification of an NF-kappaB-dependent gene network in cells infected by mammalian reovirus [J]. J Virol.2006,80(3):1077-1086.
    30. Liu B, Yang R, Wong KA, Wong KA, et al. Negative regulation of NF-kappaB signaling by PIAS1 [J]. Mol Cell Biol.,2005,25(3):1113-1123.
    31. Kimura K, Nagaki M, Takai S, et al. Pivotal role of nuclear factor kappaB signaling in anti-CD40-induced liver injury in mice [J]. Hepatology.2004,40(5):1180-1189.
    32. Zhou Z, Wang L, Song Z, et al. Abrogation of nuclear factor-kappaB activation is involved in zinc inhibition of lipopolysac-charide-induced tumor necrosis factor-alpha production and liver injury [J]. Am JPathol.2004,164 (5):1547-1556.
    33. Gukovsky I, Reyes CN, Vaquero EC, et al. Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol.2003, 284(1):G85-95.
    34. Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages [J]. Pharmacol Res.1999,39(1):41-47.
    35.彭景华,曹健美,王晓柠,等.姜黄素对内毒素脂多糖诱导的库普弗细胞分泌炎症细胞因子的抑制作用.中国中西医结合消化杂志.2006,14(4):211-214.
    36. Biswas S K, McClure D, Jimenez L A,et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells:mechanism of free radical scavenging activity[J].Antioxide Redox Signal.2005,7 (5):32-41.
    1. Xiang Gao, Keun-Sik Kim, Dexi Liu, Nonviral Gene Delivery:What We Know and What Is Next. The AAPS Journal.2007; 9 (1) 92-104.
    2.刘亮明,罗杰,张吉翔,等.裸质粒流体力学注射法—基因治疗研究的利器世界
    华人消化杂志.2006,14(28):2780-2784.
    3. Liu F, Song YK, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy.1999,6:1258-1266.
    4. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. 1999; 10:1735-1737.
    5.刘亮明,罗杰,张吉翔,等.鼠尾静脉流体力学转染技术对绿色荧光蛋白表达质粒器官靶向分布的影响.中国组织工程研究与临床康复.2007(23)11:4558-4561.
    6. Maruyama H, Higuchi N, Nishikawa Y, Kameda S, Iino N, Kazama JJ, Takahashi N, Sugawa M, Hanawa H, Tada N, Miyazaki J, Gejyo F. High-level expression of naked DNA delivered to rat liver via tail vein injection. J Gene Med.2002; 4:333-341.
    7. Miao CH, Thompson AR, Loeb K, Ye X. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther. 2001; 3: 947-957.
    8. Kobayashi N, Matsui Y, Kawase A, Hirata K, Miyagishi M, Taira K, Nishikawa M, Takakura Y. Vector-based in vivo RNA interference:dose-and time-dependent suppression of transgene expression. J Pharmacol Exp Ther. 2004,308:688-693.
    9. Matsui Y, Kobayashi N, Nishikawa M, Takakura Y. Sequence-specific suppression of mdrla/lb expression in mice via RNA interference. Pharm Res.2005,22:2091-2098.
    10.22 Takahashi Y, Nishikawa M, Kobayashi N, Takakura Y. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice:quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases. J Control Release. 2005,105:332-343.
    11. Andrianaivo F, Lecocq M, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Hydrodynamics-based transfection of the liver:entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med.2004,6:877-883.
    12. Kobayashi N, Nishikawa M, Takakura Y. The hydrodynamics-based procedure for controlling the pharmacokinetics of gene medicines at whole body, organ and cellular levels. Adv Drug Deliv Rev.2005,57:713-731.
    13. Kobayashi N, Nishikawa M, Hirata K, Takakura Y. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane:implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med.2004,6:584-592.
    14. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther.,2004,11:675-682.
    15.朱传龙,宁琴,罗小平.尾静脉高压注射质粒DNA后体内表达的规律.中国比较医学杂志.2006,16(4):226-229.
    16. Goodwin PC. GFP biofluorescence:imagining gene expression and protein dynamics in living cells. Design considerations for a fluorescence imagining laboratory. Methods Cell Biol.1999;58:343-367.
    17. Li X, Zhang G, Ngo N, et al. Deletions of the acquorea Victoria green fluorescent protein define the minimal domain required for fluorescence. J Biol Chem.1997,272 (45):28545-28549.
    18. Felnger PL, Gadek TR, Holn M. et al. Lipofection:a high efficient lipid-mediated DNA-transfection procedure [J]. Proc Natl, Acad, Sci USA.1987,84:7413-7417.
    19. Volker Obedle, Udo Bakow, et al. lipoplex formation under equilibrium condition reveals a three-step mechanicsm. J biophysical journal.2000,79(9):1447-1454.
    20.邓益斌,秦爱萍,朱晓莹,等.阳离子质脂体作为基因治疗药物载体在小鼠体内的毒性研究.现代生物医学进展.2008,8(12):2238-2240.
    1. Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci. 1991,36(6):770-774.
    2. Kieslichova E, Ryska M, Pantoflicek T, et al. Hemodynamic parameters in a surgical devascularization model of fulminant hepatic failure in the minipig. Physiol Res.2005, 54(50):485-490.
    3. Kurdadze E, Lobdjanidza N, Chavchanidza N, et al. Isolated hepatocytes stimulation activity on toxic liver failure in experimental study. Georgian Med News.2006,136: 102-104.
    4. Morikawa A, Sugiyama T, Kato Y, et al. Apoptotic cell death in the response of D-galactosamine-sensitized mice to lipopolysaccharide as an experimental endotoxic shockmodel. Infect immune.1996,64(3):734-738.
    5.赵世峰.急性肝衰竭动物模型的建立.世界急危重病医学杂志.2006,3(2):1224.
    6. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther.1999,6:1258-1266.
    7. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther.1999,10(10):1735-1737.
    8. Wang CH, Jawan B, Lee TH, Hung KS, Chou WY, Lu CN, Liu JK, Chen YJ. Single injection of naked plasmid encoding alpha-melanocyte-stimulating hormone protects against thioacetamide-induced acute liver failure in mice. Biochem Biophys Res Com-mun.2004,322:153-161.
    9.刘亮明,邓欢,张吉翔,等.丝/苏氨酸激酶Pim-3基因对急性肝功能衰竭肝保护效应的实验研究,中华消化杂志.2006,26(9):122-126.
    10.朱传龙,宁琴,严伟明,等.尾静脉高压注射质粒DNA后体内表达的规律,中国比较医学.2006,16(4):226-229.
    11.刘亮明,罗杰,张吉翔,等.鼠尾静脉流体力学转染技术对绿色荧光蛋白表达质粒器官靶向分布的影响.中国组织工程研究与临床康复,2007(23)11:4558-4561.
    12. Maruyama H, Higuchi N, Nishikawa Y, et al. High-level expression of naked DNA delivered to rat liver via tail vein injection.J Gene Med.2002,4(3):333-341.
    13. Zhang G, Song YK, Liu D. Long-term expression of human alpha 1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther.2000;7(15):1344-1349.
    14. Miao CH, Thompson AR, Loeb K, et al. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther.2001,3: 947-957.
    15. Matsui Y, Kobayashi N, Nishikawa M, Takakura Y. Sequence-specific suppression of mdrla/lb expression in mice via RNA interference. Pharm Res.2005; 22:2091-2098.
    16. Akila G, Rajakrishnan V, Viswanathan P, et al. Effects of curcumin on lipid profile and lipid peroxidation status in experimental hepatic fibrosis [J]. Hepatol Res.1998,11(3): 147-157.
    17. Reddy A C, Lokesh B R. Effect of curcumin and eugenol on iron-induced hepatic toxicity in rats [J]. Toxicology.1996,107(1):39-45.
    18.陈华,薛常镐,陈铁辉,等.姜黄及姜黄素对微囊藻粗毒素致急性肝损伤的化学预防作用[J].中国药理学通报.2005,21(12):1517-1519.
    19. Nanji AA, Jokelainen K, Tipoe GL, et al. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointes Liver Physiol 2003,284(2):G321-327
    20. Xu J, FuY, ChenA. Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol.2003; 7; 285(1):G20-30.
    21. Feng DM, He CX, Miao CY, et al. Conditions affecting hydrodynamics-based gene delivery intomouse liver in vivo. Clin Exp Pharmacol Physiol.2004,31(12):850-855.
    22. Maruyma H, Higuchi N, Nishikawa Y, et al. High-level expression of naked DNA delivered to rat liver tail vein injection. J Gene Med.2002,4:333-341.
    23. Schwabe RF, Brenner DA. Mechanisms of liver injury. TNF-alpha induced liver injury: role of IKK, JNK,and ROS pathways. Am J Physiol Gastrointes Liver Physiol 2006, 290(4):G583-589.
    24. Perez-Ruiz F. Calabozo M. Herrer-Beites AM, et al. Improvement of renal function in patients with chronic gout after proper control of hyperuricemia and gouty bouts. Nephron.2000,86(3):287-291.
    25. Smakman N, Kranenburg O, Vogten JM,et al.Cyclooxygenase-2 is a target of KRASDI2 which facilitates the outgrowth of murine C26 colorectal liver metastases. Clin Cancer Res.2005,11(1):41-48.
    26. Lim JW, Kim H, KimKH. Nuclear factor-kappa B regulates cyclooxygenase-2 expressioned cell proliferation in human grit ric cell. Lab Invest.2001,81(3):349-360.
    27. Beckman J, Koppenol W. Nitric oxide, superoxide, and peroxyni2 trite:the good, the bad, and the ugly [J]. Am J Physiol.1996,271(5):1424-1437.
    28. Tripathi P. Nitric oxide and immune response. Indian J Biochem Biophys.2007,44(5): 310-319.
    29. Batra J, Chatterjee R, GhoshB. Inducible nitric oxide synthase (iNOS):role in asthma pathogenesis. Indian J Biochem Biophys.2007,44(5):303-309.
    1. Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal.2001;13:389-400.
    2. Wu H. Assembly of post-receptor signaling complexes for the tumor necrosis factor receptor superfamily. Adv Protein Chem.2004;68:225-79.
    3. Park YC, Burkitt V, Villa AR, et al. Structural basis for self association and receptor recognition of human TRAF2. Nature.1999,398:533-538.
    4. Takeuchi M, Rothe M, Goeddel DV. Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem.1996; 271:19935-19942.
    5. Chan FK, Chun HJ, Zheng L, et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling.Science.2000;288:2351-2354.
    6. Ye H, Wu H. Thermodynamic characterization of the interaction between TRAF2 and receptor peptides by isothermal titration calorimetry. PNAS.2000;97:8961-8966.
    7. Rothe M, Wong SC, Henzel WJ, et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell,1994,78:681-92.
    8. Cao ZD, Xiong 1, Takeuchi M, et al. TRAF6 is a signal transducer for interleukin-1. Nature,1996,383:443-6.
    9. Xu LG, Li LY, Shu HB. TRAF7 potentiates MEKK3-induced API and CHOP activation and induces apoptosis. JBiol Chem.2004,279(17):17278-82.
    10. Pineda G, Ea CK, Chen ZJ. Ubiquitination and TRAF signaling. Adv Exp Med Biol. 2007;597:80-92.
    11. Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol. 2009, Chapter 11:Unit11.9D.
    12. Camilleri-Broet S, Cremer I, Marmey B, et al. TRAF4 overexpression is a common characteristic of human carcinomas.2007,26(1):142-7.
    13. Inoue J, Gohda J, Akiyama T. Characteristics and biological functions of TRAF6 Adv Exp Med Biol.2007;597:72-9.
    14. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007,13(11):460-9.
    15. Cao Z, Xiong J, Takeuchi M, et al. TRAF6 is a signal transducer for interleukin-1. Nature.1996; 383:443-446.
    16. Chung JY, Park YC, Ye H, et al. All TRAFs are not created equal:common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci. 2002;115:679-688.
    17. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptorassociated factors (TRAFs)-a family of adapter proteins that regulates life and death. Genes Dev. 1998;12:2821-2830.
    18. Ye H, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature. 2002;418:443-447.
    19. Nakano H, Kurosawa K, Sakon S, et al. Impaired TNF-induced NF-kB activation and high sensitivity to TNF-induced cell death in TRAF2- and TRAF5-double deficient
    mice. Scandinavian Journal of Immunology.2000;51(Suppl 1):71.
    20. Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell.2000; 103:351-361.
    21. Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature.2001;412:346-351.
    22. Locksley R M, klleenN, Lenardo M J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell.2001,104:487-501.
    23. Ishida T, et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. JBiol Chem.1996;271:28745-28748.
    24. Rowland SL, Tremblay MM, Ellison JM, et al. A novel mechanism for TNFR-associated factor 6-dependent CD40 signaling. J Immunol.2007,179(7): 4645-53.
    25.张文,张恒,曾小峰,等.TRAF6在B淋巴瘤细胞系NF-κB和AP-1信号传导通路中的作用.2009,29(7):716~720.
    26. Kopp E, Medzhitov R, Carothers J, et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 1999; 13:2059-2071.
    27. Lomaga MA, Yeh WC, Sarosi I, et al.TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev.1999; 13(8):1015-24.
    28. Katie J. Loniewski, Sonika Patial, et al. Sensitivity of TLR4-and-7-induced NF-κB1 p105-TPL2-ERK pathway to TNF-receptor-associated-factor-6 revealed by RNAi in mouse macrophages [J]. Molecular Immunology.2007,44,3715-3723.
    29. Yang YJ, Chen W, Carrigan SO, et al. TRAF6 Specifically Contributes to Fc epsilon RI-mediated Cytokine Production but Not Mast Cell Degranulation [J]. Biol. Chem. 2008,283,32110-32118.
    30. Fabiana S Machado, Lisia Esper, Alexandra Dias, et al. Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6[J]. Experimental Medicine.2008,205,1077-1086.
    31. Yumiko Imai, Keiji Kuba, G Greg Neely, et al. Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury. Cell.2008,133, 235-249.
    32. Heyninck K, Beyaert R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF- kappaB activation at the level of TRAF6. FEBS Lett. 1999;442:147-150.
    33. Schultheiss U, Puschner S, Kremmer E, et al. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J. 2001;20:5678-5691.
    34. Yoshida H, Kato N, Shiratori Y, et al. Hepatitis C virus core protein activates nuclear factor kappa Bdependent signaling through tumor necrosis factor receptor-associated factor. J Biol Chem.2001,276:16399-16405.
    35. Thome M, Gaide O, Micheau O, et al. Equine herpesvirus protein E10 induces membrane recruitment and phosphorylation of its cellular homologue, bcl-10. J Cell Biol.2001;152:1115-1122.
    36. Maeda S, Yoshida H, Ogura K, et al. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology.2000; 119:97-108.
    37. Maezawa Y, Nakajima H, Suzuki K, et al. Involvement of TNF receptor-associated factor 6 in IL,-25 receptor signaling. J Immunol.2006,176(2):1013-8.
    38. Rothe M, Sarma V, Dixit VM, et al. TRAF2-mediated activation of NF-kappaB by TNF receptor 2 and CD40. Science.1995,269:1424-7.
    39. Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell.2000,103:351-61.
    40. Wang C, Deng L, Hong M, et al TAKI is a ubiquitin-dependent kinase of MKK and IKK. Nature.2001,412:346-51.
    41. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptorassociated factors (TRAFs) a family of adapter proteins that regulates life and death. Genes Dev. 1998;12:2821-2830.
    42. Kobayashi N, Kadono Y, Naito A, et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J.2001;20:1271-1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700