猪泛素—蛋白酶体途径定位、序列及性状关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代育种技术使猪的生产性能得到了显著的改良,然而随着人民生活水平的提高,对猪肉品质的要求也随之提高,在改进猪肉口味的同时要求减少药物残留。畜牧生产的重点因此包括两个方面:一方面提高瘦肉的生长速度、改良肉质;另一方面提高猪的抗病性,从而降低生产成本,提高畜产品的质量,与国际接轨。
     本研究利用生物信息学与分子生物学技术相结合的方法,克隆和定位了泛素—蛋白酶体途径的相关新基因,并对这些基因与部分生长性状和免疫性状进行了初步关联分析,取得了如下结果:
     1.以人的同源基因的cDNA序列为探针,从GeneBank中搜索猪的同源EST,由EST构成的连接群设计引物,从猪的基因组中分离克隆了34个基因片段。这34个基因是(1)20S蛋白酶体基因alpha亚基基因PSMA1,PSMA2,PSMA3,PSMA5,PSMA6,PSMA7;20S蛋白酶体基因beta亚基基因PSMB1,PSMB2,PSMB3,PSMB4,PSMB5,PSMB6,PSMB7,PSMB8,PSMB9,PSMB10;(2)19S蛋白酶体基因PSMD7,PSMD8,PSMD9,PSMD10,PSMD11,PSMD12,PSMD13,PSMD14;(3)信号酶体基因SGN1,SGN2,SGN3,SGN4,SGN5,SGN6,SGN7,SGN8;(4)泛素特异活化酶基因USP6,USP10。
     2.采用电脑克隆策略结合RT-PCR技术,获得了PSMB4,PSMB6,PSMB8,PSMB9,PSMB10基因的完整编码区序列(coding sequence,CDS)和PSMB4,PSMB6,PSMB8,PSMB10基因的基因组全长,进行了物种同源基因序列比对分析和蛋白质序列的推导及功能域的预测。
     3.采用RT—PCR和Q-PCR方法检测了PSMB4,PSMB6,PSMBS,PSMB10基因在通城猪的心、肝、脾、肺、肾、肌肉、脂肪7个组织中的表达差异,除了PSMB8在心脏和肌肉中不表达外,其余基因在所检测的组织中都有表达。
     4.用猪×仓鼠辐射杂种板将新分离的25个基因进行了染色体精细定位,结果如下:PSMA1定位在SSC2,PSMA2定位在SSC18,PSMA3定位在SSC14,PSMA5定位在SSC4,PSMA6定位在SSC17,PSMB2定位在SSC6,PSMB3定位在SSC12,PSMB4定位在SSC4,PSMB6定位在SSC12,PSMB7定位在SSC1,PSMB8定位在SSC7,PSMB9定位在SSC7,PSMB10定位在SSC6,PSMD8定位在SSC6,PSMD9定位在SSC14,PSMD10定位在SSCX,PSMD12定位在SSC12,PSMD13定位在SSC2,PSMD14定位在SSC15,SGN2定位在SSC1,SGN4定位在SSC8,SGN5定位在SSC4,SGN6定位在SSC3,USP6定位在SSC12,USP10定位在SSC6。
     5.运用PCR-RFLP结合DHLPC,PCR-SSCP方法,检测了PSMA1,PSMA6,PSMB4,PSMB6,PSMB8,PSMB10等6个基因10个位点的多态性,分析了不同猪种中的基因频率和基因型频率,以及各等位基因在不同猪品种中的分布差异。
     6.以本室与通城县畜牧局种畜场合作所建立的实验群体中的长白猪(22头)、大白猪(23头)、通城猪(58头)、长大通(27头)、大长通(26头)为材料,分析了PSMA1,PSMA6,PSMB4,PSMB6,PSMB8,PSMB10基因的DNA多态位点与部分生产性状和免疫性状的关联,结果发现:除PSMB4基因外,其余基因和部分生产性状、免疫性状均有一定的关联。
Nowadays, the production performance of pig has been improved by modern breeding technie. However, the more standard of living enhance, the more demand for quality of pork: good taste and few drug retention. So, pig breeding has two foci: one is improving lean growth rate and meat quality, the other is increasing the disease resistance to reducing growth cost. Only by excellent quality, the pig breeding industry of China can compete with other countries for world market.In this research, the porcine 20S proteasome related new genes were isolated and mapped by combining bioinformatics and biotechnology. Furthermore, association between genes and traits was analyzed. The main results are as follows:1. Pig ESTs were identified through standard BLAST analysis by using cDNA sequences of human homologous genes. Highly conserved pig ESTs were assembled to EST contigs. And primers selected from the contigs were used to isolate 34 novel porcine gene fragments from pig genomic DNA. The 34 novel porcine genes were as follows:(1) 20S proteasome alpha subunit genes PSMA1, PSMA2, PSMA3, PSMA5, PSMA6, PSMA7; beta subunit genes PSMB1, PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, PSMB8, PSMB9, PSMB10; (2) 19S proteasome subunit genes PSMD7, PSMD8, PSMD9, PSMD10, PSMD11, PSMD12, PSMD13, PSMD14; (3) signalsome genes SGN1, SGN2, SGN3, SGN4, SGN5, SGN6, SGN7, SGN8; (4) ubiquitin specific protease genes USP6, USP10.2. Combining the in silico cloning and RT-PCR method, the entire coding region of the PSMB4, PSMB6, PSMB8, PSMB9, PSMB10 genes were obtained as well as the full length genomic DNA of PSMB4, PSMB6, PSMB8, PSMB9, PSMB10. The sequences were analyzed with species homologous genes and amino acid sequences were deduced to forecast functional domains.3. Expression profiles of PSMB4, PSMB6, PSMB8, PSMB10 genes of Tongcheng pigs were analysis by semi-quantitative RT-PCR assay and realtime-PCR. Except for PSMB8 gene unexpressing in heart and muscle, other genes are widely expressed in tissues of heart, liver, spleen, lung, kidney, muscle and fat.
     4. 25 novel porcine genes were physical mapped by the RH panel. Results were showed as below: PSMA1 gene was located on SSC2, PSMA2 gene was located on SSC18, PSMA3 gene was located on SSC14, PSMA5 gene was located on SSC4, PSMA6 gene was located on SSC17, PSMB2 gene was located on SSC6, PSMB3 gene was located on SSC 12, PSMB4 gene was located on SSC4, PSMB6 gene was located on SSC12, PSMB7 gene was located on SSC1, PSMB8 gene was located on SSC7, PSMB9 gene was located on SSC7, PSMB10 gene was located on SSC6, PSMD8 gene was located on SSC6, PSMD9 gene was located on SSC14, PSMD10 gene was located on SSCX, PSMD12 gene was located on SSC12, PSMD13 gene was located on SSC2, PSMD14 gene was located on SSC15, SGN2 gene was located on SSC1, SGN4 gene was located on SSC8, SUN5 gene was located on SSC4, SGN6 gene was located on SSC3, USP6 gene was located on SSC12, USP10 gene was located on SSC6.
     5. Studies on DNA polymorphisms of PSMA1, PSMA6, PSMB4, PSMB6, PSMB8 and PSMB10 genes by PCR-RFLP combining DHLPC revealed ten polymorphic sites. Allele frequencies among different pig populations were determined.
     6. The all polymorphic sites were genotyped in the experimental pig population constructed under the cooperation of our lab and animal husbandry bureau of Tongcheng county (include 22 Landrace pigs, 23 Large White pigs, 58 Tongcheng pigs, 27 Landrace♂×(Large White×Tongcheng)♀pigs and 26 Large White♂×(Landrace×Tongcheng)♀pigs). Association of genotypes with phenotypes of production traits and immune traits were analyzed. The results showed that there are associations between the genotype of PSMA1, PSMA6, PSMB6, PSMB8, PSMB10 genes with some production traits and some immuno traits except PSMB4 gene.
引文
1.曹果清,周忠孝,朱向芳,转基因猪的研究进展,畜牧与兽医,2002,34(5):40—42
    2.陈建明,余应年,真核泛素缀合途径研究进展,中国病理生理杂志,2000,16(2):175—178
    3.储明星,用候选基因法筛选太湖猪高繁殖力主效基因的研究进展,中国畜牧杂志,2000,36(6):46—47
    4.何洪智,赵晓航,张立勇,吴曼,蛋白质泛素化降解途径与肿瘤发生的关系,世界华人消化杂志,2002,10(12):1365—1368
    5.李朝飞,庞义。泛素—蛋白水解酶复合体通路与病毒侵染。生物工程学报。2004,20(2):151—156
    6.刘榜。15个猪品种MHC Ⅱ类区4个基因的SNPs分析及与免疫性状的关联。[博士学位论文],武汉,华中农业大学,2003
    7.刘剑锋,王立贤,张沅,苏振环。猪干扰素基因研究及在抗病育种中的应用展望。
    8.刘萱,曹诚,刘传喧。泛素—8白酶体降解途径在细胞周期调控中的作用。生物技术通讯。2004,15(3):267—271
    9.彭中镇,赵书红,李奎,龚炎长,杨兴柱。猪的数量性状基因及其标记研究进展。国外畜牧科技,1999,26(10)28—32
    10.彭中镇主编。猪的遗传改良。北京农业出版社,1994
    11.施启顺,猪肠毒性大肠杆菌(ETEC)病抗病育种研究,国外畜牧科技,1999,26(4):51—54
    12.施启顺,柳小春,马海明。猪的疾病抗性和抗病育种研究进展。国外畜牧学:猪与禽。2001,35-38
    13.唐国庆,王金勇,李学伟,猪抗病育种研究进展,国外畜牧科技,2002,29(6):29—32
    14.王庆敏,戴建新,孙树汉,泛素系统及其功能研究,生物工程进展,2001,21(6):66—69
    15.吴焱秋,柴家科,泛素—蛋白酶体途径的组成及其生物学作用,生理科学进展,2001,32(4):331—333
    16.杨义力,蛋白质泛素化系统,生命科学,2002,14(5):279—282
    17.叶建伟,丁洁。变性高效液相色谱分析的技术特征及其应用。肾脏病与透析 肾移植杂志。2003,12(2):197-200
    18.余梅,猪12号染色体上4个新基因的分离、鉴定与物理定位。[博士学位论文],武汉,华中农业大学,2002
    19.张忠信,牛国栋。病毒编码泛素及相关蛋白的研究进展。中国病毒学。2004,19(2):197—203
    20.周光炎主编。免疫学原理。上海:科学技术文献出版社,2001
    21.周蕊,余泽华。泛素化途径与细胞周期的关系。生命科学。2003,15(3):147—150
    22.朱正茂,猪胚胎骨骼肌基因表达的宏阵列分析及差异表达基因cDNA全长分离、定位、组织表达谱和多态研究。[博士学位论文],武汉,华中农业大学,2003
    23. Abbasi AR, Gefiletoya, Ihara N, Khalaj M, Sugimoto Y, Kunieda T. An integrated radiation hybrid map of bovine chromosome 18 that refines a critical region associated with multiple ocular defects in cattle. Anim Genet. 2006. 37(1): 58-61
    24. Abraham RS, Ballman KV, Dispenzieri A, Grill DE, Manske MK, Price-Troska TL, Paz NG, Gertz MA, Fonseca R. Functional gene expression analysis of clonal plasma cells identifies a unique molecular profile for light chain amyloidosis. Blood. 2005, 105(2): 794-803
    25. Akiyama K, Kagawa S, Tamura T, Shimbara N, Takashina M, Kristensen P, Hendil KB, Tanaka K, Ichihara A. Replacement of proteasome subunits X and Y by LMP7 and LMP2 induced by interferon-gamma for acquirement of the functional diversity responsible for antigen processing. FEBS Lett. 1994. 343(1): 85-8
    26. Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A. cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science. 1994. 265(5176): 1231-4
    27. Apeher GS, Maitland J, Dawson S, Sheppard P, Mayer RJ. The alpha4 and alpha7 subunits and assembly of the 20S proteasome. FEBS Lett. 2004. 569(1-3): 211-6.
    28. Basler M, Youhnovski N, Van Den Broek M, Przybylski M, Groettrup M. Immunoproteasomes down-regulate presentation of a subdominant T cell epitope from lymphocytic choriomeningitis virus. J Immunol. 2004. 173(6): 3925-34.
    29. Baus-Loncar M, Sehmid J, Lalani el-N, Rosewell I, Goodlad RA, Stamp GW, Blin N, Kayademir T. Trefoil factor 2 (TFF2) deficiency in murine digestive tract influences the immune system. Cell Physiol Biochem. 2005. 16(1-3): 31-42.
    30. Bandoh N, Ogino T, Cho HS, Hur SY, Shen J, Wang X, Kato S, Miyokawa N, Harabuchi Y, Ferrone S. Development and characterization of human constitutive proteasome and immunoproteasome subunit-specifie monoelonal antibodies. Tissue Antigens. 2005. 66(3): 185-94.
    31. Banks, L., D. Pim, M. Thomas, Viruses and the 26S proteasome: hacking into destruction, Trends Bioehem. Sci, 2003, 28:452-459;
    32. Beeh-Otsehir, D., R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmarm, W. Dubiel, COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system, EMBO J, 2001, 20:1630-1639;
    33. Bey F, Silva Pereira I, Coux O, Viegas-Pequignot E, Reeillas Targa F, Nothwang HG, Dutrillaux B, Seherrer K. The prosomal RNA-binding protein p27K is a member of the alpha-type human prosomal gene family. Mol Gen Genet. 1993. 237(1-2): 193-205.
    34. Bhui-Kaur A, Therwath A, Henry L, Chiesa J, Kurkure A, Seherrer K, Bureau JP. Increased prosomal proteins in breast cancer cells and in neighboring normal cells in Parsi and non-Parsi populations. J Cancer Res Clin Oneol. 1998. 124(2): 117-26.
    35. Bizimungu C, Vandenbol M. At least two regions of the oneoprotein Tre2 are involved in its lack of GAP activity. Biochem Biophys Res Commun. 2005. 335(3):883-90.
    36. Bos DH. Natural selection during functional divergence to LMP7 and proteasome subunit X (PSMB5) following gene duplication. J Mol Evol. 2005. 60(2):221-8.
    37. Boutell C, Canning M, Orr A, Everett RD. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol. 2005. 79(19): 12342-54.
    38. Boutell, C., S. Sadis, R. D. Everett, Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro, J. Virol. 2002, 76:841-850;
    39. Brooks, C. L., W. Gu, Ubiquitination, phosphorylation and acetylation: the molecular basis forp53 regulation, Cell Biol, 2003, 15: 164-171;
    40. Caballero M, Liton PB, Challa P, Epstein DL, Gonzalez P. Effects of donor age on proteasome activity and senescence in trabecular meshwork cells. Biochem Biophys Res Commun. 2004. 323(3): 1048-54.
    41. Cangemi G, Morandi B, D'Agostino A, Peri C, Conte R, Damonte G, Ferlazzo G, Biassoni R, Melioli G. IFN-alpha mediates the up-regulation of HLA class Ⅰ on melanoma cells without switching proteasome to immunoproteasome. Int Immunol. 2003. 15(12): 1415-21.
    42. Cardozo C, Eleuteri AM, Orlowski M. Differences in catalytic activities and subunit pattern of multicatalytic proteinase complexes (proteasomes) isolated from bovine pituitary, lung, and liver. Changes in LMP7 and the component necessary for expression of the chymotrypsin-like activity. J B iol Chem. 1995. 270(38):22645-51.
    43. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006. 8(1-2):76-87.
    44. Cho S, Choi YJ, Kim JM, Jeong ST, Kim JH, Kim SH, Ryu SE. Binding and regulation of HIF-lalpha by a subunit of the proteasome complex, PSMA7. FEBS Lett. 2001. 498(1):62-6.
    45. Chris Boutell, Roger D. Everett, Herpes Simplex Virus Type 1 Infection Induces the Stabilization of p53 in a USP7-and ATM-Independent Manner, Journal of Virology, 2004, 78(5): 8068-8077;
    46. Clark MS, Shaw L, Kelly A, Snell P, Elgar G. Characterization of the MHC class Ⅰ region of the Japanese pufferfish (Fugu rubripes). Immunogenetics. 2001. 52(3-4): 174-85.
    47. Cui F, Wang Y, Wang J, Wei K, Hu J, Liu F, Wang H, Zhao X, Zhang X, Yang X. The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics. 2006. 6(2):498-504.
    48. Dachsel JC, Lucking CB, Deeg S, Schultz E, Lalowski M, Casademunt E, Corti O, Hampe C, Patenge N, Vaupel K, Yamamoto A, Dichgans M, Brice A, Wanker EE, Kahle PJ, Gasser T. Parkin interacts with the proteasome subunit alpha4. FEBS Lett. 2005. 579(18):3913-9.
    49. Davoli R, Fontanesi L, Russo V, Cepica S, Musilova P, Stratil A, Rubes J. The porcine proteasome subunit A4 (PSMA4) gene: isolation of a partial cDNA, linkage and physical mapping. Anim Genet. 1998 Oct;29(5):385-8.
    50. De M, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA. Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem. 2003. 278(8):6153-9.
    51. Dennis AP, Lonard DM, Nawaz Z, O'Malley BW. Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase Ⅱ. J Steroid Biochem Mol Biol. 2005. 94(4):337-46.
    52. Derek McCusker, Michael Wilson, John Trowsdale. Organization of the genes encoding the human proteasome activators PA28 α and β. immunogenetics. 1999. 49:438-445.
    53. Dong J, Chen W, Welford A, Wandinger-Ness A. The proteasome alpha-subunit XAPC7 interacts specifically with Rab7 and late endosomes. J Biol Chem. 2004.279(20):21334-42.
    
    54. Dressman MA, Baras A, Malinowski R, Alvis LB, Kwon I, Walz TM, Polymeropoulos MH. Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer Res. 2003.63(9):2194-9.
    
    55. Edfors-Lilja I, Gustafsson U, Duval-Iflah Y. The porcine intestinal receptor for Escherichia coli K88ab, K88ac: regional localization on chromosome 13and influenve of IgG response to the K88 antigen. Anim Genet, 1995,26:237-242.
    
    56. Elenich LA, Nandi D, Kent AE, McCluskey TS, Cruz M, Iyer MN, Woodward EC, Conn CW, Ochoa AL, Ginsburg DB, Monaco JJ. The complete primary structure of mouse 20S proteasomes. Immunogenetics. 1999.49(10):835-42.
    
    57. Everett, R. D., ICPO induces the accumulation of colocalizing conjugated ubiquitin, J. Virol, 2000, 74:9994-10005;
    
    58. Everett, R. D., C. Boutell, A. Orr, Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICPO, J. Virol. 2004, 78:1763-1774;
    
    59. Faus H, Meyer HA, Huber M, Bahr I, Haendler B. The ubiquitin-specific protease USP10 modulates androgen receptor function. Mol Cell Endocrinol. 2005.245(1-2):138-46.
    
    60. Ferrer I, Martin B, Castano JG, Lucas JJ, Moreno D, Olive M. Proteasomal expression, induction of immunoproteasome subunits, and local MHC class I presentation in myofibrillar myopathy and inclusion body myositis. J Neuropathol Exp Neurol. 2004.63(5):484-98.
    
    61. Gaczynska M, Goldberg AL, Tanaka K, Hendil KB, Rock KL. Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-gamma-induced subunits LMP2 and LMP7. J Biol Chem. 1996.271(29):17275-80.
    
    62. Geldermann H, Muller E, Beeckmann P, Knorr C, Yue G Mapping of quantitative traits loci by means of marker genes in F2 generations of wild boar,Pietrian and Meishan pigs. J Anim Breed Genet, 1996,113:381-387.
    
    63. Geoffroy MC, Chadeuf G, Orr A, Salvetti A, Everett RD. Impact of the interaction between herpes simplex virus type 1 regulatory protein ICPO and ubiquitin-specific protease USP7 on activation of adeno-associated virus type 2 rep gene expression. J Virol. 2006.80(7):3650-4.
    
    64. Gobbi G, Mirandola P, Micheloni C, Solenghi E, Sponzilli I, Artico M, Soda G, Zanelli G, Pelusi G, Fiorini T, Cocco L, Vitale M. Expression of HLA class I antigen and proteasome subunits LMP-2 and LMP-10 in primary vs. metastatic breast carcinoma lesions. Int J Oncol. 2004.25(6): 1625-9.
    
    65. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik H D, Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 1997,386:463-471.
    
    66. Grossman, S. R., M. E. Deato, C. Brignone, H. M. Chan, A. L. Kung, H. Tagami, Y. Nakatani, D. M. Livingston, Polyubiquitination of p53 by a ubiquitin ligase activity of p300, Science, 2003, 300:342-344;
    
    67. Gu, H., B. Roizman, The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin conjugating enzyme UbcH5a, Proc. Natl. Acad. Sci. USA, 2003, 100:8963-8968;
    68. Guillon H, Baudat F, Grey C, Liskay RM, de Massy B. Crossover and noncrossover pathways in mouse meiosis. Mol Cell. 2005. 20(4):563-73.
    69. Guillon H, de Massy B. An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat Genet. 2002. 32(2):296-9.
    70. Hagglund, R., C. Van Sant, P. Lopez, B. Roizman, Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes, Proc. Natl. Acad. Sci. USA, 2002, 99:631-636;
    71. Han YG, Liu HL, Zheng HJ, Li SG, Bi RC. Purification and refolding of human alpha5-subunit (PSMA5) of the 20S proteasome, expressed as inclusion bodies in Escherichia coli. Protein Expr Purif. 2004. 35(2):360-5.
    72. Hayashi M, Ishibashi T, Tanaka K, Kasahara M. The mouse genes encoding the third pair of beta-type proteasome subunits regulated reciprocally by IFN-gamma: structural comparison, chromosomal localization, and analysis of the promoter. J Immunol. 1997. 159(6):2760-70
    73. Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, Takahashi E, Tanahashi N, Tamura T, Ichihara A, Tanaka K. Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma. J Exp Med. 1996. 183(4):1807-16.
    74. Hopitzan A, Himmelbauer H, Spevak W, Castanon MJ. The mouse Psmal gene coding for the alpha-type C2 proteasome subunit: structural and functional analysis, mapping, and colocalization with Pde3b on mouse chromosome 7. Genomics. 2000. 66(3):313-23.
    75. Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D'Andrea AD. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006. [Epub ahead of print]
    76. Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol. 2006. 4(2):e27.
    77. Ivakine EA, Gulban OM, Mortin-Toth SM, Wankiewicz E, Scott C, Spurrell D, Canty A, Danska JS. Molecular genetic analysis of the Idd4 locus implicates the IFN response in type 1 diabetes susceptibility in nonobese diabetic mice. J Immunol. 2006. 176(5):2976-90.
    78. Jack C M and Hospital F. The use of molecular genetics in the improvement of agricultural populations. Nature Reviews, 2002, 3:22-32.
    79. James AB, Conway AM, Morris BJ. Regulation of the neuronal proteasome by Zif268 (Egr1). J Neurosci. 2006. 26(5): 1624-34.
    80. Karen L. C and Mike T. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Nat Cell Biol. 2002, 4(6): 451-6.
    81. Kisselev A F, Akopian T N, Castillo V, Goldberg A L. Proteasome Active sites allosterically regulated each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell. 1999. 4:395-402.
    82. Klaus Fruh, Young Yang. (1999) Antigen presentation by MHC class Ⅰ and its regulation by interferon. Current Opinion in Immunology. 11, 76-81.
    83. Kleiter N, Artner I, Gmachl N, Ghaffari-Tabrizi N, Kratochwil K. Mutagenic transgene insertion into a region of high gene density and multiple linkage disruptions on mouse chromosome 11. Cytogenet Genome Res. 2002. 97(1-2): 100-5.
    84. Kohda K, Matsuda Y, Ishibashi T, Tanaka K, Kasahara M. (1997) Structural analysis and chromosomal localization of the mouse Psmb5 gene coding for the constitutively expressed beta-type proteasome subunit. Immunogeneties. 47(1), 77-87.
    85. Kohda K, Matsuda Y, Ishibashi T, Tanaka K, Kasahara M. Structural analysis and chromosomal localization of the mouse Psmb5 gene coding for the constitutively expressed beta-type proteasome subunit. Immunogenetics. 1997. 47(1):77-87.
    86. Korf M, Jarczak D, Beger C, Manns MP, Kruger M. Inhibition of hepatitis C virus translation and subgenomie replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors. J Hepatol. 2005. 43(2):225-34.
    87. Kruger M, Beger C, Welch PJ, Barber JR, Manns MP, Wong-Staal F. Involvement of proteasome alpha-subunit PSMA7 in hepatitis C virus internal ribosome entry site-mediated translation. Mol Cell Biol. 2001. 21(24):8357-64.
    88. Kruger M, Beger C, Welch PJ, Barber JR, Wong-Staal F. C-SPACE (cleavage-specific amplification of cDNA ends): a novel method of ribozyme-mediated gene identification. Nucleic Acids Res. 2001. 29(19):E94.
    89. Kwak MK, Wakabayashi N, G-reenlaw JL, Yamamoto M, Kensler TW. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol. 2003. 23(23):8786-94.
    90. Leng, R. P., Y. Lin, W. Ma, H. Wu, B. Lemmers, S. Chung, J. M. Parant, G. Lozano, R. Hakem, S. Benchimol, Pirh2, a p53-indueed ubiquitinprotein ligase, promotes p53 degradation, Cell, 2003, 112:779-791;
    91. Leong WF, Chow VT. Transeriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol. 2006. 8(4):565-80.
    92. Li J, Franek KJ, Patterson AL, Holmes LM, Burgin KE, Ji J, Yu X, Wagner TE, Wei Y. Targeting foreign major histocompatibility complex molecules to tumors by tumor cell specific single chain antibody (scFv). Int J Oncol. 2003. 23(5): 1329-32.
    93. Li J, Schuler-Thurner B, Sehuler G, Huber C, Seliger B. Bipartite regulation of different components of the MHC class Ⅰ antigen-processing machinery during dendritic cell maturation. Int Immunol. 2001. 13 (12): 1515-23.
    94. Lin HK, Altuwaijri S, Lin WJ, Kan PY, Collins LL, Chang C. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear transloeation and interaction with coregulators in prostate cancer cells. J Biol Chem. 2002. 27;277(39):36570-6.
    95. Liu H. C., Rothschild M. F. & Tuggle C. K. (1995) Analysis of pig chromosome 7 genetic markers for growth and carcass performance traits. Journal of Animal Science 73, 641
    96. Lombardi MS, Kavelaars A, Penela P, Seholtens EJ, Roceio M, Schmidt RE, Schedlowski M, Mayor F Jr, Heijnen CJ. Oxidative stress decreases G protein-coupled receptor kinase 2 in lymphocytes via a calpain-dependent mechanism. Mol Pharmacol. 2002. 62(2):379-88.
    97. Martinu L, Masuda-Robens JM, Robertson SE, Santy LC, Casanova JE, Chou MM. The TBC (Tre-2/Bub2/Cdc16) domain protein TRE17 regulates plasma membrane-endosomal trafficking through activation of Arf6. Mol Cell Biol. 2004. 24(22):9752-62.
    98. Mary C., Chris B., Jane P., Roger D. E., A RING Finger Ubiquitin Ligase Is Protected from Autocatalyzed Ubiquitination and Degradation by Binding to Ubiquitin-specific Protease USP7, The Journal of Biological Chemistry, 2004, 279 (37). 38160-38168;
    99. Matsunaga T, Ishida T, Takekawa M, Nishimura S, Adachi M, Imai K. Analysis of gene expression during maturation of immature dendritic cells derived from peripheral blood monocytes. Scand J Immunol. 56(6):593-601.
    100. Meijerink E, Fries R, Vogeli P, etal. Two α (1, 2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (s) and Escherichia coli F18 receptor (ECF18R)loci. Mamm Genome, 1997, 8:736-741.
    101. McCusker D, Jones T, Sheer D, Trowsdale J. Genetic relationships of the genes encoding the human proteasome beta subunits and the proteasome PA28 complex. Genomics. 1997. 15;45(2):362-7.
    102. Michalova V, Murray BW, Sultmann H, Klein J. A contig map of the Mhc class Ⅰ genomic region in the zebrafish reveals ancient synteny. J Immunol. 2000 May 15; 164(10):5296-305.
    103. Milojevic T, Reiterer V, Stefan E, Korkhov VM, Dorostkar MM, Ducza E, Ogris E, Boehm S, Freissmuth M, Nanoff C. The ubiquitin-specific protease usp4 regulates the cell surface level of the a2a receptor. Mol Pharmacol. 2006. 69(4):1083-94.
    104. Murakami Y, Kanda K, Yokota K, Kanayama H, Kagawa S. Prognostic significance of immuno-proteosome subunit expression in patients with renal-cell carcinoma: a preliminary study. Mol Urol. 2001. 5(3): 113-9.
    105. Murata, S, Heiichiro Udono, Nobuyuki Tanahashi et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. The EMBO Journal, 2001. 20(21): 5898-5907
    106. Murray BW, Sultmann H, Klein J. Analysis of a 26-kb region linked to the Mhc in zebrafish: genomic organization of the proteasome component beta/transporter associated with antigen processing-2 gene cluster and identification of five new proteasome beta subunit genes. J Immunol. 1999. 163(5):2657-66.
    107. Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, Ogata K. Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs. Nucleic Acids Res. 1982. 10(19):6099-110.
    108. Nandi D, Woodward E, Ginsburg DB, Monaco JJ. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J. 1997 Sep 1;16(17):5363-75.
    109. Niesporek S, Meyer CG, Kremsner PG, May J. Polymorphisms of transporter associated with antigen processing type 1 (TAP1), proteasome subunit beta type 9 (PSMB9) and their common promoter in African children with different manifestations of malaria. Int J Immunogenet. 2005. 32(1):7-11.
    110. Nijman SM, Huang TT, Dirae AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005. 17(3):331-9.
    111. Nikaido, T., K. Shimada, M. Shibata, M. et al. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin. Exp. Immunol. 1990. 79:209
    112. Nonaka M, Yamada-Namikawa C, Flajnik MF, Du Pasquier L. Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus. Immunogenetics. 2000. 51(3): 186-92.
    113. Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF. Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol. 2006. 176(6):3674-85.
    114. Onda M, Emi M, Yoshida A, Miyamoto S, Akaishi J, Asaka S, Mizutani K, Shimizu K, Nagahama M, Ito K, Tanaka T, Tsunoda T. Comprehensive gene expression profiling of anaplastie thyroid cancers with cDNA microarray of 25 344 genes. Endocr Relat Cancer. 2004. 11(4):843-54.
    115. Orlowski M, Cardozo C, Eleuteri AM, Kohanski R, Kam CM, Powers JC. Reactions of [14C]-3, 4-dichloroisocoumarin with subunits of pituitary and spleen multicatalytic proteinase complexes (proteasomes). Biochemistry. 1997. 36(45):13946-53.
    116. Piccinini M, Rinaudo MT, Anselmino A, Ramondetti C, Buccirma B, Fiano V, Ghimenti C, Schiffer D. Characterization of the 20S proteasome in human glioblastomas. Anticancer Res. 2005. 25(5):3203-10.
    117. Politou M, Karadimitris A, Terpos E, Kotsianidis I, Apperley JF, Rahemtulla A. No evidence of mutations of the PSMB5 (beta-5 subunit of proteasome) in a case of myeloma with clinical resistance to Bortezomib. Leuk Res. 2006. 30(2):240-1.
    118. Putzer BM, Rodieker F, Hitt MM, Stiewe T, Esehe H. Improved treatment of pancreatic cancer by IL-12 and B7.1 eostimulation: antitumor efficacy and immunoregulation in a nonimmunogenic tumor model. Mol Ther. 2002. 5(4):405-12.
    119. Qureshi N, Perera PY, Shen J, Zhang G, Lenschat A, Splitter G, Morrison DC, Vogel SN. The proteasome as a lipopolysaecharide-binding protein in maerophages: differential effects of proteasome inhibition on lipopolysaccharide-induced signaling events. J Immunol. 2003. 171(3):1515-25.
    120. Raghavendra Prasad HS, Qi Z, Srinivasan KN, Gopalakrishnakone P. Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon. 2004. 44(6):597-608.
    121. Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Faadiel Essop M, Taegtmeyer H. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun. 2006. 342(2):361-4.
    122. Rivett A J, Bose S, Brooks P, Broadfoot K I. Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie. 2001. 83:363-366.
    123. Rothschild M F, Chen H L, Christian L L, Lie W R, Venier L, Cooper M, Briggs C, Warner C M. Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with B. bronehiseptica. Journal of Animal Science. 1984b. 59:643-649
    124. Rothsehild M F, Hill H T, Christian L L, Warner C M. Genetic differences in serum-neutralizing titers of pigs after vaccination with pseudorabies modified live vaccine. American Journal of Veterinary Research. 1984a. 45:1216-1218.
    125. Sauter M, Rzewuski G, Marwedel T, Lorbiecke R. The novel ethylene-regulated gene OsUspl from rice encodes a member of a plant protein family related to prokaryotie universal stress proteins. J Exp Bot. 2002. 53(379):2325-31.
    126. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell. 2005. 20(5):699-708.
    127. Shen C, Ye Y, Robertson SE, Lau AW, Mak DO, Chou MM. Calcium/calmodulin regulates ubiquitination of the ubiquitin-specific protease TRE17/USP6. J Biol Chem. 2005. 280(43):35967-73.
    128. Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, Frappier L. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 2006. 13(3):285-91.
    129. Shiina T, Dijkstra JM, Shimizu S, Watanabe A, Yanagiya K, Kiryu I, Fujiwara A, Nishida-Umehara C, Kaba Y, Hirono I, Yoshiura Y, Aoki T, Inoko H, Kulski JK, Ototake M. Interchromosomal duplication of major histocompatibility complex class Ⅰ regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry. Immunogenetics. 2005. 56(12):878-93.
    130. Shum BP, Mason PM, Magor KE, Flodin LR, Stet RJ, Parham P. Structures of two major histocompatibility complex class Ⅰ genes of the rainbow trout (Oncorhynchus mykiss). Immunogenetics. 2002. 54(3): 193-9.
    131. Singh S, Awasthi N, Egwuagu CE, Wagner BJ. Immunoproteasome expression in a nonimmune tissue, the ocular lens. Arch Biochem Biophys. 2002. 405(2): 147-53.
    132. Sjakste T, Eglite J, Sochnevs A, Marga M, Pirags V, Collan Y, Sjakste N. Microsatellite genotyping of chromosome 14q13.2-14q13 in the vicinity of proteasomal gene PSMA6 and association with Graves' disease in the Latvian population. Immunogenetics. 2004. 56(4):238-43.
    133. Sjakste T, Lauberte L, Collan Y, Savontaus ML, Bajare A, Scherrer K, Sjakste N. Identification of an intronic TG repeat polymorphism in the human proteasome core particle PROS-27K gene. DNA Seq. 2002. 13(3): 139-43.
    134. Sjakste T, Sjakste N, Scherrer K. Exon/intron organisation of human proteasome PROS-27 K gene. DNA Seq. 2001. 12(4):261-5.
    135. Stohwasser R, Holzhutter HG, Lehmann U, Henklein P, Kloetzel PM. Hepatitis B virus HBx peptide 116-138 and proteasome activator PA28 compete for binding to the proteasome alpha4/MC6 subunit. Biol Chem. 2003. 384(1):39-49.
    136. Takabe W, Matald C, Wada Y, Ishii M, Izumi A, Aburatani H, Hamakubo T, Niki E, Kodama T, Noguchi N. Gene expression induced by BO-653, probucol and BHQ in human endothelial cells. J Atheroscler Thromb. 2000. 7(4):223-30.
    137. Takabe W, Matsukawa N, Kodama T, Tanaka K, Noguchi N. Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radic Res. 2006. 40(1):21-30.
    138. Takezaki N, Zaleska-Rutczynska Z, Figueroa F. Sequencing of amphioxus PSMB5/8 gene and phylogenetic position of agnathan sequences. Gene. 2002. 282(1-2): 179-87.
    139. Tanaka K. Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol. 1994. 56(5): 571-5.
    140. Toews ML. Adenosine receptors fred a new partner and move out. Mol Pharmacol. 2006. 69(4): 1075-8.
    141. Touitou R, O'Nions J, Heaney J, Allday MJ. Epstein-Barr virus EBNA3 proteins bind to the C8/alpha7 subunit of the 20S proteasome and are degraded by 20S proteasomes in vitro, but are very stable in latently infected B cells. J Gen Virol. 2005.86(5):1269-77.
    
    142.Tsukamoto K, Hayashi S, Matsuo MY, Nonaka MI, Kondo M, Shima A, Asakawa S, Shimizu N, Nonaka M. Unprecedented intraspecific diversity of the MHC class I region of a teleost medaka, Oryzias latipes. Immunogenetics. 2005.57(6):420-31.
    
    143.Vertegaal AC, Kuiperij HB, Houweling A, Verlaan M, van der Eb AJ, Zantema A. Differential expression of tapasin and immunoproteasome subunits in adenovirus type 5- versus type 12-transformed cells. J Biol Chem. 2003 Jan 3;278(1):139-46.
    
    144.Wada K, Kamitani T. UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun. 2006.342(1):253-8.
    
    145.Wada K, Tanji K, Kamitani T. Oncogenic protein UnpEL/Usp4 deubiquitinates Ro52 by its isopeptidase activity. Biochem Biophys Res Commun. 2006.339(3):731-6.
    
    146.Wilk S and Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem. 1983.40:842-849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700