HSP70保护Bcl2L12和Bcl2L12A免于N端泛素化介导的蛋白酶体降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bcl2l12是一个新发现的Bcl-2家族中的一员,研究表明它对乳腺癌的预后有帮助,同时它还和神经胶质瘤以及大肠癌的发生发展相关。它能够被很多抗肿瘤药物所调控,包括顺铂、卡铂还有拓普替康等等。然而它的转录后修饰以及调控机制还没有被研究过。我的研究发现Bcl2l12和它的转录变异体Bcl2l12A都是核蛋白,它们都通过泛素蛋白酶体系统降解。有趣的是它们的泛素化以及降解不是通过常规的内部赖氨酸残基位点,而是依赖N末端的第一个残基。更进一步的研究发现,在哺乳动物细胞中,Hsp70能够和它们相互作用,保护它们免于被泛素蛋白酶体降解。过表达Bcl2l12A能下调Bcl-2促进细胞凋亡。总而言之,Hsp70能够保护Bcl2l12和Bcl2l12A免于N端泛素化介导的蛋白酶体降解,Bcl2l12A可能是一个潜在的细胞凋亡调节因子。
BCL2L12, a newly identified member of Bcl-2 family, has been found to be associated with favorable prognosis in breast cancer patients while correlated with tumorigenesis of glioblastoma and colon cancer. It is transcriptionally regulated by many anti-tumor drugs, such as cisplatin, carboplatin and Topotecan. However, the post-translational modification and regulation of this protein has not been studied yet. Here, we report that BCL2L12 and its transcript variant BCL2L12A are nuclear proteins that are degradated through ubiquitin-proteasome system (UPS). Interestingly, the ubiquitinations and degradations of these two proteins are independent of the internal lysine residues but the first N-terminal residues. In addition, we identified HSP70 as an interacting partner of both proteins, which protected them from ubiquitination and degradation in mammalian cells. Furthermore, ectopic expression of BCL2L12A induces apoptosis through down-regulation of Bcl-2. In summary, these data suggest that HSP70 protects BCL2L12 and BCL2L12A from N-terminal ubiquitination-mediated proteasomal degradation, and that BCL2L12A might serve as an apoptosis regulator.
引文
1. Scorilas, A., Kyriakopoulou, L., Yousef, G. M., Ashworth, L. K., Kwamie, A., and Diamandis, E. P. (2001). Molecular cloning, physical mapping, and expression analysis of a novel gene, BCL2L12, encoding a proline-rich protein with a highly conserved BH2 domain of the Bcl-2 family. Genomics. 72, 217-221.
    2. G.L.Toumelin, Mazars, A., Licznar, A., Guasconi, G., Rain, J. C., Cauquil, N., John Hickman, and Olivier Geneste. (2006). Bcl2L12, a new BH2 BH3 containing protein, substrate for GSK3beta, mediates UV induced apoptosis. Proc Amer Assoc Cancer Res. 47,
    3 Talieri, M., Diamandis, E. P., Katsaros, N., Gourgiotis, D., and Scorilas, A. (2003). Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors. Thromb.Haemost. 89,1081-1088.
    4. Thomadaki, H. and Scorilas, A. (2007). Breast cancer cells response to the antineoplastic agents cisplatin, carboplatin, and doxorubicin at the mRNA expression levels of distinct apoptosis-related genes, including the new member, BCL2L12. Am.N.Y.Acad.Sci. 1095,35-44.
    5. Thomadaki, H., Talieri, M., and Scorilas, A. (2006). Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS. Biol.Chem. 387,1081-1086.
    6. Floros, K. V., Talieri, M., and Scorilas, A. (2006a). Topotecan and methotrexate alter expression of the apoptosis-related genes BCL2, FAS and BCL2L12 in leukemic HL-60 cells. Biol.Chem. 387,1629-1633.
    7. Floros, K. V., Thomadaki, H., Florou, D., Talieri, M., and Scorilas, A. (2006b). Alterations in mRNA expression of apoptosis-related genes BCL2, BAX, FAS, caspase-3, and the novel member BCL2L12 after treatment of human leukemic cell line HL60 with the antineoplastic agent etoposide. Ann.N.Y.Acad.Sci. 1090,89-97.
    8. Floras, K. V., Thomadaki, H., Katsaros, N., Talieri, M., and Scorilas, A. (2004). mRNA expression analysis of a variety of apoptosis-related genes, including the novel gene of the BCL2-family, BCL2L12, in HL-60 leukemia cells after treatment with carboplatin and doxorubicin. Biol.Chem. 385, 1099-1103.
    9. Floras, K. V., Thomadaki, H., Lallas, G., Katsaros, N., Talieri, M., and Scorilas, A. (2003). Cisplatin-induced apoptosis in HL-60 human promyelocytic leukemia cells: differential expression of BCL2 and novel apoptosis-related gene BCL2L12. Ann.N.Y.Acad.Sci. 1010,153-158
    10. Hong, Y., Yang, J., Wu, W., Wang, W., Kong, X., Wang, Y., Yun, X., Zong, H., Wei, Y., Zhang, S., and Gu, J. (2008). Knockdown of BCL2L12 leads to cisplatin resistance in MDA-MB-231 breast cancer cells. BBA - Molecular Basis of Disease. 1782(11), 649-57.
    11. Talieri, M., Diamandis, E. P., Katsaros, N., Gourgiotis, D., and Scorilas, A. (2003). Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors. Thromb.Haemost. 89, 1081-108.
    12. Scorilas, A., Kyriakopoulou, L., Yousef, G M., Ashworth, L. K., Kwamie, A., and Diamandis, E. P. (2001). Molecular cloning, physical mapping, and expression analysis of a novel gene, BCL2L12, encoding a proline-rich protein with a highly conserved BH2 domain of the Bcl-2 family. Genomics. 72, 217-221.
    13. Mathioudaki, K., Scorilas, A., Papadokostopoulou, A., Xynopoulos, D., Arnogianaki, N., Agnanti, N., and Talieri, M. (2004). Expression analysis of BCL2L12, a new member of apoptosis-related genes, in colon cancer. Biol.Chem. 385, 779-783
    14. Stegh, A. H., Kesari, S., Mahoney, J. E., Jenq, H. T., Forloney, K. L., Protopopov, A., Louis, D. N., Chin, L., and DePinho, R. A. (2008). Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc.Natl.AcadSci. U.S.A. 105, 10703-10708.
    15. Stegh, A. H., Kim, H., Bachoo, R. M., Forloney, K. L., Zhang, J., Schulze, H., Park, K., Hannon, G. J., Yuan, J., Louis, D. N., DePinho, R. A., and Chin, L. (2007). Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev. 21,98-111
    16. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annu.Rev.Biochem. 70,503-533.
    17. Robinson, P. A. and Ardley, H. C. (2004). Ubiquitin-protein ligases. J.Cell Sci. 117,5191-5194.
    18. Glickman, M. H. and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 82, 373-428
    19. Joanna Bloom, Virginia Amador,Francesca Bartolini, George DeMartino,and Michele Pagano。 Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylationc Ce 11,2003; 115: 71-82,
    20. Philippe Coulombe, Genevie've Rodier, Eric Bonneil, Pierre Thibault,and Sylvain Meloche。N-Terminal Ubiquitination of Extracellular Signal-Regulated Kinase 3 and p21 Directs Their Degradation by the Proteasome。 MOLECULAR AND CELLULAR BIOLOGY, 24.14.6140-6150.2004
    21. Eastman A. Activation of programmed cell death by anticancer agents: cisplatin as a model system[J]. Cancer Cells, 1990,2 (8-9):275-280.
    22. Alberts DS, Garcia D, Mason-Liddil N. Cisplatin in advanced cancer of the cervix: an update[J]. Semin Oncol, 1991, 18 (1 Suppl 3):11-24.
    23. Perez RP. Cellular and molecular determinants of cisplatin resistance [J]. Eur J Cancer, 1998, 34 (10): 1535-1542.
    24. Jones NA, Turner J, Mcllwrath AJ, Brown R, Dive C. Cisplatin- and paclitaxel-induced apoptosis of ovarian carcinoma cells and the relationship between bax and bak up-regulation and the functional status of p53[J]. Mol Pharmacol, 1998, 53 (5):819-826.
    25. Kubbutat MH, Vousden KH. Keeping an old friend under control: regulation of p53 stability[J]. Mol Med Today, 1998, 4 (6):250-256.
    26. Johnson CL, Lu D, Huang J, Basu A. Regulation of p53 stabilization by DNA damage and protein kinase C[J], Mol Cancer Ther, 2002, l(10):861-867.
    27. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, Hale TJ, Soengas MS, Kaufman RJ, Wang CY. Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa[J]. J Biol Chem, 2006,281(42):31440-31447.
    28. Gopalan B, Rached C, Chada S, Ramesh R. Cisplatin-resistant cancer cells are defective in the 26S proteasome: applications in cancer gene therapy. 2006. pp. 880-C-881.
    29. Reinstein, E. and Ciechanover, A. (2006). Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann.Intern.Med. 145, 676-684
    30. Dell'Angelica, E. C., Mullins, C., Caplan, S., and Bonifacino, J. S. (2000). Lysosome-related organelles. FASEB J. 14,1265-1278
    31. Fenteany, G. and Schreiber, S. L. (1998). Lactacystin, proteasome function, and cell fate. J.Biol.Chem. 273, 8545-8548
    32. Hartmann-Petersen, R., Seeger, M., and Gordon, C. (2003). Transferring substrates to the 26S proteasome. Trends Biochem.Sci. 28,26-31
    33. Pickart, C. M. (1997). Targeting of substrates to the 26S proteasome. FASEB J. 11,1055-1066
    34. Herrmann, J., Lerman, L. O., and Lerman, A. (2007). Ubiquitin and ubiquitin-like proteins in protein regulation. Circ.Res. 100, 1276-1291
    35. Ciechanover, A. (2005). N-terminal ubiquitination. Methods Mol.Biol. 301, 255-270
    36. Ciechanover, A. and Ben-Saadon, R. (2004). N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103-106
    37. Coulombe, P., Rodier, G., Bonneil, E., Thibault, P., and Meloche, S. (2004). N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol. Cell Biol. 24, 6140-6150.
    38. Ben-Saadon, R., Fajerman, 1., Ziv, T., Hellman, U., Schwartz, A. L., and Ciechanover,A.(2004).The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system.Direct evidence for ubiquitination at the N-terminal residue.J..Biol.Chem.279,41414-41421.
    39.Fajerman,I.,Schwartz,A.L.,and Ciechanover,A.(2004).Degradation of the Id2 developmental regulator:targeting via N-terminal ubiquitination.Biochem.Biophys.Res.Commun.314,505-512.
    40.Bloom,J.,Amador,V.,Bartolini,F.,DeMartino,G.,and Pagano,M.(2003).Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation.Cell.115,71-82
    41.Ciechanover,A.,Breitschopf,K.,Hatoum,O.A.,and Bengal,E.(1999).Degradation of MyoD by the ubiquitin pathway:regulation by specific DNA-binding and identification of a novel site for ubiquitination.Mol.Biol.Rep.26,59-64.
    42.Hong,Y.,Yang,J.,Wu,W.,Wang,W.,Kong,X.,Wang,Y.,Yun,X.,Zong,H.,Wei,Y.,Zhang,S.,and Gu,J.(2008).Knockdown of BCL2L12 leads to cisplatin resistance in MDA-MB-231 breast cancer cells.BBA - Molecular Basis of Disease.1782(11),649-57.
    43.Sun,L.,Trauseh-Azar,J.S.,Muglia,L.J.,and Schwartz,A.L.(2008).Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism.Proc.Natl.Acad.Sci.U.S.A.105,3339-3344.
    44.Avid,S.,Winberg,G.,Massucci,M.,and Ciechanover,A.(2000).Degradation of the epstein-barr virus latent membrane protein 1(LMP1) by the ubiquitin-proteasome pathway.Targeting via ubiquitination of the N-terminal residue,J.Biol.Chem.275,23491-23499.
    45.Reinstein,E.,Scheffner,M.,Oren,M.,Ciechanover,A.,and Schwartz,A.(2000).Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system:targeting via ubiquitination of the N-terminal residue.Oncogene.19,5944-5950.
    46. Bloom, J., Amador, V., Bartolini, E, DeMartino, G., and Pagano, M. (2003). Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 115,71-82.
    1. A.L. Fink, Chaperone-mediated protein folding [J], Physiol Rev 79 (1999)425-449.
    2. F.U. Hartl, M. Hayer-Hartl, Molecular chaperones in the cytosol: from nascent chain to folded protein [J], Science 295 (2002) 1852-1858.
    3. S. Lindquist, E.A. Craig, The heat-shock proteins [J], Annu Rev Genet 22 (1988)631-677.
    4. A. Asea, S.K. Kraeft, E.A. Kurt-Jones, M.A. Stevenson, L.B. Chen, R.W. Finberg,GC. Koo, S.K. Calderwood, HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine [J], Nat Med 6 (2000) 435-442.
    5. W. Chen, U. Syldath, K. Bellmann, V. Burkart, H. Kolb, Human 60-kDa heat-shock protein: a danger signal to the innate immune system [J], J Immunol 162(1999)3212-3219.
    6. S.B. Flohe, J. Bruggemann, S. Lendemans, M. Nikulina, G. Meierhoff, S. Flohe, H.Kolb, Human heat shock protein 60 induces maturation of dendritic cells versus a Thl-promoting phenotype [J], J Immunol 170 (2003) 2340-2348.
    7. A. Kol, A.H. Lichtman, R.W. Finberg, P. Libby, E.A. Kurt-Jones, Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells [J], J Immunol 164 (2000) 13-17.
    8. N.N. Panjwani, L. Popova, P.K. Srivastava, Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs [J], J Immunol 168 (2002) 2997-3003.
    9. R.M. Vabulas, P. Ahmad-Nejad, C. da Costa, T. Miethke, C.J. Kirschning, H. Hacker, H. Wagner, Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells [J], J Biol Chem 276 (2001) 31332-31339.
    10. R.M. Vabulas, P. Ahmad-Nejad, S. Ghose, C.J. Kirschning, R.D. Issels, H. Wagner, HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway [J], J Biol Chem 277 (2002) 15107-15112.
    11. R.M. Vabulas, S. Braedel, N. Hilf, H. Singh-Jasuja, S. Herter, P. Ahmad-Nejad, C.J. Kirschning, C. Da Costa, H.G. Rammensee, H. Wagner, H. Schild, The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway [J], J Biol Chem 277 (2002) 20847-20853.
    12. R.P. Wallin, A. Lundqvist, S.H. More, A. von Bonin, R. Kiessling, H.G. Ljunggren, Heat-shock proteins as activators of the innate immune system [J], Trends Immunol 23 (2002) 130-135.
    13. Wolfe BL & Trejo J 2007 Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. Traffic 8 462-470.
    14. Hanyaloglu AC & von Zastrow M 2008 Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annual Review of Pharmacology and Toxicology 48 537-568.
    15. W.B. Pratt, D.O. Toft, Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J], Exp Biol Med (Maywood) 228(2003)111-133.
    16. Majeski AE & Dice JF 2004 Mechanisms of chaperone-mediated autophagy. International Journal of Biochemistry and Cell Biology 36 2435-2444.
    17. Tateishi Y, Kawabe Y, Chiba T, Murata S, Ichikawa K, Murayama A, Tanaka K, Baba T, Kato S & Yanagisawa J 2004 Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO Journal 23 4813-4823.
    18. Alberti S, Bohse K, Arndt V, Schmitz A & Hohfeld J 2004 The cochaperone HspBPl inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Molecular Biology of the Cell 15 4003-4010.
    19. Demand J, Alberti S, Patterson C & Hohfeld J 2001 Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Current Biology 11 1569-1577.
    20. Westhoff B, Chappie JP, van der Spuy J, Hohfeld J & Cheetham ME 2005 HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Current Biology 15 1058-1064.
    21. Esser C, Alberti S & Hohfeld J 2004 Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochimica et Biophysica Acta 1695 171-188.
    22. Alberti S, Bohse K, Arndt V, Schmitz A & Hohfeld J 2004 The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Molecular Biology of the Cell 15 4003-4010.
    23. Arndt V, Daniel C, Nastainczyk W, Alberti S & Hohfeld J 2005 BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular Biology of the Cell 16 5891-5900.
    24. Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases[J]. Genes Dev, 2004,18 (22):2699-2711.
    25. Miller ME, Cross FR. Cyclin specificity: how many wheels do you need on a unicycle?[J]. J Cell Sci, 2001,114 (10):1811-1820.
    26. DeSalle LM, Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway[J]. FEBS Lett, 2001,490 (3): 179-189.
    27. Yew PR. Ubiquitin-mediated proteolysis of vertebrate Gl- and S-phase regulators[J]. J Cell Physiol, 2001,187 (l):l-10.
    28. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization[J]. Genes Dev, 1998,12(22):3499-3511.
    29. Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway[J]. Genes Dev, 1997, 11 (8):957-972.
    30. Germain D, Russell A, Thompson A, Hendley J. Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286[J]. J Biol Chem, 2000, 275 (16):12074-12079.
    31. Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex[J]. Mol Cell, 2006,24 (3):355-366.
    32. Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O. P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation[J]. Oncogene, 2004, 23 (45):7537-7544.
    33. Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability[J]. Nature, 1999,401 (6750):297-300.
    34. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase[J]. Science, 2001,294 (5540):173-177.
    35. McEvoy JD, Kossatz U, Malek N, Singer JD. Constitutive turnover of cyclin E by Cul3 maintains quiescence[J]. Mol Cell Biol, 2007, 27 (10):3651-3666.
    36. Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, Elledge SJ, Clurman BE, Harper JW. Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase[J]. J Biol Chem, 2004, 279 (48):50110-50119.
    37. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27[J]. Science, 1995, 269 (5224):682-685.
    38. Egozi D, Shapira M, Paor G, Ben-Izhak O, Skorecki K, Hershko DD. Regulation of the cell cycle inhibitor p27 and its ubiquitin ligase Skp2 in differentiation of human embryonic stem cells[J]. Faseb J, 2007, 21 (11):2807-2817.
    39. Sabile A, Meyer AM, Wirbelauer C, Hess D, Kogel U, Scheffner M, Krek W. Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein[J]. Mol Cell Biol, 2006,26 (16):5994-6004.
    40. Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis[J]. Blood, 2006,107 (11):4291-4299.
    41. Lee JG, Kay EP. Involvement of two distinct ubiquitin E3 ligase systems for p27 degradation in corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2008,49(1):189-196.
    42. Cayrol C, Ducommun B. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21[J]. Oncogene, 1998, 17(19):2437-2444.
    43. Fukuchi K, Hagiwara T, Nakamura K, Ichimura S, Tatsumi K, Gomi K. Identification of the regulatory region required for ubiquitination of the cyclin kinase inhibitor, p21[J]. Biochem Biophys Res Commun, 2002,293
    44. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21 Cip1 in S phase[J]. J Biol Chem, 2003,278 (28):25752-25757.
    45. Ben-Saadon R, Fajerman I, Ziv T, Hellman U, Schwartz AL, Ciechanover A. The tumor suppressor protein pl6(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue[J]. J Biol Chem, 2004,279 (40):41414-41421.
    46. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation[J]. Cell, 2003, 115 (1):71-82
    47. von, Mikecz A. (2006). The nuclear ubiquitin-proteasome system. J.Cell Sci. 119, 1977-1984.
    48. Michels, A. A., Kanon, B., Konings, A. W., Ohtsuka, K., Bensaude, O., and Kampinga, H. H. (1997). Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J.Biol.Chem. 272, 33283-33289.
    49. Velazquez, J. M. and Lindquist, S. (1984). hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 36, 655-662.
    50. Abe, T., Konishi, T., Hirano, T., Kasai, H., Shimizu, K., Kashimura, M., and Higashi, K. (1995). Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus. Biochem.Biophys.Res Commun. 206, 548-555.
    51. Taira, T., Sawai, M., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M., and Ariga, H. (1999). Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. J.Biol.Chem. 214, 24270-24279
    52. Milarski, K. L. and Morimoto, R. I. (1986). Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl.Acad.Sci. U.S.A. 83, 9517-9521.
    53. Kao, H. T., Capasso, O., Heintz, N., and Nevins, J. R. (1985). Cell cycle control of the human HSP70 gene: implications for the role of a cellular ElA-like function. Mol.Cell Biol. 5, 628-633.
    1. Meier, P., Finch, A. and Evan, G. Apoptosis in development. (2000) Nature 407,796-801.
    2. Vaux, D.L. and Korsmeyer, S.J. Cell death in development. (1999) Cell 96, 245-254.
    3. Green, D.R., and Evan, G.I. A matter of life and death. (2002) Cancer Cell 1, 19-30.
    4. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. (1995) Science 267, 1456-1462.
    5. Zornig, M., Hueber, A., Baum, W., and Evan, G. Apoptosis regulators and their role in tumorigenesis. (2001) Biochim. Biophys. Acta 1551,F1-F37.
    6. Mattson, M.P. Apoptosis in neurodegenerative disorders. (2000) Nat. Rev. Mol. Cell Biol. 1,120-9.
    7. Rathmell, J.C., and Thompson, C.B. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. (2002) Cell 109 Suppl, S97-S107.
    8. Adams, J.M and Cory S. Life-or-death decisions by the Bcl-2 protein family. (2001) Trends Biochem. Sci. 26,61-66.
    9. Strasser, A., O'Connor, L. and Dixit, V.M. Apoptosis signaling. (2000) Annu. Rev. Biochem. 69,217-245.
    10. Antonsson, B., Montessuit, S., Sanchez, B., and Martinou, J.C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. (2001) J. Biol. Chem. 276, 11615-11623.
    11. Huang, D.C. and Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. (2000) Cell 103, 39-42.
    12. S. W. Muchmore et al., ibid. 381, 335 (1996); Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., Eberstadt, M., Yoon, H. S., Shuker, S. B., Chang, B. S., Minn, A. J. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis [J]. Science, 1997, 275: 983.
    13. Minn, AJ, Velez, P., Schendel, SL, Liang, H., Muchmore, SW, Fesik, SW, Fill, M. and Thompson, C. B. Bcl-x(L) forms an ion channel in synthetic lipid membranes [J]. Nature, 1997, 385: 353; B. Antonsson et al. Inhibition of Bax channel-forming activity by Bcl-2 [J]. Science, 1997,277: 370;
    14. Schendel, SL, Xie, Z., Montal, MO, Matsuyama, S., Montal,. M. & Reed, JC. Channel formation by antiapoptotic protein Bcl-2 [J]. Proc. Natl. Acad. Sci. U.S.A., 1997,94:5113;
    15. Lam, M., Bhat, MB, Nunez, G, Ma, J., Distelhorst, CW. Regulation of Bcl-xL Channel Activity by Calcium [J]. J. Biol. Chem., 1998,273: 17307
    16. Chittenden, T., Flemington, C., Houghton, A.B., Ebb, R.G., Gallo, G.J., Elangovan, B., Chinnadurai, G. and Lutz, R.J. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. (1995) EMBO J. 14, 5589-5596.
    17. Kelekar, A. and Thompson, C.B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. (1998) Trends. Cell Biol. 8, 324-330.
    18. Michael J. Thomenius and Clark W. Distelhorst Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance . J. Cell Sci., Nov 2003; 116:4493-4499.
    19. Marc Germain and Gordon C. Shore. Cellular Distribution of Bcl-2 Family Proteins. Sci. STKE, Mar 2003; 2003: pe10.
    20. Simon Willis, Catherine L. Day, Mark G. Hinds, and David C.S. Huang The Bcl-2-regulated apoptotic pathway. J. Cell Sci., Oct 2003; 116: 4053 - 4056.
    21. Talieri, M., Diamandis, E. P., Katsaros, N., Gourgiotis, D., and Scorilas, A. (2003). Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors. Thromb.Haemost. 89, 1081-1088
    22. Scorilas, A., Kyriakopoulou, L., Yousef, G. M., Ashworth, L. K., Kwamie, A., and Diamandis, E. P. (2001). Molecular cloning, physical mapping, and expression analysis of a novel gene, BCL2L12, encoding a proline-rich protein with a highly conserved BH2 domain of the Bcl-2 family. Genomics. 72, 217-221.
    23. Mathioudaki, K., Scorilas, A., Papadokostopoulou, A., Xynopoulos, D., Arnogianaki, N., Agnanti, N., and Talieri, M. (2004). Expression analysis of BCL2L12, a new member of apoptosis-related genes, in colon cancer. Biol.Chem. 385,779-783
    24. Hong, Y., Yang, J., Wu, W., Wang, W., Kong, X., Wang, Y., Yun, X., Zong, H., Wei, Y., Zhang, S., and Gu, J. (2008). Knockdown of BCL2L12 leads to cisplatin resistance in MDA-MB-231 breast cancer cells. BBA - Molecular Basis of Disease. 1782(11), 649-57.
    25. Stegh, A. H., Kesari, S., Mahoney, J. E., Jenq, H. T., Forloney, K. L., Protopopov, A., Louis, D. N., Chin, L., and DePinho, R. A. (2008). Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc.Natl.Acad.Sci.U.SA. 105,10703-10708.
    26. Stegh, A. H., Kim, H., Bachoo, R. M., Forloney, K. L., Zhang, J., Schulze, H., Park, K., Hannon, G. J., Yuan, J., Louis, D. N., DePinho, R. A., and Chin, L. (2007). Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev. 21,98-111
    [01] Strous GJ, Govers R. The ubiquitin-proteasome system and endocytosis. J Cell Sci 1999; 112: 1417-1423
    [02] Hicke L. Gettin' down with ubiquitin: turning off cell-surface, receptors, transporters and channels. Trends Cell Biol 1999; 9:107-112
    [03] Laney JD, Hochstrasser M.Substrate targeting in the ubiquitin system. Cell 1999; 97:427-430
    [04] Koepp DM, Harper JW, Elledge SJ. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 1999; 97: 431-434
    [05] Kotani S, Tanaka H, Yasuda H,Todokoro K. Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol 1999; 146: 791 -800
    [06] Desalle, Pagano M.Regulation of the G1 to S transition by the ubiquitin pathway. Febs Letters 2001; 490:179-189
    [07] Bochtle M, Ditzel L, Grou M,Hartmann C, Huber R.The proteasome. Annu Rev Biophys Biomol Struct 1999; 28: 295-317
    [08] Lord JM, Davey J,Frigerio L,Roberts LM.Endoplasmic reticulum-associated protein degradation. Semin Cell Dev Biol 2000; 11 : 159-164
    [09] Plemper RK, Wolf DH.Retrograde protein translocation:ERADication of secretory proteins in health and disease. Trends Biochem Sci 1999; 24:266-270
    [10] Friedlander R, Jarosch E, Urban J,Volkwein C, Sommer T.A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2000; 2: 379-384
    [11] Travers KJ, Patil CK, Wordicka L,Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ERassociated degradation. Cell 2000; 101: 249-258
    [12] Bence NF,Sampat RM,Kopito RR.Impairment of the ubiquitinproteasome system by protein aggregation. Science 2001;292:1552-1555
    [13] Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY. Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 2001; 3:24-29
    [14] Jin T, Gu Y, Zanusso G, Sy MS, Kumar A, Cohen M, Gambetti P,Singh N. The chaperone protein bip binds to a mutant prion protein and mediates its degradation by the proteasome. J Biol Chem 2000; 275: 38699-38704
    [15] Rabinovich E, Kerem A,Frohlich KU,Diamant N, Bar-Nun S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required forendoplasmic reticulum-associated protein degradation. Mol Cell Biol 2002; 22: 626-634
    [16] Ye Y, Meyer HH,Rapoport JA.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst Nature 2001; 414: 625-656
    [17] Terrell J, Shih SC,Dunn R,Hicke L.A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1998; 1 : 193-202
    [18] Levkowitz G, Waterman H, Ettenberg SA,Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y.Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cb1/Sli-1. Mol Cell 1999; 4: 1029-1040
    [19] Hicke L.Ubiquitin and proteasomes: protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001; 2: 195-201
    [20] Shih SC, Sloper-Mould KE, Hicke L.Monoubiquitin carries a novel internalization signal that is appended to activated receptors. Embo J 2000; 19: 187-198
    [21] Freedman DA, Levine AL.Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 1998; 18:7288-7293
    [22] Geyer RK, Yu ZK, Maki CG.The MDM2 RING finger domain is required to promote p53 nuclear export. Nat Cell Biol 2000; 2: 569-573
    [23] Lai Z, Ferry KV, Diamond M, Wee KE, Kim YB, Ma J, Yang T,Benfield PA, Copeland RA, Auger KR.Human MDM2 mediates multiple mono-ubiquitin of p53 by a mechanism requiring enzyme isomerization. J Biol Chem 2001; 276: 31357-31367
    [24] Xirodimas DP, Stephen CW, Lane DP.Cocompartmentalization of p53 and MDM2 is a major determinant for MDM2-mediated degradation of p53. Exp Cell Res 2001; 270: 66-77
    [25] Tomoda K, Kubota Y, Kato J.Degradation of the cyclin-dependent-kinase inhibitor p27Kipl is instigated by Jab1. Nature 1999;398: 160-165
    [26] Sherr C, Roberts J. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Devt 1999; 13: 1501-1514
    [27] Slingerland J, Pagano M.Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10-17
    [28] Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W.Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 2001; 98: 5043-5048
    [29] Joanna Bloom, Virginia Amador,Francesca Bartolini, George DeMartino,and Michele Pagano。 Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation。 Ce ll,2003; 115: 71-82,
    [30] Philippe Coulombe, GenevieVe Rodier, Eric Bonneil, Pierre Thibault,and Sylvain Melodic N-Terminal Ubiquitination of Extracellular Signal-Regulated Kinase 3 and p21 Directs Their Degradation by the Proteasome。 MOLECULAR AND CELLULAR BIOLOGY, 24.14.6140-6150.2004
    [31] Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases[J]. Genes Dev, 2004,18 (22):2699-2711.
    [32] Miller ME, Cross FR. Cyclin specificity: how many wheels do you need on a unicycle?[J]. J Cell Sci, 2001,114 (10):1811-1820.
    [33] DeSalle LM, Pagano M. Regulation of the Gl to S transition by the ubiquitin pathway[J]. FEBS Lett, 2001,490 (3):179-189.
    [34] Yew PR. Ubiquitin-mediated proteolysis of vertebrate G1- and S-phase regulators[J]. J Cell Physiol, 2001,187 (1):1-10.
    [35] Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization[J]. Genes Dev, 1998,12 (22):3499-3511.
    [36] Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin Dl phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway[J]. Genes Dev, 1997,11 (8):957-972.
    [37] Germain D, Russell A, Thompson A, Hendley J. Ubiquitination of free cyclin Dl is independent of phosphorylation on threonine 286[J]. J Biol Chem, 2000,275 (16):12074-12079.
    [38] Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA. Phosphorylation-dependent ubiquitination of cyclin Dl by the SCF(FBX4-alphaB crystallin) complex[J]. Mol Cell, 2006,24 (3):355-366.
    [39] Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O. P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation[J]. Oncogene, 2004,23 (45):7537-7544.
    [40] Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability[J]. Nature, 1999,401 (6750):297-300.
    [41] Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase[J]. Science, 2001,294 (5540): 173-177.
    [42] McEvoy JD, Kossatz U, Malek N, Singer JD. Constitutive turnover of cyclin E by Cul3 maintains quiescence[J]. Mol Cell Biol, 2007, 27 (10):3651-3666.
    [43] Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, Elledge SJ, Clurman BE, Harper JW. Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase[J]. J Biol Chem, 2004, 279 (48):50110-50119.
    [44] Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27[J]. Science, 1995,269 (5224):682-685.
    [45] Egozi D, Shapira M, Paor G, Ben-Izhak O, Skorecki K, Hershko DD. Regulation of the cell cycle inhibitor p27 and its ubiquitin ligase Skp2 in differentiation of human embryonic stem cells[J]. Faseb J, 2007,21 (11):2807-2817.
    [46] Sabile A, Meyer AM, Wirbelauer C, Hess D, Kogel U, Scheffner M, Krek W. Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein[J]. Mol Cell Biol, 2006,26 (16):5994-6004.
    [47] Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis[J]. Blood, 2006,107 (11):4291-4299.
    [48] Lee JG, Kay EP. Involvement of two distinct ubiquitin E3 ligase systems for p27 degradation in corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2008, 49(1):189-196.
    [49] Cayrol C, Ducommun B. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21[J]. Oncogene, 1998, 17(19):2437-2444.
    [50] Fukuchi K, Hagiwara T, Nakamura K, Ichimura S, Tatsumi K, Gomi K. Identification of the regulatory region required for ubiquitination of the cyclin kinase inhibitor, p21[J]. Biochem Biophys Res Commun, 2002,293 (1):120-M25.
    [51] Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cipl in S phase[J]. J Biol Chem, 2003,278 (28):25752-25757.
    [52] Ben-Saadon R, Fajerman I, Ziv T, Hellman U, Schwartz AL, Ciechanover A. The tumor suppressor protein pl6(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue[J]. J Biol Chem, 2004,279 (40):41414-41421.
    [53] Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation[J]. Cell, 2003,115 (1):71-82
    [54] A.L. Fink, Chaperone-mediated protein folding [J], Physiol Rev 79 (1999)425-449.
    [55] F.U. Hartl, M. Hayer-Hartl, Molecular chaperones in the cytosol: from nascent chain to folded protein [J], Science 295 (2002) 1852-1858.
    [56] S. Lindquist, E.A. Craig, The heat-shock proteins [J], Annu Rev Genet 22 (1988)631-677.
    [57] A. Asea, S.K. Kraeft, E.A. Kurt-Jones, M.A. Stevenson, L.B. Chen, R.W. Finberg,G.C. Koo, S.K. Calderwood, HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine [J], Nat Med 6 (2000) 435-442.
    [58] W. Chen, U. Syldath, K. Bellmann, V. Burkart, H. Kolb, Human 60-kDa heat-shock protein: a danger signal to the innate immune system [J], J Immunol 162(1999)3212-3219.
    [59] S.B. Flohe, J. Bruggemann, S. Lendemans, M. Nikulina, G. Meierhoff, S. Flohe, H.Kolb, Human heat shock protein 60 induces maturation of dendritic cells versus a Thl-promoting phenotype [J], J Immunol 170 (2003) 2340-2348.
    [60] A. Kol, A.H. Lichtman, R.W. Finberg, P. Libby, E.A. Kurt-Jones, Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells [J], J Immunol 164 (2000) 13-17.
    [61] N.N. Pan jwani, L. Popova, P.K. Srivastava, Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs [J], J Immunol 168 (2002) 2997-3003.
    [62] R.M. Vabulas, P. Ahmad-Nejad, C. da Costa, T. Miethke, C.J. Kirschning, H. Hacker, H. Wagner, Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells [J], J Biol Chem 276 (2001) 31332-31339.
    [63] R.M. Vabulas, P. Ahmad-Nejad, S. Ghose, C.J. Kirschning, R.D. Issels, H. Wagner, HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway [J], J Biol Chem 277 (2002) 15107-15112.
    [64] R.M. Vabulas, S. Braedel, N. Hilf, H. Singh-Jasuja, S. Herter, P. Ahmad-Nejad, C.J. Kirschning, C. Da Costa, H.G. Rammensee, H. Wagner, H. Schild, The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway [J], J Biol Chem 277 (2002) 20847-20853.
    [65] R.P. Wallin, A. Lundqvist, S.H. More, A. von Bonin, R. Kiessling, H.G. Ljunggren, Heat-shock proteins as activators of the innate immune system [J], Trends Immunol 23 (2002) 130-135.
    [66] Wolfe BL & Trejo J 2007 Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. Traffic 8 462-470.
    [67] Hanyaloglu AC & von Zastrow M 2008 Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annual Review of Pharmacology and Toxicology 48 537-568.
    [68] W.B. Pratt, D.O. Toft, Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J], Exp Biol Med (Maywood) 228(2003)111-133.
    [69] Majeski AE & Dice JF 2004 Mechanisms of chaperone-mediated autophagy. International Journal of Biochemistry and Cell Biology 36 2435-2444.
    [70] Tateishi Y, Kawabe Y, Chiba T, Murata S, Ichikawa K, Murayama A, Tanaka K, Baba T, Kato S & Yanagisawa J 2004 Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO Journal 23 4813-4823.
    [71]Alberti S, Bohse K, Arndt V, Schmitz A & Hohfeld J 2004 The cochaperone HspBPl inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Molecular Biology of the Cell 15 4003-4010.
    [72] Demand J, Alberti S, Patterson C & Hohfeld J 2001 Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Current Biology 11 1569-1577.
    [73] Westhoff B, Chappie JP, van der Spuy J, Hohfeld J & Cheetham ME 2005 HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Current Biology 15 1058-1064.
    [74] Esser C, Alberti S & Hohfeld J 2004 Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochimica et Biophysica Acta 1695 171-188.
    [75] Alberti S, Bohse K, Arndt V, Schmitz A & Hohfeld J 2004 The cochaperone HspBPl inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Molecular Biology of the Cell 15 4003-4010.
    [76] Arndt V, Daniel C, Nastainczyk W, Alberti S & Hohfeld J 2005 BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular Biology of the Cell 16 5891-5900.
    [77] Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S & Brodsky JL 2001b Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Molecular Biology of the Cell 12 1303-1314.
    [78] Nishikawa S, Brodsky JL & Nakatsukasa K 2005 Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). Journal of Biochemistry. 137551-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700