丙酮酸肌酸对肉鸡脂肪代谢和蛋白质代谢的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙酮酸肌酸(creatine pyruvate, CrPyr)是一种新的功能营养素,其对丙酮酸和肌酸的生物学功能进行了有效的结合和互补。丙酮酸肌酸的主要功能是抑制肌肉中蛋白质的流失、增加肌肉重量,同时促进脂肪代谢、减少体脂百分数。目前,对于CrPyr功能的研究主要集中在运动生理学方面。其在畜禽生产方面,特别是对家禽脂肪代谢和蛋白质代谢影响的研究鲜有报道。本研究以雄性AA肉鸡为研究对象,探讨日粮添加丙酮酸肌酸对肉鸡脂肪代谢及蛋白质代谢的影响;并以比较蛋白质组学为主要研究手段,构建CrPyr处理的肉鸡肝脏和肌肉组织蛋白表达谱,分析表达差异并揭示各相关蛋白质/酶之间的作用规律和相互关系,揭示丙酮酸肌酸调节肉鸡脂肪代谢及蛋白质代谢生物化学机制。
     1日粮添加不同剂量的丙酮酸肌酸对肉鸡脂肪代谢和蛋白质代谢的影响
     为探讨丙酮酸肌酸(CrPyr)对肉鸡脂肪代谢和蛋白质代谢的影响,400羽1日龄雄性AA肉鸡随机分为4组,每组4个重复,每个重复25羽。按常规饲养方式饲喂至22日龄,分别于基础日粮中添加0%、1%、5%和10% CrPyr。饲喂至42日龄,各组分别从每个重复中随机抽取3只肉鸡宰杀,采集血样、肝脏、腹脂等冻存,待测。试剂盒法检测肝脏甘油三酯(TG)、血清TG、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、非酯化脂肪酸(NEFA)和尿酸(UA)的含量及肌酸激酶(CK)的活性;放射免疫分析法检测血清中胰高血糖素(Glucagon)、胰岛素(Insulin)和瘦素(Leptin)的含量;荧光实时定量PCR法检测肝脏组织中脂肪代谢关键因子乙酰辅酶A羧化酶(ACC)、脂肪酸合酶(FAS)、肉碱棕榈酰转移酶-I(CPT-I)、过氧化物酶体增殖物激活受体a (PPAR-a)及肌肉中胰岛素样生长因子-1 (IGF-1)、肌肉中生肌调节因子(Myogenin)、肌肉生长抑制素(Myostatin)基因的mRNA表达水平。试验结果显示,10% CrPyr显著降低肉鸡体重(BW)和日增重(ADG)。5%和10% CrPyr均可以显著降低肉鸡的腹脂率(AFR)、血清及肝脏中甘油三酯(TG)含量。相反,5%和10% CrPyr显著升高相对胸肌重量、血清中NEFA、HDL-C、Glucagon. Insulin和Leptin含量及CK活性。基因表达分析结果显示,5%和10% CrPyr可促进肝脏PPAR-a、CPT-I和肌肉IGF-1的mRNA表达,降低肌肉Myostatin的mRNA表达。结果提示,添加5%的CrPyr在不影响生长性能的情况下,能够降低AA肉鸡脂肪的沉积,同时增强体蛋白的沉积。
     2丙酮酸、丙酮酸肌酸和肌酸对肉鸡脂肪代谢及蛋白质代谢的影响
     为比较丙酮酸(Pyr)、丙酮酸肌酸(CrPyr)和肌酸(Cr)对肉鸡脂肪代谢和蛋白质代谢的影响,400羽1日龄雄性AA肉鸡随机分为4组,每组4个重复,每个重复25羽。按常规饲养方式饲喂至22日龄,对照组饲喂基础日粮,试验组分别于基础日粮中添加5% CrPyr、2% Pyr和3%Cr。饲喂至42日龄时,各组分别从每个重复中随机随机抽取3只肉鸡宰杀,采集血样、肝脏、腹脂等冻存,待测。检测指标同试验一试验结果发现,5% CrPyr对肉鸡的体重及饲料转化率并无影响;CrPyr和Pyr均显著降低肝脏TG和血清TC; CrPyr显著升高相对腿肌重量、血清中NEFA和HDL-C的含量以及肝脏组织中CPT-I和PPAR-α基因的mRNA表达水平;CrPyr和Cr均显著降低血清中UA的含量和肌肉组织中Myostatin基因的mRNA表达水平,显著升高肌肉组织中IGF-1基因的mRNA表达水平。结果提示,CrPyr在降低肉鸡的脂肪代谢沉积和增强蛋白质沉积方面均强于Pyr和Cr,体现了其双功能营养素的作用效应。
     3丙酮酸、丙酮酸肌酸和肌酸对肉鸡肝脏线粒体蛋白/酶表达谱的影响
     本试验选取雄性AA肉鸡为研究对象,研究丙酮酸(Pyr)、丙酮酸肌酸(CrPyr)和肌酸(Cr)对肉鸡肝脏线粒体脂肪代谢相关蛋白/酶表达谱的影响,拟从蛋白水平探讨Pyr, CrPyr和Cr调节肉鸡脂肪代谢和蛋白质代谢的机理。试验设计同第二章。试验方法采用多步差速离心和密度梯度离心联合法分离纯化肝脏线粒体。采用测定溶酶体标志酶(半乳糖苷酶),质膜标志酶(碱性磷酸二酯酶),线粒体标志酶(细胞色素C氧化酶)和胞浆标志酶(乳酸脱氢酶)的活性对线粒体纯度评价;以琥珀酸脱氢酶活性估算线粒体的富集度;以及用专一的荧光探针(MitoTracker RED)观察线粒体形态。结果表明,利用差速离心和等密度梯度离心的联合可以有效地分离纯化线粒体。通过2D-PAGE分离后,经图谱分析获得差异蛋白点,再进行MALDI-TOF-MS质谱鉴定。与对照组相比,CrPyr处理组得到13个差异蛋白,Pyr处理组得到17个差异蛋白,Cr处理组得到11个差异蛋白。试验结果表明,CrPyr通过下调脂肪分化相关蛋白(ADRP)的表达减少脂肪酸的聚积,抑制ATP合酶的表达从而减少脂肪细胞的生成,同时通过下调胆固醇酯转移蛋白(CETP)的表达提高HDL水平和降低TG水平,减少脂肪和胆固醇的沉积;CrPyr和Cr上调蛋白质合成过程中起关键作用的翻译起始因子2B (eIF2B)因子的蛋白水平,促进蛋白质的合成,且CrPyr作用效果强于Cr; Pyr和Cr上调脂酰CoA合成酶(ACS)的蛋白表达,促进脂肪酸的β-氧化分解,减少脂肪沉积;Pyr上调参与蛋白质终止后加工、转运的甲硫氨酸胺基肽酶、鸟氨酸转移酶和热休克蛋白60的表达。与Pyr和Cr比较,CrPyr在脂肪分解和蛋白质合成上发挥了更为重要的作用,且作用效果均强于Pyr和Cr。
     4丙酮酸、丙酮酸肌酸和肌酸对肉鸡肝脏胞浆蛋白/酶表达谱的影响
     本试验选取雄性AA肉鸡为研究对象,探讨丙酮酸(Pyr)、丙酮酸肌酸(CrPyr)和肌酸(Cr)对肉鸡肝脏胞浆蛋白/酶表达的影响,拟从蛋白水平探讨Pyr, CrPyr和Cr调节肉鸡脂肪代谢和蛋白质代谢的机理。试验设计同第二章。试验方法采用差速离心法分离肝脏胞浆蛋白。通过2D-PAGE分离后,经图谱分析获得差异蛋白点,再进行MALDI-TOF-MS质谱鉴定。与对照组相比,CrPyr处理组得到16个差异蛋白,Pyr处理组得到19个差异蛋白,Cr处理组得到12个差异蛋白。试验结果表明,CrPyr和Pyr通过上调肉鸡肝脏胞浆中脂肪酸结合蛋白(FABP)、下调胆固醇酯转移蛋白(CETP)的表达,加快脂肪酸的氧化分解和TG的分解,减少脂肪的沉积,且CrPyr作用效果比Pyr显著;CrPyr和Cr通过上调载脂蛋白A-IV (ApoA-IV)的表达,加快TG的分解,减少脂肪的堆积,且CrPyr作用效果比Cr显著;CyPry还通过上调肉鸡肝脏胞浆中钙网织蛋白(CRT)和真核翻译起始因子3a (eIF3a)的水平,促进蛋白质的合成,而Pyr和Cr对肉鸡肝脏的蛋白质代谢没有明显的影响。因此,同Pyr和Cr相比较,CrPyr在肉鸡肝脏脂肪代谢和蛋白质代谢方面发挥了更积极有效的作用。
     5丙酮酸、丙酮酸肌酸和肌酸对肉鸡肌肉蛋白/酶表达谱的影响
     本试验选取雄性AA肉鸡为研究对象,探讨丙酮酸(Pyr)、丙酮酸肌酸(CrPyr)和肌酸(Cr)对肉鸡肌肉蛋白/酶表达谱的影响,拟从蛋白质水平探讨Pyr, CrPyr和Cr调节肉鸡肌肉蛋白质代谢的机理。试验设计同第二章。试验方法采用组织匀浆法分离肌肉蛋白。通过2D-PAGE分离后,经图谱分析获得差异蛋白点,再进行MALDI-TOF-MS质谱鉴定。与对照组相比,CrPyr处理组鉴定出11个差异蛋白,Pyr处理组鉴定出11个差异蛋白,Cr处理组鉴定出得到10个差异蛋白。试验结果表明,CrPyr通过增加肌肉中肌酸激酶(MCK)的活性,升高磷酸肌酸的含量;同时降低磷酸化酶b激酶的活性,减少糖元的分解,使肌肉能量储备增强,进而影响机体的能量代谢。CrPyr上调真核翻译起始因子2(eIF2)的表达水平,提示其可以促进肌肉蛋白质的合成,最终表现为肌肉组织中肌球蛋白轻链和肌动蛋白的表达的增加。Pyr上调糖酵解过程中的关键酶丙酮酸激酶(PK)和烯醇化酶的表达,同时下调参与肌细胞内参与氧运输和贮存的肌红蛋白的表达,提示Pyr可以加快缺氧条件下的糖元酵解,对机体能量的恢复有一定的帮助,而对肌肉的蛋白质代谢没有影响。Cr对肌球蛋白和肌动蛋白的表达有所影响,同时可以提高肌酸激酶的活性,但是表达量低于CrPyr处理组。综合比较显示,CrPyr在肌肉能量代谢和蛋白质代谢上发挥了积极的作用,且作用效果明显高于其单独的有效成分Cr和Pyr。
Creatine pyruvate (CrPyr) is a new multifunctional nutrient, it makes a very good combination and complement with the function of pyruvate and creatine. The mainly biological functions of CrPyr are inhibite the loss of muscle protein, increase muscle mass and promote lipid metabolism, reduce body fat percentage and delay fatigue. Currently, the research for CrPyr focused on exercise physiology, its lipid and protein metabolism in broiler chickens has been reported rarely. In this study, a study was carried out to examine the effects of exogenous added CrPyr on lipid and protein metabolism in male AA broilers; Through the changes in protein profiles of liver and muscle by using comparative proteomics, the purpose of this is to reveal the relationship between the proteins and analyse the mechanism of CrPyr effects on lipid and protein metabolism in broiler chickens.
     1 Effect of CrPyr with different doses on lipid and protein metabolism in broiler chickens
     To assess the effects of creatine pyruvate (CrPyr) on lipid and protein metabolism in broiler chickens, a total of 400 one day-old male birds (Arbor Acres) were randomly allocated to four groups, with each group replicated four times and each replicate involving 25 birds. The broilers were provided with a commercial diet supplemented with CrPyr at 0%,1%,5% or 10% of the diet, respectively, for a period of 3 wks ad libitum (from 22 to 42 d). The content of hepatic triglycerides (TG), blood triglycerides (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), uric acid (UA), creatine kinase (CK), glucagon (Glu), insulin (Ins), leptin (Lep), triiodothyronine (T3), thyroxin (T4), free triiodothyronine (FT3) and free thyroxin (FT4) were determined by using commercial kits. The genes of acetyl CoA carboxylase (ACC), fatty acid synthetase (FAS), peroxisome proliferators activated receptor a (PPAR-a), carnitine palmitoyl transferase-I (CPT-I) in liver and muscle insulin-like growth factor 1 (IGF-1), Myostatin, Myogenin in muscle for real-time PCR assays. Four broiler chickens per replicate from each treatment were chosen randomly and slaughtered to collect specimens of blood, liver, abdominal fat at 42 day-old. In the present study, body weight (BW) and average daily gain (ADG) of broilers decreased in 10% CrPyr group.5% or 10% CrPyr of diets decreased the abdominal fat rate (AFR, abdominal fat/live weight), serum or hepatic TG concentrations of the broilers. In contrast,5% and 10% CrPyr caused a marked increase in the relative pectoral muscle weights, serum NEFA, HDL-C, Glu, Ins or Lep contents and CK activity,. The expression of hepatic PPAR-αand CPT-I, muscle IGF-1 were significantly elevated in the 5% and 10% groups, and the Myostatin mRNA expression was reduced. It was found that supplementation with 5% CrPyr enhances lipolysis and protein synthesis, while not adversely affects growth performance in broiler chickens.
     2 Comparison of Pyr, CrPyr and Cr on lipid and protein metabolism in broiler chickens
     The effects of Pyruvate (Pyr), Creatine Pyruvate (CrPyr) and Creatine (Cr) on lipid and protein metabolism were compared in broiler chickens. Four hundred one day-old male birds (Arbor Acres) were allocated to four groups, each of which included four replicates (25 birds per replicate). Treatments consisted of unsupplemented basal diet (0%), basal diet containing 2% Pyr, basal diet containing 5% CrPyr and basal diet containing3% Cr, respectively, for a period of 3 wks ad libitum (from 22 to 42 d). Three broiler chickens per replicate from each treatment were chosen randomly and slaughtered to collect specimens of blood, liver, abdominal fat at 42 day-old. The detected index were same as text one. The results showed that CrPyr and Pyr significantly decreased the hepatic TG and serum TC concentration. CrPyr markedly increased the relative leg muscle weights, the serum NEFA and HDL-C concentrations, while the expression of CPT-I and PPAR-a mRNA in the liver were both decidedly enhanced in the CrPyr group. The serum UA content was and the Myostatin mRNA level was reduced in the CrPyr and Cr groups. Muscle IGF-1 expression was enhanced in both the CrPyr and Cr groups. In addition, CrPyr did not alter body weight or the feed conversion ratio. These results indicate that, compared with Pyr and Cr alone, CrPyr has a bifunctional role in broiler chickens, in that it influences both lipid and protein metabolism.
     3 Effects of Pyr, CrPyr and Cr on the expressions of liver mitochondrial protein/ enzyme in broiler chickens
     The male birds (Arbor Acres) were selected to study the effect of Pyr, CrPyr and Cr on the expressions of liver mitochondrial lipid and protein metabolism-related protein/enzyme in broiler chickens. Experimental design was same to the second chapte. Mitochondrial purification process using the two-step differential centrifugation and density gradient method. The activities of galactosidase (lysome), alkaline phosphodiesterase (plasma membrane), cytochrome c oxidase (mitochondria), and lactate dehydrogenase were determined to assess the purity of mitochondrion; the activities of fumaric reductase was determined to estimate the enrichment of mitochondrion; Otherwise the morphous of mitochondrion was observed by using the MitoTracker RED. The results showed that mitochondrion was separated and purificated efficiently by using this methord in present study. Proteins were isolated by differential centrifugation and were separated by two-dimensional electrophoresis, the differentially displayed spots were obtained by pattern analysis, then the spots were further identified by MALDI-TOF-MS. Compared with the control group, CrPyr treatment group received 13 different proteins, Pyr treatment group received 17 different proteins, Cr treatment group received 11 different proteins. The results showed that, CrPyr reduced the accumulation of fatty acids by down-regulating the expression of ADRP, inhibited the expression of ATP synthase to reduce the formation of fat cells, while reduced the expression of CETP to increase HDL levels and decrease TG levels, resulting in the less fat and cholesterol deposition; CrPyr and Cr increased the expression of eIF2B, which played a key role in protein synthesis, thus promoted protein synthesis, and the effect of CrPyr was more significantly than Cr; Pyr and Cr raised the expression of ACS to promote theβ-oxidation of fatty acids and reduced fat deposition; Pyr also raised the levels of methionine aminopeptidase, ornithine aminotransferase and 60kDa heat shock protein, which effected on protein processing and transport after the termination of protein synthesis. Compared with the Pyr and Cr, CrPyr plays a more important role in lipolysis and protein synthesis, and the effect was stronger than Pyr and Cr.
     4 Effects of Pyr, CrPyr and Cr on the expressions of liver cytosolic protein/enzyme in broiler chickens
     The male birds (Arbor Acres) were selected to study the effect of Pyr, CrPyr and Cr on the expressions of liver cytosolic lipid and protein metabolism-related protein/enzyme in broiler chickens. Experimental design was same to the second chapter. Proteins were isolated by differential centrifugation and were separated by two-dimensional electrophoresis, the differentially displayed spots were obtained by pattern analysis, then the spots were further identified by MALDI-TOF-MS. Compared with the control group, CrPyr treatment group received 16 different proteins, Pyr treatment group received 19 different proteins, Cr treatment group received 12 different proteins. The results showed that, CrPyr and Pyr up-regulated the expression of FABP and CETP in liver cytoplasm to accelerate the decomposition of fatty acids and TG, thus reducing fat deposition, the effects of CrPyr was more significantly than Pyr; CrPyr and Cr raised the expression of ApoA-IV, it could accelerate the decomposition levels of TG, then reduced fat accumulation, the effects of CrPyr was significantly than Cr; Also, CyPry increased the levels of CRT and eIF3a to promote protein synthesis, and Pyr and Cr did not have effects on protein metabolism in chicken liver. Therefore, compared with Pyr and Cr, CrPyr plays a more active and effective role in lipid and protein metabolism in broiler chickens.
     5 Effects of Pyr, CrPyr and Cr on the expressions of muscle protein/enzyme in broiler chickens
     The male birds (Arbor Acres) were selected to study the effect of Pyr, CrPyr and Cr on the expressions of muscle metabolism-related protein/enzyme in broiler chickens. Experimental design was same to the second chapter. Proteins were isolated by homogenates and were separated by two-dimensional electrophoresis, the differentially displayed spots were obtained by pattern analysis, and then the spots were further identified by MALDI-TOF-MS. Compared with the control group, CrPyr treatment group received 11 different proteins, Pyr treatment group received 11 different proteins, Cr treatment group received 10 different proteins. The results showed that, CrPyr increased the activity of MCK, elevated the levels of creatine phosphate; it also reduced the activity of phosphorylase b kinase to decrease the decomposition of glycogen and increase the body's energy reserves, thereby affecting the body's energy metabolism. CrPyr up-regulated the expression of eIF2, this suggested that it could promote muscle protein synthesis, the final performance were the increased expression of muscle myosin light chain and actin. Pyr raised the expression of PK and enolase, which were the key enzyme in glycolysis, while reduced the expression of myoglobin, which played a role in the transport and storage of oxygen in muscle cells, suggesting that Pyr could help the energy recovery of the body through glycolysis under hypoxia accelerated; Pyr did not have effects on muscle protein metabolism. Cr changed the expression of myosin and actin, while increased the activity of creatine kinase, but the expression was lower than CrPyr treatment group. Comprehensive comparison shows that, CrPyr plays an active role in muscle energy metabolism and protein metabolism and the effect was significantly higher than the individual active ingredients Cr and Pyr.
引文
[1]Cahaner A, Leenstra F. Effects of high temperature on growth and efficiency of male and female broilers from lines selected for high weight gain,favorable feed conversion,and high or low fat content [J]. Poult Sci,1992,71(8):1237-1250.
    [2]Stryer Lubert, Biochemistry [M]. Third edition, Freeman WH and Company/New York,1988.
    [3]Harris D M, Dunshea F R, Bawman D E, et al. Effect of in vivo somatotropin treatment of growing pigs on adipose tissue lipogenesis [J]. J Anim Sci,1993,71:3293-3300.
    [4]Takai T, Yokoyama C, Wada K, et al. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence [J]. J Biol Chem,1988,263:2651-2657.
    [5]WonKeun O H, Lutfi A E, Parichher K, et al. Glucose and fat metabolismin adipose tissue of acetyl-CoA carboxylase 2 knockout mice [J]. PNAS,2005,5:1384-1389.
    [6]Lu C Y, Grant A L, Kim K H, et al. Porcine somatotropin decreases acetyl-CoAcarboxylase gene expression in porcine adipose tissue [J]. Dom Anim Endocrin,1994,11:125-132.
    [7]Iritani N, Fukuda E, Inoguchi K. A possible role of Z protein in dietary control of hepatic triacylglycerol synthesis [J]. J Nutr Sci Vitaminol,1980,26:271-277.
    [8]Smith S. The animal fatty acid synthase:One gene, one polypeptide, seven enzymes. FASEB J, 1994,8:1248-1259.
    [9]Weiss L, Hoffmann G E, Schreiber R, et al. Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase [J]. Biol Chem Hoppe Seyler,1986,367:905-912.
    [10]Paulauskis J D, Sul H S. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells [J]. J Biol Chem,1988,263: 7049-7054.
    [11]Moustaid N, Sul H S. Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells by differentiation and triiodothyronine [J]. J Biol Chem,1991,266:18550-18554.
    [12]Paulauskis J D, Sul H S. Hormonal regulation of mouse fatty acid synthase gene transcription in liver [J]. J Biol Chem,1989,264:574-577.
    [13]Volpe J J, Marasa J C. Hormonal regulation and fatty acid synthase, acetyl-CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver [J]. Biochim Biophys Acta,1975,380: 454-472.
    [14]Blake W L, Clarke S D. Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat [J]. J Nutr,1990,120:1727-1729.
    [15]Jump D B, Clarke S D, Thelen A, et al. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res,1994,35:1076-1084.
    [16]Clarke S D and Jump D B. Regulation of hepatic gene expression by dietary fats:A unique role for polyunsaturated fatty acids [M]. In:C.D.Berdanier and J.L.Hargrove (Ed.) CRC Press Reviews. CRC Press, Boca Raton, Fl,1992.
    [17]Britton C H, Sehultz R A, Zhang B, et al. Human Iiver mitoehondrial carnitine Palmitoyl-transferase leharaeterization of its cDNA and chromosomal loealization and Partial analysis of the gene [J]. Proe Natl Acad Sci,1995,92:1984-1988.
    [18]PriceN T, vanderLeij F R, Jackson V N et al. Anovel brain expressed protein related to camitine Palmitoyltransferase 1 [J]. Genomics,2002,80:433-442.
    [19]张芳林.肉碱棕榈酰转移酶-Ⅰ的研究进展[J].国外医学内分泌学分册,2002,22(3):166-170.
    [20]Louet J F, LeMay C, Pegorier J P, et al..Regulation of liver carnitine Palmitoyltransferase 1 gene expression by hormones and fatty acids [J]. Biochem Soc Trans,2001,29:310-316.
    [21]萧建中,杨文英,Kjeld Hermansen.细胞内脂肪堆积和p细胞增殖的关系[J].中国糖尿病杂志,2006,14(2):94-97.
    [22]Yu G S, Lu Y C, Gulick T. Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate [J]. J Biol Chem,1998, 273:32901-32909.
    [23]Staels B, Dallonqeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism [J]. Circulation,1998,98:2088-2093.
    [24]Ferre P. The biology of peroxisome proliferator-activated receptors:relationship with lipid metabolism and insulin sensitivity [J]. Diabetes.2004,53:S43-50.
    [25]Mano H, Kimura C, Fujisawa Y, et al. Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts [J]. J Biol Chem.2000,275(11):8126-8132.
    [26]Rao M S and Reddy J K. Peroxisomal beta-oxidation and steatohepatitis [J]. Semin Liver Dis,2001, 21:43-55.
    [27]Clark S D, Regulation of fatty acid synthase gene expression:an approach for reducing fat accumulation [J]. J Amin Sci,1993,71:1957-1966.
    [28]Muzzin P, Eisensmith R C, Copeland KC, et al. Correction of obesity and diabetes in genetically obese mice by leptin gene therapy [J]. Proc Natl Acad Sci,1996,93:14804-14808.
    [29]Rosebrough R W, Steele N C, Energy and protein relations in the broiler.1. Effect of protein levels and feeding regimes on growth, body composition and in vitro lipogenesis in broiler chicks [J]. Poult Sci,1985,64:119-129.
    [30]Jackson S, Summers J D, Leeson S. Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization [J]. Poult Sci,1982,61(11):2224-2231.
    [31]Rosebrough R W, Poch S M, Russell B A, et al. Dietary protein regulates in vitro lipogenesis and lipogenic gene expression in broilers [J]. Comp Biochem Physiol A,2002,132:423-431.
    [32]Whitehead C C, Griffin H D. Plasma lipoprotein concentration as an indicator of fatness in broilers: effect of age and diet [J]. Br Poult Sci,1982,23:299-305.
    [33]邵明丽,许梓荣.猪脂肪代谢及其调控研究进展[J].饲料博览,2002,10:12-15.
    [34]Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue [J]. Nature,1994,372(6505):425-432.
    [35]Wauters M, Considine R V, VanGaal L F. Human leptin:from a dipocyte homone to anendocrine mediator [J]. J Eur J Endo,2000,143(3):293-311.
    [36]Berthoud H R. Interaetions between the "cognitive" and "metabolic" brain in the control of food intake [J]. J Physiol Behav,2007,91(5):486-498.
    [37]Halaas J L, Gajiwala K S, Maffei M, et al. Weight-redueing effects of the plasma protein eneoded by the obese gene [J]. Science,1995,269(5223):543-546.
    [38]Pelleymounter M A, Cullen M J, Baker M B, et al. Effects of the obese gene product on body weight regulation in ob/ob mice [J].Science,1995,269(5223):540-543.
    [39]CzajanK, Barb C R, Kraeling R R. Hypothalamic neurons innervating fat tissue in the Pig express leptin receptor immunoreactivity [J]. J Neurosci Lett,2007,425(1):6-11.
    [40]Tartaglia L A, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R [J]. Cell,1995,83(7):1263-1271.
    [41]缪明.内分泌学[M].北京:高等教育出版社,1992.
    [42]Wilson H R, Boone M A, Arafa A S, et al. Abdomnalfat pad reduction in broiler with thyroactive iodinated casein [J]. Poult Sci,1983,62:811-818.
    [43]Suthama N, Hayashi K, Toyomizu M. Effect of dietary thyroxine on growth and muscle protein metabolism in broiler chickens [J]. Poult Sci,1989,68:1396-1401.
    [44]Hayes L J, Song S 1, Lavrentyev E N, et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyl transferase-I gene mediates the liver-specific induction by thyroid hormone [J]. J Biol Chem,2003,278:7964-7972.
    [45]Iritani N, Fukuda E, Inoguchi K. A possible role of Z protein in dietary control of hepatic triacylglycerol synthesis [J]. J Nutr Sci Vitaminol,1980,26:271-277.
    [1]李恩.蛋白质的营养与分解代谢[J].中国临床医生.1984,27(5):30-34.
    [2]梁祖霞.蛋白质的结构和生物合成[J].生物学教学.1983,3(2):11-13.
    [3]Pain V M. Initiation of protein synthesis in eukaryotic cells [J]. Eur J Biochem,1996,236(3): 747-771.
    [4]Vary T C, Jefferson L S, Kimball S R. Amino acid-induced stimulation of translation initiation in rat skeletal muscle [J]. Am J Physiol,1999,277(6):E1077-E1086.
    [5]Scorsone K A, Panniers R, Rowlands A G, et al. Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis [J]. J Biol Chem,1987,262: 14538-14543.
    [6]Rowlands A G, Montine K S, Henshaw E C, et al. Physiological stresses inhibit guanine-nucleotide-exchange factor in Ehrlich cells [J]. Eur J Biochem,1988,175:93-99.
    [7]周顺伍.动物生物化学(第三版)[M].中国农业出版社,北京,1999.
    [8]邹思湘.动物生物化学(第四版)[M].中国农业出版社,南京,2005.
    [9]张兆华.蛋白质与氨基酸学说在养鸡业中的正确应用[J].当代畜牧.1985,34(1):67-70.
    [10]Rosen C J, Pollak M. Ciculating IGF-1:New perspectives for a new century [J]. TEM,1999,10: 136-141.
    [11]Kocamis H, Yeni Y N, Brown C U. Effect of in vivo administration of insulin-like growth factor-1 on composition and mechanical properties of chicken bone [J]. Poult Sci,2000,79:1345-1350.
    [12]Morgan D O, Edman J C, Standring D N, et al. IGF-II receptor a multifunctional binding protein [J]. Nature,1987,329:301-307.
    [13]Mandel S, Moreland E, Nichols V, et al. Changes in insulin-like growth factor-1(IGF-I), IGF-bingdingprotein-3, growth hormone-binding protein, erythrocyte IGF-I receptor and growth rate during GH treatment [J]. J Clin Endo Metab,1995,80:190.
    [14]Naidu P S, Ludolph D C,To R Q, et al. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis [J]. Mol Cell Biol,1995,15(5):2707-2718.
    [15]Hasty P, Bradley A, Morris J H, et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene [J]. Nature,1993,364:501-506.
    [16]Neville C M, Schmidt M, Schmidt J. Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle:a possible role for myogenin in denervation supersensitivity [J]. Cell Mol Neuro,1992,12(6):511-527.
    [17]McFarlane C, Langley B, Thomas M, et al. Proteolytic processingof myostatin is auto-regulated during myogenesis [J]. Dev Biol,2005,283(1):58-69.
    [18]Artaza J N, Bhasin S, Magee T R, et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymalmultipotent cells [J]. Endocrinology,2005,146(8):3547-3557.
    [19]Amthor H, Otto A, Macharia R, et al. Myostatin imposes reversible quiescence on embryonic muscle precursors [J]. Dev Dyn,2006,235(3):672-680.
    [20]Mendler L, Zador E, Ver Heyen M, et al. Myostatin levels in regenerating rat muscles and in myogenic cell cultures [J]. J Muscle Res Cell Motil,2000,21(6):551-563.
    [21]Armand A S, Della Gaspera B, Launay T, et al. Expression and neural control of follistatin versus myostatin genes during regeneration of mouse soleus [J]. Dev Dyn,2003,227(2):256-265.
    [22]Sakuma K, Watanabe K, Sano M, et al. Differential adaptation of growth and differentiation factor-8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regeneratingand denervated rat muscles[J]. Biochim Biophys Acta,2000,1497(1):77-88.
    [23]McPherron A C, Lee S J. Suppression of body fat accumulation inmyostatin-deficient mice [J]. J Clin Invest,2002,109(5):595-601.
    [24]Hamrick M W, Pennington C, Webb C N, et al. Resistance to body fat gain in'double-muscled' mice fed a high-fat diet [J]. Int J Obes (Lond),2006,30(5):868-870.
    [25]Yang W, Wang K, Chen Y, et al. Functional characterization of recombinant myostatin and its inhibitory role to chicken muscle development [J]. Acta Bioch Bioph Sin,2003,35(11):1016-1022.
    [26]Sato F, Kurokawa M, Yamauchi N, et al. Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA [J]. Am J Physiol Cell Physiol,2006,291(3): 538-545.
    [27]McFarland D C, Velleman S G, Pesall J E, et al. Effect of myostatinon turkey myogenic satellite cells and embryonic myoblasts [J]. Comp Biochem Physiol A Mol Integr Physiol,2006,144(4): 501-508.
    [28]Tritsch G L, More G E. Spontaneous decomposition of glutamine in cellculture media [J]. Exp Cell Res,1986,28:196.
    [29]Crozier S J, Kimball S R, Emmert S W, et al. Oral leucine administration stimulates protein synthesis in rat skeletal muscle [J]. J Nutr,2005,135(3):376-382.
    [30]Kino K, Okumura, J I. Whole-body protein turnover in chicks fed control, histidine or methionine plus cystine-free diets [J]. Poult Sci,1987,66:1392-1397.
    [31]刘建胜,孙秀玉,王福强,等.大豆活性肽对肉仔鸡日粮蛋白质代谢及增重效果的影响[J].中国家禽,2006,28(17):14-18.
    [32]Preddy V M, Garlick P J. The effect of glucagons on protein synthesis in skeletal muscles, heart and liver in vivo [J]. Biochemical Journal,1985,228:575-581.
    [33]Bleiberg D F, Lamri Y, Feldmann G, et al. Glucagon administration in vivo stimulates hepatic RNA and protein breakdown in fed and fasted rats [J]. Biochemical Journal,1994,299:645-649.
    [34]Simon J. Insulin-glucagon and growth in broilers [J]. European Poultry Science,1995:14-17.
    [35]Wang L X, Animal Endocrinology [M]. Beijing:Beijing Agricultural University Press,1993.82-89
    [36]Boeuf G, Gaignon J J. Effects of rearing conditions on growth and thyroid hormones during smolting of Atlantic salmon Salmo salar [J]. Aquac,1989,82:29-38.
    [37]杨琳,Minaingar M,傅伟龙,等.不同光照制度对黄羽肉鸡蛋白质沉积及血浆中甲状腺激素浓度的影响[J].动物营养学报,2000,12(4):57-61.
    [38]李震钟.家畜环境生理学[M].北京:农业出版社,1995.
    [1]Goheen S C. The prevention of alcoholic fatty liver using dietary supplements:dihydroxyacaone, pyruvate and fiboflav in compared to arachidonic acid in pairfed rats [J]. Lipids,1981(16):42-51.
    [2]Stanko R T, Adibi S A. Inhibition of lipid accumulation and enhancement of energy expenditure by the addition of pyruvate and dihydroxyacetone to a rat diet [J]. Metabolism,1986,35(2):182-186.
    [3]Stanko R T, Ferguson T L, Newman C W, et al. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate [J]. J Anim Sci,1989,67(5):1272-1278.
    [4]Cortez M Y, Torgan C E, Brozinick J T, et al. Efects of pyruvate and dihy-droxyacetone consumption on the growth and metabolic state of obese Zucker rats [J]. Am J Ciln Nutr,1991, 53(4):847-853.
    [5]Stanko R T, Reiss R H, Hoyson R, et al. Plasma hpid concentrations in hyperlipidemic patients on the growth and metabolic state of obese Zncker rats [J]. Am J Clin Nutr,1992, (56):950-954.
    [6]干懿洁,丁树哲.丙酮酸的抗氧化作用[J].中国临床康复,2006,10(8):141-143.
    [7]Kalman D, Colker M, Stark R, et al. The effects of pyruvate supplementation on body composition in over weight individuals[J]. Nutrition,1999,15:337-340.
    [8]Lloyd S, Brooks C, Chatham J C. Diferential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart [J]. Am J Physiol Heart Cite Physiol,2003,285(1): 163.
    [9]郭家龙,张凯伦.丙酮酸在心肌保护方面的研究进展[J].华中医学杂志,2006,30(2):154-155.
    [10]Walsh B, Tiivel T, Tonkonogi M, et al. Increased concentrations of Pi and lactic acid reduce creatine-stimulated respiration in muscle fibers [J]. J Appl Physiol,2002,92(6):2273-2276.
    [11]Op't Eijnde B O, Jijakli H, Hespel P, et al. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes [J]. Int J Mol Med,2006,17(6):1077-1084.
    [12]Young J F, Bertram H C, Theil P K, et al. In vitro and in vivo studies of creatine monohydrate supplementation to Duroc and Landrace pigs [J]. Meat Sci,2007,76(2):342-351.
    [13]Op't Eijnde B, Richter E A, Henquin J C, et al. Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle [J]. Acta Physiol Scand,2001,171:169-176.
    [14]高淑杰.补充肌酸和抗阻训练对废用性萎缩肌肉GLUT4蛋白的影响[J].广州体育学院学报,2006,26(2):73-76.
    [15]Ceddia R B, Sweeney G. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells [J]. J Physiol,2004, 555:409-421.
    [16]Galardo M N, Riera M F, Pellizzari E H, et al. The AMP-activated protein kinase activator,5-aminoimidazole-4-carboxamide-l-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells [J]. J Mol Endo,2007,39:279-288.
    [17]Sonesson A K, De Greef K H, Meuwissen T H E. Genetic parameters and trends of meat quality, carcass composition and performance traits in two selected lines of large white pigs [J]. Livest Prod Sci,1998,57:23-32.
    [18]Ingwall J S, Morales M F, Stockdale F E. Creatine and the control of myosin synthesis in differentiating skeletal muscle [J]. Proc Natl Acad Sci USA,1972,69:2250-2253.
    [19]Gallo M, Gordon T, Syrotuik D, et al. Effects of long-term creatine feeding and running on isometric functional measures and myosin heavy chain content of rat skeletal muscles [J]. Pflugers Archiv,2006,452(6):744-755.
    [20]Olsen S, Aagaard P, Kadi F, et al. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training [J]. J Physiol,2006, 573(2):525-534.
    [21]Sestili P, Martinelli C, Bravi G, et al. Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity [J]. Free Radical Bio Med,2006,40: 837-849.
    [22]Guidi C, Potenza L, Sestili P, et al. Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA [J]. BBA-General Subjects,2008,1780(1):16-26.
    [23]Jager R, Harris R C, Purpura M, et al. Comparison of new forms of creatine in raising plasma creatine levels [J]. Int Soc Sports Nutr,2007,4:17.
    [24]洪平,李稚,陈耿.补充丙酮酸肌酸、肌酸和肉碱对运动员身体成分及运动能力的影响[J].中国体育科技,2010,46(3):91-97.
    [25]孔一力,刘仪,张源淑,等.丙酮酸肌酸对大鼠胴体组成及机体氨基酸谱的影响[J].食品科学,2010,31(11):214-220.
    [1]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊,2002,17(3):166-169.
    [2]宋青山.比较蛋白质组学及其研究技术[J].河套大学学报,2008,5(2):28-34.
    [3]Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics,2004,4(12):3665-3685.
    [4]Shaw M M, Riederer B M. Sample preparation for two-dimensional gel electrophoresis [J]. Proteomics,2003,3(8):1408-1417.
    [5]Gorg A, Obermaier C, Boguth G, et al. The current state of two dimensional electrophoresis with immobilized pH gradients [J]. Electrophoresis,2000,21(6):1037-1053.
    [6]Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals [J]. Humangenetik,1975,26(3): 231-243.
    [7]OFarrell P H. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem,1975, 250(10):4007-4021.
    [8]冯楠,路勇,吴颖,等.超高效液相色谱串联质谱法(UPLCMS/MS)测定多种食品中三聚氰胺的残留量[J].中国卫生检验杂志,2009,19(2):248-250.
    [9]Mackey A J, Haystead T A, Pearson W R. Getting more from less:algorithms for rapid protein identification with multiple short peptide sequences [J]. Mol Cell Proteomics,2002,1:139-147.
    [10]Klose J, Nock C, Hermann M, et al. Genetic analysis of the mouse brain proteome [J]. Nature Genetis,2002,30(4):385-393.
    [11]Jain K K. Role of pharmacoproteomics in the development of personalized medicine [J]. Pharmacogenomics,2004,5(3):331-336.
    [12]Colantonio D A, Chan D W. The clinical application of proteomics [J]. Clinica Chimica Acta,2005, 357:151-158.
    [13]Hocbcna A, Landuyt B, Botrus G, et al. Proteomics in cancer research:Methods and application of array-based protein profiling technologies [J]. Analytica Chimica Acta,2006,564(1):19-33.
    [14]Papassotiropoulos A, Fountoulakis M, Dunckley T. Genetics, transcriptomics, and proteomics of Alzheimer's disease [J]. J Clin Psychiat,2006,67(4):652-670.
    [15]Thadikkaran L, Siegenthaler M A, Crettaz D, et al. Recent advances in blood-related proteomics [J]. Proteomics,2005,5(12):3019-3034.
    [16]Jungblut P R, Muller E C, Mattow J, et al. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics [J]. Infect Immun,2001,69(9): 5905-5907.
    [17]Mujer C V, Wagner M A, Eschenbrenner M, et al. Global a2 nalysis of Brucel la meli tensis proteomes [J]. Ann NY Acad Sci,2002,969:97-100.
    [18]Cole J N, Ramirez R D, Currie B J, et al. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus [J], Infect Immun,2005,73(5):3137-3146.
    [19]李伟.iTRAQ多重化学标记串联质谱技术在比较蛋白质组学中的应用[J].生命的化学,2006,26(5):453-456.
    [46]胡忠泽,金光明,刘海等.茶多酚对肉鸡脂肪代谢的影响及作用机制[J].南京农业大学学报,2006,29(2):85-88.
    [47]Weltzien E M. Nutrition and management of the broiler to meet the retailer's requirement [J]. Poult Int,2002,41:18-25.
    [48]Jager R, Metzger J, Lautmann K, et al. The effect of creatine pyruvate and creatine citrate on performance during high intensity [J].Int Soc Sports Nutr,2008,13(5):4.
    [49]Jager R, Harris R C, Purpura M, et al. Comparison of new forms of creatine in raising plasma creatine levels [J]. Int Soc Sports Nutr,2007,4:17.
    [50]Johnstone B J, Klasing K C, Calvert C C, et al. Effect of alcohol and pyruvate/dihydroxyacetone on liver and serum lipids of SCWL pullets [J]. Nutr Res,1989,9:415-421.
    [51]Ivy J L, Cortez M Y, Chandler R M, et al. Effects of pyruvate on the metabolism and insulin resistance of obese Zucker rats [J]. Am J Clin Nutr,1994,59 (2):331-337.
    [52]Russell R, T taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate [J]. Am J Physiol,1991,261:H1756-H1762.
    [53]Newsholme E A. A possible metabolic basis for the control of body weight [J]. N Engl J Med,1980, 302:400-406.
    [54]尹靖东,齐广海,霍启光.家禽脂类代谢调控机理的研究进展[J].动物营养学报,2000,12(2):1-7.
    [55]Olson B H, Schneeman B O, Freedland R A. The effect of pyruvate or dihydroxyacetone on parenterally-induced liver lipid accumulation in the rat [J]. Proc Soc Exper Biol Med,1991,196: 102-105.
    [56]Lefebvre P, Chinetti G, Fruchart J C, et al. Sorting out the roles of PPARa in energy metabolism and vascular homeostasis [J]. J Clin Inves,2006,116:571-580.
    [57]Nakai N, Kawano F, Terada M, et al. Effects of peroxisome proliferator-activated receptor a (PPARa) agonists on leucine-induced phosphorylation of translational targets in C2C12 cells [J]. BBA-General Subjects,2008,178:1101-1105.
    [58]Zammit V A.Carnitine acltransferases:functional significance of subcellular distribution and membrane topology [J]. Proq Lipid Res,1999,38:199-224.
    [59]Dyck J R B, Barr A J, Barr R L, et al. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation [J]. Am J Physiol,1998,275:2122-2129.
    [60]Sun J M, Richards M P, Rosebrough R W, et al. The relationship of body composition, feed intake, and metabolic hormones for broiler breeder females [J]. Poult Sci,2006,85:1173-1184.
    [61]Cogburn L A. Endocrine manipulation of body composition in broiler chickens [J]. Crit Rev Poult Biol,1991,3:283-305.
    [62]Freeman B M, Manning A C. Mediation of glucagon in the response of the domestic fowl to stress [J]. Comp Biochem Physiol,1976,53:169-171.
    [63]Schwartz M W, Woods S C, Porte D J, et al. Central nervous system control of food intake [J]. Nature,2000,404:661-671.
    [64]Stanko R T, Adibi S A. Inhibition of Lipid accumulationand enhancement of energy expenditure by the addition of Pyruvate and Dihydroxyacetone to a rat diet [J]. Metabolism,1986,35:182-186.
    [65]Wallimann T, Wyss M, Brdiczka D, et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands:the "phosphocreatine circuit" for cellular energy homeostasis [J]. Biochem J,1992,281:21-40.
    [66]王蕾,杨连玉.胰岛素样生长因子-Ⅰ(IGF-Ⅰ)促生长作用的研究进展[J].畜牧与饲料科学,2009,10:10-12.
    [67]Fuller S J, Mynett J R, Sugden P H. Stimulation of cardiac protein synthesis by insulin like growth factors [J]. Biochemical Journal,1992,282:85-90.
    [68]Ballard F J, Read L C, Francis G L, et al. Binding properties and biologicl potencies of insulin like growth factors in L6 myoblasts [J]. Biochemical Journal,1986,233:223-230.
    [69]Roeder R A, Hossner K L, Sasser R G, et al. Regulation of protein turnover by recombinant human insulin like growth factors in L6 myotube cultures [J]. Hormone and Metabolic Research,1988,20: 698-700.
    [70]He Y Q, Chu M X, Wang J Y. Research progress on myogenin gene [J]. Yi Chuan,2004,26(2): 235-238.
    [71]Balllman M M, Hill V J, Adams G R, et al. Gender differences in resistance-training-induced myofiber hypertrophy among older adults [J]. J Gerontol A Biol Sei Med Sei,2003,58(2):108-116.
    [72]Wright W E, Sassoon D A, Lin V K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD [J]. Cell,1989,56(4):607-617.
    [73]Tobin J F, Celeste A J. Myostatin, a negative regulator of muscle mass:implications for muscle degenerative diseases [J]. Curr Opin Pharmacol,2005,5(3):328-332.
    [1]Xu Z R, Wang M Q, Mao H X, et al. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers [J]. Poult Sci,2003,82:408-413.
    [2]胡忠泽,金光明,刘海等.茶多酚对肉鸡脂肪代谢的影响及作用机制[J].南京农业大学学报,2006,29(2):85-88.
    [3]Weltzien E M. Nutrition and management of the broiler to meet the retailer's requirement [J]. Poult Int,2002,41:18-25.
    [4]Stanko R T, Adibi S A. Inhibition of lipid accumulation and enhancement of energy expenditure by the addition of pyruvate and dihydroxyacetone to a rat diet [J]. Metabolism,1986,35(2):182-186.
    [5]Stanko R T, Ferguson T L, Newman CW, et al. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate [J]. JAnim Sci,1989,67(5):1272-1278.
    [6]Kalman D, Colker C M, Wilets I, et al. The effects of pyruvate supplementation on body compositionin overweight individuals [J]. Nutrition,1999,15(5):337-340.
    [7]Hultman E, Soderlund K, Timmons J A, et al. Muscle creatine loading in men [J]. J Appl Physiol, 1996,81:232-237.
    [8]Vandenberghe K, Goris M, Van H P, et al.Long-term creatine intake is beneficial to muscle performance during resistance training [J]. J Appl Physiol,1997,83:2055-2063.
    [9]Jager R, Harris R C, Purpura M, et al. Comparison of new forms of creatine in raising plasma creatine levels [J]. Int Soc Sports Nutr,2007,4:17.
    [10]韩新燕,许梓荣,邵明丽,等.一水肌酸对肥育猪胴体组成及肌肉系水力的影响[J].动物营养学报,2007,19(4):401-406.
    [11]Lenz T L, Hamilton W R. Supplemental products used for weight loss [J]. J Am Pharm Assoc,2004, 44:59-67.
    [12]陈世伟,刘翠娥,张杰,等.丙酮酸钙对于肥胖大鼠脂质代谢及肥胖基因表达产物的影响[J].郑州大学学报(医学版),2003,38(5):771-774.
    [13]Ivy J L, Cortez M Y, Chandler R M, et al. Effects of pyruvate on the metabolism and insulin resistance of obese Zucker rats [J]. Am J Clin Nutr,1994,59(2):331-337.
    [14]Russell R, Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate [J]. Am J Physiol,1991,261:H1756-H1762.
    [15]Sims E A, Danforth E Jr. Expenditure and storage of energy in man [J]. J Clin Invest,1987,79(4): 1019-1025.
    [16]Goheen S C, Pearson E E, Larkin E C, et al. The prevention of alcoholic fatty liver using dietary supplements:dihydroxyacetone, pyruvate and riboflavin compared to arachidonic acid in pair-fed rats. Lipids,1981,16:43-51.
    [17]Xu Z R, Wang M Q, Mao H X, et al. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers [J]. Poult Sci,2003,82:408-413.
    [18]张芳林.肉碱棕榈酰转移酶-Ⅰ的研究进展[J].国外医学内分泌学分册,2002,22(3):166-170.
    [19]Diot C, Douaine M. Characterization of a DNA sequence encoding the peroxisome proliferators actived receptor a in the chicken [J]. Poultry Science,1999,78:1198-1202.
    [20]Mascaro C, Acosta E, Ortiz J A, et al. Characterization of a reponse element for peroxisome proliferators actived receptor (PPAR) in human muscle-type carnitine palmitoyl-transferase I [J]. Adv Exp Med Biol,1999,466:79-85.
    [21]Cogburn L A. Endocrine manipulation of body composition in broiler chickens [J]. Crit Rev Poult Biol,1991,3:283-305.
    [22]Freeman B M, Manning A C. Mediation of glucagon in the response of the domestic fowl to stress [J]. Comp Biochem Physiol,1976,53:169-171.
    [23]Garton A J, Campbell D G, Carling D, et al. Phosphorylation of bovine hormone-sensitive lipase by the map-activated protein kinase [J]. Eur J Biochem,1989,179:249-254.
    [24]Stanko R T, Adibi S A. Inhibition of lipid accumulation and enhancement of energy expenditure by the addition of pyruvate and dihydroxyacetone to a rat diet [J]. Metabolism,1986,35(2):182-186.
    [25]韩新燕,许梓荣,邵明丽,等.一水肌酸对肥育猪胴体组成及肌肉系水力的影响[J].动物营养学报,2007,19(4):401-406.
    [26]Watt D C. The enzymes [M]. New York and London:Academic Press,1973:622-623.
    [27]Bessman S P, Carpenter C L. The creatine kinase phosphate energy shuttle [J]. Ann Rev Biochem, 1985,54:831-862.
    [28]徐涛,王荣延.临床检验基础[M].北京:人民卫生出版社,1983:165-168.
    [29]Saleri R, Baratta M, Mainardi G L, et al. IGF-I, IGFBP-2 and -3 but not GH concentrations are different in normal and poor growing piglets [J]. Reproduction Nutrition Development,2001,41(2): 163-172.
    [30]Buckingham M, Bajard L, Chang T, et al. The formation of skeletal muscle:from somite to limb [J]. Journal of natomy,2003,202(1):59-68.
    [31]Davis T A, Fiorotto M L, Burrin D G, et al. Acute IGF-I infusion stimulates protein synthesis in skeletal muscle and other tissues of neonatal pigs [J]. American Journal of Physiology Endocrinology and Metabolism,2002,283(4):638-647.
    [32]Te Pas M F, Soumillion A, Harders F L, et al. Influences ofmyogeningenotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs [J]. J Anim Sci,1999,77: 2352-2356.
    [33]Amthor H, Otto A, Macharia R, et al. Myostatin imposes reversible quiescence on embryonic muscle precursors [J]. Dev Dyn,2006,235(3):672-680.
    [34]Armand A S, Della Gaspera B, Launay T, et al. Expression and neural control of follistatin versus myostatin genes during regener-ation of mouse soleus [J]. Dev Dyn,2003,227(2):256-265.
    [35]Sakuma K, Watanabe K, Sano M, et al. Differential adaptation of growth and differentiation factor-8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles [J]. Biochim Biophys Acta,2000,1497(1):77-88.
    [36]Hamrick M W, Pennington C, Webb C N, et al. Resistance to body fat gain in double-muscled mice fed a high-fat diet [J]. Int J Obes (Lond),2006,30(5):868-870.
    [1]Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance in yeast [J]. Mol Cell Biol,1999,19:1720-1730.
    [2]Beyer A, Hollunder J, Nasheuer H P, et al. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale [J]. Mol Cell Proteomics,2004,3:1083-1092.
    [3]Ghaemmaghami S, Huh W K, Bower K, et al. Global analysis of protein expression in yeast [J]. Nature,2003,425:737-741.
    [4]MacKay V L, Li X, Flory M R, et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics:response of yeast to mating pheromone [J]. Mol Cell Proteomics,2004,3:478-489.
    [5]Kroegmer G. Mitochondrial control of apoptosis [J]. Biochem Soc Symp,1999,66:1-15.
    [6]Thress K, Kornbluth S, Smith J J. mitochondria at the crossroad of apoptotic cell death [J]. J Bioenerg Biomembr,1999,31:321-326.
    [7]Scheffler N K, Miller S W, Carroll A K, et al. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH2SY5Y neuroblastoma cell line [J]. Mitochondrion,2001,1(2):161-179.
    [8]Graham J M, Higgins J A. Biomembrane Protocols I. Isolation and Analysis [M]. Methods in Molecular Biology, Totowa:Humana Press Inc.,1993,19:100-102.
    [9]Neuhoff V, Arold N, Taube D, et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250 [J]. Electrophoresis,1988,9:255-262.
    [10]Bickel P E, Tansey J T, Wehe M A. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores [J]. Bioehim Biophys Acta,2009,1791:419-440.
    [11]孙卫,郑学芝,崔荣军,等.葛根素对2型糖尿病大鼠脂代谢及脂肪分化相关蛋白基因表达的影响[J].中国全科医学,2008,11:1161-1163.
    [12]Hiden U, Maier A, Biban M, et al. Insulin control of placental gene expression shifts from mother to fetus over the enhances lipid accumulation and prevents lipid efflux from course of pregnancy [J]. Diabetologia,2006,49:123-131.
    [13]Genest J, Mareil M, Denis M, et al. High density lipoproteins in health and disease [J]. J Invest Med,1999,47:31-42.
    [14]Von E A, Assmann G. Prevention of coronary heart disease by raising of high density lipoprotein cholesterol [J]. Curr Opin Lipidol.2000,11:627-637.
    [15]Dietsehy J M, Turley S O, Spady D K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animals species including humans [J]. J Lipid Res, 1993,34:1637-1639.
    [16]Glomset J A. The plasma lecithin:cholesterol acyltransferase reaction [J]. J Lipid Res,1968,9: 155-167.
    [17]Corella D, Saiz C, Guillen M, et al. Assoeiation of TaqIB polymorphism in the cholesteryl ester transfer protein gene with plasma lipid levels in a healthy Spanish population [J]. Atheroselerosis, 2000,152:367-376.
    [18]Moser T L, Kenan D J, Ashley T A, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin [J]. Proc Natl Acad Sci,2001,98(12):6656-6661.
    [19]Burrell H E, Wlodarski B, Foster B J, et al. Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface [J]. J Biol Chem,2005,280(33): 29667-29676.
    [20]Kim B W, Choo H J, Lee J W, et al. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts [J]. Exp Mol Med,2004,36(5):476-485.
    [21]Bini L, Pacini S, Liberatori S, et al. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering [J]. Biochem J,2003,369:301-309.
    [22]Li N, Mak A, Richards D P, et al. Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation [J]. Proteomics,2003,3(4):536-548.
    [23]Champagne E, Martinez L O, Collet X, et al. Ecto-F1F0 ATP synthase/F1 ATPase:metabolic and immunological functions [J]. Curr Opin Lipidol,2006,17(3):279-284.
    [24]Wilson F L, Burkart A, Bell G, et al. Mitochondrial biogenesis and remodeling during adipogenesis and in respose to the insulin sensitizer rosiglitazone [J]. Mol Cell Biol,2003,23(3):1085-1094.
    [25]Arakaki N, Kita T, Shibata H, et al. Cell-surface H+-ATP synthase as a potential molecular target for anti-obesity drugs [J]. FEBS Lett,2007,581(18):3405-3409.
    [26]Proud C G. eIF2 and the control of cell physiology [J]. Semin Cell Dev Biol,2005,16:3-12.
    [27]Shimizu S, Inoue K, Tani Y. Enzymatic mierodetermination of serum free fatty acids [J]. Anal Biochem,1979,98(2):341-345.
    [28]Waku K. Origins and fates of fatty acylcoA esters [J]. Biochem Biophys Acta,1992,1124(2): 101-111.
    [1]Van Nieuwenhoven F A, Van der Vusse G J, and Glatz J F. Membrane-associated and cytoplasmic fatty acid-binding proteins [J]. Lipids,1996,31:S223-227.
    [2]Banaszak L, Winter N, Xu Z, et al. Lipid-binding proteins:a family of fatty acid and retinoid transport proteins [J]. Adv Protein Chem,1994,45:89-151.
    [3]Cogburn L A, Wang X, Carre W, et al. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes [J]. Poult Sci,2003,82:939-951.
    [4]Wang Q, Li H, Li N, et al. Tissue expression and association with fatness traits of liver fatty acid-binding protein gene in chicken [J]. Poult Sci,2006,85:1890-1895.
    [5]Corella D, Saiz C, Guillen M, et al. Assoeiation of TaqIB polymorphism in the cholesteryl ester transfer protein gene with plasma lipid levels in a healthy Spanish population. Atheroselerosis, 2000,152:367-376.
    [6]于丽天,李丽,王兴宇,等.中国人载脂蛋白AIV基因多态性分布及其与缺血性脑血管病的关系[J].高血压杂志,2002,10(2):114-11 6.
    [7]Steinmetz A, Barbaras R, Ghalim N, et al. Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells [J]. J Biol Chem,1990, 265(14):7859-7863
    [8]Dvorin E, Gorder N L, Benson D M, et al. Apolipoprotein A-Ⅳ:a determinant for binding and uptake of high density lipoproteins by rathepatocytes [J]. J Biol Chem,1986,261(33): 15714-15720.
    [9]Steinberg D, Parthasarathy S, Carew T E, et al. Beyond cholesterol modifications of lowdensity lipoprotein that increase its atherogenicity [J]. N Engl J Med,1989,320(14):915-924.
    [10]Wong W M, Gerry A B, Putt W, et al. Common variants of apolipoprotein A-IV differ in their ability to inhibit low density lipoprotein oxidation [J]. Atherosclerosis,2007,192(2):266-274.
    [11]Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+ binding chaperone of the endoplasmic reticulum [J]. Int J Biochem Cell Biol,2005,37(2):260.
    [12]Gupta N K, RoyA L, NagM K, et al. Post-transcriptional control of gene expression [J]. Springer Verlag, Berlin,1990,209:521-526.
    [13]Chaudhuri J, Chowdhury D, Maitra U. Distinct function of eukaryotic translation initiation factors e IF1A and e IF3 in the fomation of 40S ribosomal preintiation complex [J]. J Biol Chem,1999,274: 17975-17980.
    [14]Korneeva N L, LamphearB J, Colby Hennigan F L, et al. Mutually cooperative binding of eukaryouc translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1[J]. J Biol Chem,2000, 275:41369-41376.
    [15]Dong Z, Zhang J T. EIF3 p170, a mediator of mimosine effect on protein synthesis and cell cycle progression [J]. Mol Biol Cell,2003,14(9):3942-3951.
    [16]Baugh J M, Pilipenko E V.20S proteasome differentially alters translation of different mRNA via the cleavage of eIF4F and eIF3 [J]. Mol Cell,2004,16(4):575-586.
    [17]Pinchira R, Chen Q, Huang Z S, et al. Two subcellular localizations of eIF3 p170 and its interaction with membrane-bound microfilaments:implications for alternative function of p170 [J]. Eur J Cell Biol,2001,80(6):410-418.
    [18]Hasek J. Rpglp, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubule-interacting protein [J]. Cell Motil Cytokel,2000,45(3):235-246.
    [19]Lin L, Holbro T, Alonso G, et al. Molecular interaction between human tumor maker protein p150, the largest subunit of eIF3, and intermediate filament protein K7 [J]. J Cell Biochem,2001,80(4): 483-490.
    [1]Lenz T L, Hamilton W R. Supplemental products used for weight loss [J]. J Am Pharm Assoc, 2004,44:59-67.
    [2]Ivy J L, Cortez M Y, Chandler R M, et al. Effects of pyruvate on the metabolism and insulin resistance of obese Zucker rats [J]. Am J Clin Nutr,1994,59 (2):331-337.
    [3]Walsh B, Tiivel T, Tonkonogi M, et al. Increased concentrations of Pi and lactic acid reduce creatine-stimulated respiration in muscle fibers [J]. J Appl Physiol,2002,92(6):2273-2276.
    [4]Op't Eijnde B O, Jijakli H, Hespel P, et al. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes [J]. Int J Mol Med,2006,17(6):1077-1084.
    [5]尤春英,岑浩望,徐听.补充肌酸对提高运动员抗疲劳能力的影响[J].体育科学,1993,19(2):75-77.
    [6]韩新燕,许梓荣,邵明丽,等.一水肌酸对肥育猪胴体组成及肌肉系水力的影响[J].动物营养学报,2007,19(4):401-406.
    [7]Abraham M R, Selivanov V A, Hodgson D M, et al. Coupling of cell energetics with membrane metabolic sensing:Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out [J]. J Biol Chem,2002,277(27):24427-24434.
    [8]Watts D C. Evolution of phosphagen kinases [M]. Schoffeniels E, ed. Biochemical Evolution and the Origin of Life. Amsterdam:North-Holland,1971,150-173.
    [9]Muhlebach S M, Gross M, Wirz T, et al. Ⅳ-2 Sequence homology and structure predictions of the creatine kinase isoenzymes [J]. Mol Cell Biochem,1994,134:245-262.
    [10]Ingwall J S, Weiner C D, Morales M F, et al. Specificity of creatine in the control of muscle protein synthesis [J]. J Cell Biol,1974,62(1):145-151.
    [11]Goodson H V, Dawson S C. Multiplying myosins [J]. Proc Natl Acad Sci,2006,103(10): 3681-3686.
    [12]Redowicz M J. Unconventional myosins in muscle [J]. Eur J Cell Biol,2007,86(9):549-58.
    [13]Wendt T, Taylor D, Trybus K M, et al. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2 [J]. Proc Natl Acad Sci,2001,98(8):4361-4366.
    [14]Fryburg D A, Gelfand R A, Gahn L A, et al. Effects of Epinephrine on human muscle glucose and protein metabolism [J]. Am J Physiol,1995,268(1):55-59.
    [15]Pascoe D D, Costill D L, Fink W J, et al. Glycogen resynthesis in skeletal muscle following resistive exercise [J]. Med Sci Sports Exetrc,1993,25(3):349-354.
    [16]Didier L, Kitt F P, Raymond R R, et al. Effects of Epinephrine infusion on muscle and insulin-stimulated muscle glycogen synthesis in humans [J]. AM J Physiol-Endoc M,1998,271(1): 130-138.
    [17]Alone P V, Dever T E. Direct binding of translation initiation factor eIF2 gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon [J]. J Biol Chem,2006, 281:12636-12644.
    [18]Proud C G. eIF2 and the control of cell physiology [J]. Semin Cell Dev Biol,2005,16:3-12.
    [19]王镜岩.生物化学(第二版)[M].高等教育出版社,北京,1991:78-89.
    [20]Subramanian A, Miller D M. Structural analysis of alpha-enolase [J]. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem,2000,275: 5958-5965.
    [21]Piast M, Kustrzeba-Wojcicka I, Matusiewicz M, et al. Molecular evolution of enolase [J]. Acta Biochim Pol,2005,52:507-513.
    [22]Millikan D A. Muscle hemoglobin [J]. Physiol Rev,1937,19:503-523.
    [1]井文倩,李同树,高秀华.肉鸡脂肪沉积及营养调控[J].山东畜牧兽医,2001,28(1):35-36.
    [2]Weltzien E M. Nutrition and management of the broiler to meet the retailer's requirement [J]. Poult Int,2002,41:18-25.
    [3]洪平,李稚,陈耿.补充丙酮酸肌酸、肌酸和肉碱对运动员身体成分及运动能力的影响[J].中国体育科技,2010,46(3):91-97.
    [4]尤春英,岑浩望,徐听.补充肌酸对提高运动员抗疲劳能力的影响[J].体育科学,1993,19(2):75-77.
    [5]Earnest C P, Almada A, Mitchell T. High-performance capillary electrophoresis-pure creatine monohydrate reduces blood lipid in men and women [J]. Clin Sci,1996:113-118.
    [6]Jager R, Metzger J, Lautmann K, et al. The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise [J]. J Int Soc Sports Nutr,2008,5:4.
    [7]Russell R, T taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate [J]. Am J Physiol,1991,261:H1756-H1762.
    [8]Newsholme E A. A possible metabolic basis for the control of body weight [J]. N Engl J Med,1980, 302:400-406.
    [9]尹靖东,齐广海,霍启光.家禽脂类代谢调控机理的研究进展[J].动物营养学报,2000,12(2):1-7.
    [10]Olson B H, Schneeman B O, Freedland R A. The effect of pyruvate or dihydroxyacetone on parenterally-induced liver lipid accumulation in the rat [J]. Proc Soc Exper Biol Med,1991,196: 102-105.
    [11]Lefebvre P, Chinetti G, Fruchart J C, et al. Sorting out the roles of PPARa in energy metabolism and vascular homeostasis [J]. J Clin Inves,2006,116:571-580.
    [12]Nakai N, Kawano F, Terada M, et al. Effects of peroxisome proliferator-activated receptor a (PPARa) agonists on leucine-induced phosphorylation of translational targets in C2C12 cells [J]. BBA-General Subjects,2008,178:1101-1105.
    [13]Zammit V A.Carnitine acltransferases:functional significance of subcellular distribution and membrane topology [J]. Proq Lipid Res,1999,38:199-224.
    [14]Dyck J R B, Barr A J, Barr R L, et al. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation [J]. Am J Physiol,1998,275:2122-2129.
    [15]王蕾,杨连玉.胰岛素样生长因子-I(IGF-I)促生长作用的研究进展[J].畜牧与饲料科学,2009,10:10-12.
    [16]He Y Q, Chu M X, Wang J Y. Research progress on myogenin gene [J]. Yi Chuan,2004,26(2): 235-238.
    [17]Balllman M M, Hill V J, Adams G R, et al. Gender differences in resistance-training-induced myofiber hypertrophy among older adults [J]. J Gerontol A Biol Sei Med Sei,2003,58(2):108-116.
    [18]Wright W E, Sassoon D A, Lin V K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD [J]. Cell,1989,56(4):607-617.
    [19]Tobin J F, Celeste A J. Myostatin, a negative regulator of muscle mass:implications for muscle degenerative diseases [J]. Curr Opin Pharmacol,2005,5(3):328-332.
    [20]Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance in yeast [J]. Mol Cell Biol,1999,19:1720-1730.
    [21]Beyer A, Hollunder J, Nasheuer H P, et al. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale [J]. Mol Cell Proteomics,2004,3:1083-1092.
    [22]Ghaemmaghami S, Huh W K, Bower K, et al. Global analysis of protein expression in yeast [J]. Nature,2003,425:737-741.
    [23]MacKay V L, Li X, Flory M R, et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics:response of yeast to mating pheromone [J]. Mol Cell Proteomics,2004,3:478-489.
    [24]Bickel P E, Tansey J T, Wehe M A. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores [J]. Bioehim Biophys Acta,2009,1791:419-440.
    [25]孙卫,郑学芝,崔荣军,等.葛根素对2型糖尿病大鼠脂代谢及脂肪分化相关蛋白基因表达的影响[J].中国全科医学,2008,11:1161-1163.
    [26]Hiden U, Maier A, Biban M, et al. Insulin control of placental gene expression shifts from mother to fetus over the enhances lipid accumulation and prevents lipid efflux from course of pregnancy [J]. Diabetologia,2006,49:123-131.
    [27]Corella D, Saiz C, Guillen M, et al. Assoeiation of TaqIB polymorphism in the cholesteryl ester transfer protein gene with plasma lipid levels in a healthy Spanish population [J]. Atheroselerosis, 2000,152:367-376.
    [28]Proud C G. eIF2 and the control of cell physiology [J]. Semin Cell Dev Biol,2005,16:3-12.
    [29]Shimizu S, Inoue K, Tani Y. Enzymatic mierodetermination of serum free fatty acids [J]. Anal Biochem,1979,98(2):341-345.
    [30]Waku K. Origins and fates of fatty acylcoA esters [J]. Biochem Biophys Acta,1992,1124(2): 101-111.
    [31]Van Nieuwenhoven F A, Van der Vusse G J, and Glatz J F. Membrane-associated and cytoplasmic fatty acid-binding proteins [J]. Lipids,1996,31:S223-227.
    [32]Banaszak L, Winter N, Xu Z, et al. Lipid-binding proteins:a family of fatty acid and retinoid transport proteins [J]. Adv Protein Chem,1994,45:89-151.
    [33]于丽天,李丽,王兴宇,等.中国人载脂蛋白AIV基因多态性分布及其与缺血性脑血管病的关系[J].高血压杂志,2002,10(2):114-116.
    [34]Steinmetz A, Barbaras R, Ghalim N, et al. Human apolipoprotein A-Ⅳ binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells [J]. J Biol Chem,1990, 265(14):7859-7863
    [35]Dvorin E, Gorder N L, Benson D M, et al. Apolipoprotein A-IV:a determinant for binding and uptake of high density lipoproteins by rathepatocytes [J]. J Biol Chem,1986,261(33): 15714-15720.
    [36]Pinchira R, Chen Q, Huang Z S, et al. Two subcellular localizations of eIF3 p170 and its interaction with membrane-bound microfilaments:implications for alternative function of p170 [J]. Eur J Cell Biol,2001,80(6):410-418.
    [37]Hasek J. Rpglp, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubule-interacting protein [J]. Cell Motil Cytokel,2000,45(3):235-246.
    [38]Lin L, Holbro T, Alonso G, et al. Molecular interaction between human tumor maker protein p150, the largest subunit of eIF3, and intermediate filament protein K7 [J]. J Cell Biochem,2001,80(4): 483-490.
    [39]Walsh B, Tiivel T, Tonkonogi M, et al. Increased concentrations of Pi and lactic acid reduce creatine-stimulated respiration in muscle fibers [J]. J Appl Physiol,2002,92(6):2273-2276.
    [40]Op't Eijnde B O, Jijakli H, Hespel P, et al. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes [J]. Int J Mol Med,2006,17(6):1077-1084.
    [41]韩新燕,许梓荣,邵明丽,等.一水肌酸对肥育猪胴体组成及肌肉系水力的影响[J].动物营养学报,2007,19(4):401-406.
    [42]Goodson H V, Dawson S C. Multiplying myosins [J]. Proc Natl Acad Sci,2006,103(10): 3681-3686.
    [43]Redowicz M J. Unconventional myosins in muscle [J]. Eur J Cell Biol,2007,86(9):549-58.
    [44]Wendt T, Taylor D, Trybus K M, et al. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2 [J]. Proc Natl Acad Sci,2001,98(8):4361-4366.
    [45]Ingwall J S, Weiner C D, Morales M F, et al. Specificity of creatine in the control of muscle protein synthesis [J]. J Cell Biol,1974,62(1):145-151.
    [46]Alone P V, Dever T E. Direct binding of translation initiation factor eIF2 gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon [J]. J Biol Chem,2006, 281:12636-12644.
    [47]王镜岩.生物化学(第二版)[M].高等教育出版社,北京,1991:78-89.
    [48]Subramanian A, Miller D M. Structural analysis of alpha-enolase [J]. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem,2000,275: 5958-5965.
    [49]Millikan D A. Muscle hemoglobin [J]. Physiol Rev,1937,19:503-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700