大规模信号网络的结构属性分析和自动重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究信号转导是了解生命活动过程的重要途径。随着实验方法的改进和实验数据的积累,对已有信号转导数据的分析和利用成为生物学家面临的一大挑战,本文旨在使用生物信息学方法解决网络结构分析、信号流走向确定等问题。
     首先,本文介绍了信号网络的基本组成、一般作用方式和特点,综述了生物信息学在信号网络研究方面取得的最新进展,包括相关的数据库资源、网络的结构属性分析、自动通路重建、网络的建模和仿真方法等。
     在信号网络中,衡量单个蛋白质的重要性有助于发现细胞过程中关键的蛋白质以及生物系统的薄弱环节,进一步辅助疾病诊断,具有重要的理论意义和实用价值。但是该领域中缺乏这方面的评价指标,因此本文提出了一种新的指标SigFlux,该指标与基因必要性和进化速率显著相关,表明它可以用于度量信号网络中单个蛋白质的重要性。同时,还发现高-SigFlux值、低-连接度的蛋白质在重要分子如受体和转录因子中显著富集,证明该指标能够在整个网络的范围内度量蛋白质的重要性。
     其次,在信号网络中,信号流走向是蛋白质相互作用的重要属性。然而,目前高通量技术得到的大部分蛋白质相互作用都被假定为是没有方向的。为了解决这个问题,本文基于结构域定义了一个新的参数PIDS,以预测蛋白质相互作用对之间的信号流走向,用于推断信号网络中蛋白质相互作用的信号流走向。以人、小鼠、大鼠、果蝇和酵母中已知方向的蛋白质相互作用作为黄金标准阳性集,蛋白质复合体作为标准阴性集。采用5倍交叉验证对该方法进行评估,准确率为89.79%,覆盖度为48.08%,错误率为16.91%。同时,本文还研究了GO(基因本体论)功能注释以及蛋白质序列与信号流之间的关系,使用自定义函数和支持向量机方法预测成对蛋白质相互作用之间的信号流走向,进一步提高了准确率和覆盖度。
     再次,本文采用贝叶斯方法整合结构域、蛋白质功能等多种数据源进行信号流走向的预测,利用综合的似然比打分值判断方向,比任意单个预测方法具有最高的可信度和最广的应用范围。在一个合适的似然比阈值16时,贝叶斯方法在人的数据集中的准确率和覆盖度分别为98.64%和67.83%,表明该方法具有相当高的应用价值。该方法已被开发成在线网页工具,提供公共服务,允许用户在自己的蛋白质相互作用数据集上推断信号通路。
     最后,本文将发展的新方法用于整合的人类蛋白质相互作用网络,推断出一个高可信的有向信号网络。该网络由5,111个蛋白质和10,051对相互作用组成,包含了大量潜在的信号通路。该网络与已知数据库的重合部分具有89.23%的准确率,并且在功能注释、亚细胞定位和网络拓扑方面,呈现出与信号网络高度一致的性质。比较原有通路预测方法,本文提出了多种新的方法用于蛋白质组规模的相互作用中信号流走向预测,提供蛋白质相互作用网络的整体方向性注释。不仅能够推断出蛋白质相互作用网络中大量的潜在信号通路,而且可以提供对于信号网络的全面理解。
     总之,本文采用生物信息学方法对信号网络进行了深入研究,从信号网络中单个蛋白质重要性度量到潜在信号通路推断,对于解释信号网络的作用机制提供了全新的视野,并且可以辅助实验设计和药物发现,具有重要的实用价值和广阔的应用前景。
Researches in signaling networks contribute to a deep understanding of organism living activities. With the development of experiment methods in the signal transduction field, more and more mechanisms of signaling pathways have been discovered. Analysis and utilization of such signal transduction data become a challenge for biologists. Here, we tend to explore the signaling pathways by the bioinformatics approach.
     Firstly, we introduced the basic components, universal mechanisms and characteristics of signaling pathways. We summarized the current researches and latest progress in the area of bioinformatics analyses of signaling networks, including database resources, the structural properties analysis, automated pathways regeneration, the modeling and simulation of signaling networks.
     Sencondly, measuring each protein’s importance in signaling networks helps to identify the crucial proteins in a cellular process, find the fragile portion of the biology system and further assist for disease therapy. Howerver, there are relatively few methods to evaluate the importance of proteins in signaling networks. Therefore, we developed a novel network feature, SigFlux, to evaluate the importance of proteins in signaling networks. Significant correlations were simultaneously observed between SigFlux and both the essentiality and evolutionary rate of genes. Further classification according to protein function demonstrates that high SigFlux, low connectivity proteins are enriched in receptors and transcriptional factors, indicating that SigFlux can describe the importance of proteins within the context of the entire network.
     Thirdly, signal flow direction is one of the most important features of the protein-protein interactions (PPIs) in signalling networks. However, almost all the outcomes of current high-throughout techniques for PPI mapping are usually non-directional. Based on the pairwise interaction domains, we defined a novel parameter Protein Interaction Directional Score (PIDS) and then used it to predict the direction of signal flow between proteins in proteome-wide signaling networks. We took the protein interactions with known directions in human, mouse, rat, fly and yeast as the golden standard positive set and the non-directional protein complexes as the golden standard negative set. Using 5-fold cross-validation, our approach obtained a satisfactory performance with the accuracy 89.79%, coverage 48.08% and error ratio 16.91%. Simulatiously, we presented two other approaches to predict the signal flow in pairwise protein interactions, which are the function based on GO function annotation and the support vector machine based on protein sequence. The accuracy and coverage are improved.
     Fourthly, considering the different characteristics of the above three methods, we proposed a bayesian network to integrate multiple data sources and gave likelihood ratio to evaluate the direction of signal flow between proteins. The integrated approach performed better than any prediction method based on individual source, with higher accuracy and coverage. Taking the proper threshold of likelihood ratio as 16, the bayesian method can achieve the accuracy 98.64% and coverage 67.83% in human protein interaction dataset. Simultaneously, to facilitate this strategy used by the community, we presented a web server to compute likelihood ratios of given protein interactions that allows users to infer signaling pathways from their interacting proteins.
     Finally, we applied the methods to the integrated human protein interactions and established a Directional Protein Interaction Network (DPIN). The DPIN is composed of 5,111 proteins and 10,051 interactions, and involves a large amount of novel signaling pathways. The DPIN was strongly supported by the known signaling pathways literature (with the 89.23% accuracy), and further analyses on the biological annotation, subcellular localization and network topology property. All these methods we proposed could be applied to predict signal flow direction in proteome-wide protein interactions and provide a global directional annotation of the protein interaction network. These methods are powerful not only in defining unknown direction of protein interactions, but also in providing comprehensive insight into the signaling networks.
     In summary, we elaborated on the signaling networks using bioinformatics methods in this paper, from the importance evaluation of each protein to automated regeneration of signalling pathways, providing a new understanding to the mechanism and principle of signaling networks. These methods can be applied to assist experiment design and drug discovery, and have a good prospect for development and application.
引文
1. Gomperts BD, Kramer IM, Tatham PER, Signal transduction. Academic Press, 2002. ISBN 0-12-289631-9.
    2. Hahn WC, Weinberg RA, Modelling the molecular circuitry of cancer. Nat Rev Cancer, 2002. 2: 331-341.
    3. Weng G, Bhalla US, Iyengar R, Complexity in biological signaling systems. Science, 1999. 284: 92-96.
    4. Bhalla US, Iyengar R, Emergent properties of networks of biological signaling pathways. Science, 1999. 283: 381.
    5. Gerhard K, Wiley-VCH Verlag GmbH & Co. KGaA. 3nd ed. Biochemistry of signal transduction and regulation. 2003. ISBN: 9-783-52730591-9.
    6. Smith JA, Martin L, Do Cells Cycle? Proc Natl Acad Sci USA, 1973. 70(4): 1263-1267.
    7.姜勇,罗深秋,细胞信号转导的分子基础与功能调控.北京市:科学出版社,2005: 23-28.
    8. Kerr JF, Wyllie AH, Currie AR, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): 239-257.
    9. Downward J, The ins and outs of signaling. Nature, 2001. 411: 759-762.
    10.郑仲承,关于信号转导研究的若干问题.生命的化学,1999.
    11. Gilman AG, G proteins: transducers of receptor-generated signals. Annu Rev Biochem, 1987. 56: 615-649.
    12. Gobeil F, Fortier A, Bossolasco M, et al, G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Can J Physiol Pharmacol, 2006. 84(3-4): 287-297.
    13. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF, Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Progress in Hormone Research, 2001. 56: 127-155.
    14. Li N, Batzer A, Daly R, et al, Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature, 1993. 363 (6424): 85-88.
    15. Ferris CD, Snyder SH, IP3 receptors. Ligand-activated calcium channels in multiple forms. Adv Second Messenger Phosphoprotein Res, 1992. 26: 95-107.
    16. Levchenko A, Dynamical and integrative cell signaling: challenges for the new biology. Biotech, 2003. 84: 773.
    17. Papin JA, Palsson BO, The JAK-STAT Signaling Network in the Human B-Cell: An Extreme Signaling Pathway Analysis. Biophysical Journal, 2004. 87: 37-46.
    18. Rives AW, Galitski T, Modular organization of cellular networks. Proc Natl Acad Sci USA, 2003. 100(3): 1128-1133.
    19. Schwartz MA, Ginsberg MH, Networks and crosstalk: integrin signaling spreads. Nat Cell Biol, 2002. 4: E65.
    20. Elaine EA, Qi S, Chen W, Signal transduction: signaling specificity in yeast. Science, 2005. 307(5710): 687-688.
    21. Komarova NL, Zou X, Nie Q, Bardwell L, A theoretical framework for specificity in cell signaling. Mol Syst Biol, 2005. 1: 2005.0023.
    22. Papin J, Subramaniam S, Bioinformatics and cellular signaling. Curr Opin Biotechnol, 2004. 15(1): 78-81.
    23. Gilman AG, Simon MI, Bourne HR, et al. Overview of the Alliance for Cellular Signaling. USA Nature, 2002. 420(6916): 703-706.
    24. Ma'ayan A, Jenkins SL, Neves S, et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science, 2005. 309: 1078-1083.
    25. http://www.pathguide.org/
    26. Kanehisa M, Goto S, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 2000. 28: 27-30.
    27. Sivakumaran S, Hariharaputran S, Mishra J, Bhalla US, The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics, 2003. 19(3): 408-415.
    28. Soyer OS, SalathéM, Bonhoeffer S, Signal transduction networks: topology, response and biochemical processes. J Theor Biol, 2006. 238(2): 416-425.
    29. Barabasi AL, Albert R, Emergence of scaling in random networks. Science, 1999. 286(5439): 509-512.
    30. Albert R, Scale-free networks in cell biology, Journal of Cell Science, 2005. 118: 4947-4957.
    31. Jeong H, Tombor B, Albert R, Oltval ZN, Barabási AL, The large-scale organization of metabolic networks. Nature, 2000. 407: 651-654.
    32. Wuchty S, Scale-free behavior in protein domain networks. Mol Biol Evol, 2001. 18: 1694-1702.
    33. Milgram S, The small world problem. Psychol. Today, 1967. 2: 60.
    34. Kwoh CK, Ng PY, Network analysis approach for biology. Cell Mol Life Sci, 2007. 64: 1739-1751.
    35. Alon U, Network motifs: theory and experimental approaches. Nature Reviews Genetics, 2007. 8: 450-461.
    36. Milo R, Shen-Orr S, Itzkovitz S, et al, Network motifs: Simple building blocks of complex networks. Science, 2002. 298(5594): 824-827.
    37. Kashtan N, Itzkovitz S, Milo R, et al, Efficient sampling algorithm for estimatingsubgraph concentrations and detecting network motifs. Bioinformatics, 2004. 20(11): 1746-1758.
    38. Schreiber F, Schw?bbermeyer H, MAVisto: a tool for the exploration of network motifs. Bioinformatics, 2005. 21: 3572-3574.
    39. Wernicke S, Rasche F, FANMOD: a tool for fast network motif detection. Bioinformatics, 2006. 22: 1152-1153.
    40. Forsburg SL, The art and design of genetic screens: yeast. Nat Rev Genet, 2001. 2: 659-668.
    41. Gomez SM, Lo SH, Rzhetsky A, Probabilistic prediction of unknown metabolic and signal-transduction networks. Genetics, 2001. 159(3): 1291-1298.
    42. Steffen M, Petti A, Aach J, et al, Automated modelling of signal transduction networks. BMC Bioinformatics, 2002. 3(1): 34.
    43. Liu Y, Zhao H, A computational approach for ordering signal transduction pathway components from genomics and proteomics data. BMC bioinformatics, 2004. 5: 158.
    44. Kelley BP, Sharan R, Karp RM, et al, Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA, 2003. 100(20): 11394-11399.
    45. Shlomi T, Segal D, Ruppin E, et al, QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics, 2006. 7(1): 199.
    46. Hautaniemi S, Kharait S, Iwabu A, et al, Modeling of Signal-Response Cascades using Decision Tree Analysis. Bioinformatics, 2005. 21: 2027-2035.
    47. Suresh BC, Joo SE, Yoo YS, Modeling and simulation in signal transduction pathways: a systems biology approach. Biochimie, 2006. 88(3-4): 277-283.
    48. Campagne F, Neves S, Chang CW, et al, Quantitative Information Management for the Biochemical Computation of Cellular Networks. Sci STKE, 2004. 248: 11-31.
    49. Saez-Rodriguez J, Simeoni L, Lindquist JA, et al, A Logical Model Provides Insights into T Cell Receptor Signaling. PloS Comp Biol, 2007. 3(8): e163.
    50. Klamt S, Saez-Rodriguez J, Lindquist JA, et al, A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics, 2006. 7(1): 56.
    51. Heath J, Kwiatkowska M, Norman G, et al, Probabilistic model checking of complex biological pathways. In: Priami C, editor. Proceedings of the 4th International Conference on Computational Methods in Systems Biology. CMSB, 2006. CSMB’06: 32-48.
    52. Li C, Ge QW, Nakata M, et al, Modeling and Simulation of Signal Transductions in an Apoptosis Pathway by Using Timed Petri Nets. Journal of Biosciences, 2007. 32(1): 113-127.
    53. Sackmann A, Heiner M, Koch I, Application of Petri net based analysis techniquesto signal transduction pathways. BMC Bioinformatics, 2006. 7: 482.
    54. Meng TC, Somani S, Dhar P, Modeling and simulation of biological systems with stochasticity. In Silico Biology, 2004. 4: 293-309.
    55. Schoeberl B, Eichler-Jonsson C, Gilles ED, et al, Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol, 2002. 20(4): 370-375.
    56. Wiley HS, Shvartsman SY, Lauffenburger DA, Computational modeling of the EGF-receptor system: A paradigm for systems biology. Trends in Cell Biology, 2003. 13(1): 43-50.
    57. Chatterjee A, Mayawala K, Edwards JS, et al, Time accelerated monte carlo simulations of biological networks using the binomial {tau}-leap method. Bioinformatics, 2005. 21(9): 2136-2137.
    58. Breitling R, Hoeller D, Current challenges in quantitative modeling of epidermal growth factor signaling. FEBS Lett, 2005. 579(28): 6289-6294.
    59. Barbano PE, Spivak M, Flajolet M, et al, A mathematical tool for exploring the dynamics of biological networks. Proc Natl Acad Sci USA, 2007. 104: 19169-19174.
    60. Gillespie DT, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys, 1976. 22: 403.
    61. Shimizu TS, Bray D, Computational cell biology [M] // Kitano H. The stochastic approach in foundations of systems biology. Cambridge: MIT Press, 2003. 213-232.
    62. Hucka M, Finney A, Sauro HM, et al, SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 2003. 19: 524-531.
    63. Takahashi K, Kaizu K, Hu B, et al, A Multi-algorithm, Multi-timescale Method for Cell Simulation. Bioinformatics, 2004. 20: 538-546.
    64. Loew LM, Schaff JC, The Virtual Cell: a software environment for computational cell biology. TRENDS in Biotechnology, 2001. 19: 401-406.
    65. Stiles JR, Bartol TM, Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: Computational Neuroscience: Realistic Modeling for Experimentalists, ed. De Schutter, E. CRC Press, Boca Raton, 2001. 87-127.
    66. Papin JA, Hunter T, Palsson BO, Subramaniam S, Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol, 2005. 6(2): 99-111.
    67. Papin JA, Palsson BO, The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophysical Journal, 2004. 87(1): 37-46.
    68. Papin JA, Palsson BO, Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol, 2004.227(2): 283-297.
    69. Jeong H, Mason SP, Barabasi AL, Oltvai ZN, Lethality and centrality in protein networks. Nature, 2001. 411(6833): 41-42.
    70. Schuster S, Fell DA, Dandekar T, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol, 2000. 18(3): 326-232.
    71. Schuster S, Hilgetag C, On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst, 1994. 2: 165-182.
    72. Oancea I, Topological analysis of metabolic and regulatory networks. Syst Biol, 2004. 1: 1.
    73. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G, Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol, 2002. 20(4): 370-375.
    74. Hill DP, Begley DA, Finger JH, Ringwald M, The mouse Gene Expression Database (GXD): updates and enhancements. Nucleic Acids Res, 2004. 32(Database issue): D568-571.
    75. Birney E, Andrews D, Caccamo M, et al, Ensembl 2006. Nucleic Acids Res, 2006. 34(Database Issue): D556-561.
    76. Rocha EP, Smith JM, Hurst LD, et al, Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol, 2006. 239(2): 226-235.
    77. Gazit H, Miller GL, An improved parallel algorithm that computes the BFS numbering of a directed graph. Information Processing Letters, 1988. 28(2): 61-65.
    78. Watts DJ, Strogatz SH, Collective dynamics of‘small-world’networks. Nature, 1998. 393(6684): 440-442.
    79. Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M, Genomic analysis of essentiality within protein networks. Trends Genet, 2004. 20(6): 227-231.
    80. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW, Evolutionary rate in the protein interaction network. Science, 2002. 296(5568): 750-752.
    81. Wuchty S, Evolution and topology in the yeast protein interaction network. Genome Res, 2004. 14(7): 1310-1314.
    82. Mewes HW, Frishman D, Guldener U, et al, MIPS: a Database for Genomes and Protein Sequences. Nucleic Acids Res, 2002. 30: 31-34.
    83. Uetz P, Giot L, Cagney G, et al, A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000. 403: 623-627.
    84. Ito T, Chiba T, Ozawa R, et al, A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA, 2001. 98: 4569.
    85. Li S, Armstrong CM, Bertin N, et al, A map of the interactome network of the metazoan C. elegans. Science, 2003. 303(5657): 540-543.
    86. Giot L, Bader JS, Brouwer C, Chaudhuri A, et al, A protein interaction map ofDrosophila melanogaster. Science, 2003. 302(5651): 1727-1736.
    87. Nguyen TP, Ho TB, Discovering Signal Transduction Networks Using Signaling Domain-Domain Interactions. Genome Informatics, 2006. 17(2): 35-45.
    88. Wojcik J, Schachter V, Protein-protein interaction map inference using interaction domain profile pairs. Bioinformatics, 2001. 17(Suppl 1): S296-305.
    89. Guimaraes KS, Jothi R, Zotenko E, Przytycka TM, Predicting Domain-Domain Interactions Using a Parsimony Approach. Genome Biol, 2006. 7: R104.
    90. Sprinzak E, Margalit H, Correlated Sequence-signatures as Markers of Protein-Protein Interaction. J Mol Biol, 2001. 311: 681-692.
    91. Deng M, Sun F, Chen T, Inferring domain-domain interactions from protein-protein interactions. Genome Res, 2002. 12: 1540-1548.
    92. Liu Y, Liu N, Zhao H, Inferring protein-protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics, 2005. 21(15): 3279-3285.
    93. Riley R, Lee C, Sabatti C, Eisenberg D, Inferring protein domain interactions from databases of interacting proteins. Genome Bio, 2005. 6(10): R89.
    94. Lee H, Deng M, Sun F, Chen T, An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics, 2006. 7: 269.
    95. Raghavachari B, Tasneem A, Przytycka T, Jothi R, DOMINE: A database of protein domain interactions. Nucleic Acids Res, 2008. 36(Database Issue): D656-661.
    96. Bateman A, Coin L, Durbin R, et al, The Pfam Protein Families Database. Nucleic Acids Res, 2002. 30: 276-280.
    97. Jothi R, Cherukuri PF, Tasneem A, Przytycka TM, Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol, 2006. 362(4): 861-875.
    98. Nye TM, Berzuini C, Gilks WR, Babu MM, Teichmann SA, Statistical analysis of domains in interacting protein pairs. Bioinformatics, 2005. 21(7): 993-1001.
    99. Ng SK, Zhang Z, Tan SH, Lin K, InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucleic Acids Res, 2003. 31(1): 251-254.
    100. Riley R, Lee C, Sabatti C, Eisenberg D, Inferring protein domain interactions from databases of interacting proteins. Genome Biology, 2005. 6: R89.
    101. Chen XW, Liu M, Prediction of protein-protein interactions using random decision forest framework. Bioinformatics, 2005. 21(24): 4394-4400.
    102. Pagel P, Wong P, Frishman D, A domain interaction map dased on phylogenetic profiling. J Mol Biol, 2004. 344(5): 1331-1346.
    103. Rual JF, Venkatesan K, Hao T, et al, Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005. 437: 1173-1178.
    104. Wu J, Mao X, Cai T, Luo J, Wei L, KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res, 2006. 34(Web Server issue): W720-724.
    105. Ashburner M, Ball CA, Blake JA, et al, Gene Ontology: tool for the unification of biology. Nature Genet, 2000. 25: 25-29.
    106. Ying W, Jiang Y, Guo L, et al, A dataset of human fetal liver proteome identified by subcellular fractionation and multiple protein separation and indentification technology. Mol Cell Proteomics, 2006. 5: 1703-1707.
    107. Lehner B, Fraser AG, A first-draft human protein-interaction map. Genome Biology, 2004. 5: 63.
    108. Stelzl U, Worm U, Lalowski M, et al, A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005. 122(6): 957-968.
    109. Zeeberg BR, Feng W, Wang G, et al, GoMiner: A Resource for Biological Interpretation of Genomic and Proteomic Data. Genome Biology, 2003. 4(4): R28.
    110. Smid M, Dorssers LC, GO-Mapper: functional analysis of gene expression data using the expression level as a score to evaluate Gene Ontology terms. Bioinformatics, 2004. 20: 2618-2625.
    111. Beissbarth T, Speed TP, GOstat: Find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 2004. 20(9): 1464-1465.
    112. Li D, Zhu YP, He FC, et al, An Integrated Strategy for Functional Analysis in Large-scale Proteomic Research by Gene Ontology. Progress in Biochemistry and Biophysics, 2005. 32(11): 1026-1029.
    113. Najafabadi HS, Salavati R, Sequence-based prediction of protein-protein interactions by means of codon usage. Genome Biology, 2008. 9(5): R87.
    114. Bock JR, Gough DA, Predicting protein-protein interactions from primary structure. Bioinformatics, 2001. 17: 455-460.
    115. Shen J, Zhang J, Luo X, et al, Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci USA, 2007. 104: 4337-4341.
    116. Dreizler R, Gross E, Density Functional Theory. Plenum Press, New York, 1995.
    117. Harris D, Chris JC, Linda K, Alex S, Vladimir V, Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, NIPS 1996. 155-161, MIT Press.
    118. Vapnik V, Pattern recognition using generalized portrait method. Automation and Remote Control, 1963. 24.
    119. Vapnik VN, The nature of statistical learning theory. New York: Springer-Verlag, 1995.
    120. Cristianini M, Shawe-Taylor J, Campbell C, Dynamically Adapting Kernels in Support Vector Machines. NIPS-98 or NeuroCOLT2 Technical Report Series. ISBN: NC2-TR-1998-017, Dept. of Engineering Mathematics, Univ. of Bristol,U.K., 1998.
    121. Fan RE, Chen PH, Lin CJ, Working set selection using second order information for training SVM. Journal of Machine Learning Research, 2005. 6: 1889-1918.
    122. Ian HW, Eibe F, Data Mining: Practical machine learning tools and techniques.
    2nd Edition, Morgan Kaufmann, San Francisco, 2005.
    123. Berikov V, Litvinenko A, Methods for statistical data analysis with decision trees. Novosibirsk, Sobolev Institute of Mathematics, 2003.
    124. Eddy SR, What is Bayesian statistics? Nat Biotechnol, 2004. 22: 1177-1178.
    125. Jansen R, Yu H, Greenbaum D, et al, A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 2003. 302(5644): 449-453.
    126. Rhodes DR, Tomlins SA, Varambally S, et al, Probabilistic model of the human protein-protein interaction network. Nature Biotech, 2005. 23: 951-959.
    127. Li D, Liu W, Liu Z, et al, PRINCESS: a protein interaction confidence evaluation system with multiple data sources. Mol Cell Proteomics, 2008. 7: 1043-1052.
    128. Zhou XH, Obuchowski NA, McClish DK, Statistical methods in diagnostic medicine. New York, John Wiley&Sons. 2002: 437.
    129. Anderson NL, Anderson NG, Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis, 1998. 19 (11): 1853-1861.
    130. Fields S, Song O, A novel genetic system to detect protein-protein interactions. Nature, 1989. 340: 245-246.
    131. Gavin AC, Bosche M, Krause R, et al, Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002. 415: 141-147.
    132. Peri S, Navarro JD, Kristiansen TZ, et al, Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res, 2004. 32(Database issue): D497-501.
    133. Xenarios I, Rice DW, Salwinski L, et al, DIP: The Database of Interacting Proteins. Nucleic Acids Res, 2000. 28: 289-291.
    134. Zanzoni A, Montecchi-Palazzi L, Quondam M, et al, MINT: a Molecular INTeraction database. FEBS Letters, 2002. 513: 135-140.
    135. Bader GD, Donaldson I, Wolting C, et al, BIND-The Biomolecular Interaction Network Database. Nucleic Acids Res, 2001. 29(1): 242-245.
    136. Batagelj V, Mrvar A, Pajek - Analysis and Visualization of Large Networks. In Juenger, M., Mutzel, P. (Eds.): Graph Drawing Software. Springer (series Mathematics and Visualization), Berlin, 2003. 3-540-00881-0: 77-103.
    137. Zhu H, Bilgin M, Bangham R, et al, Global analysis of protein activities using proteome chips. Science, 2001. 293(5537): 2101-2105.
    138. Lu Z, Szafron D, Greiner R, et al, Predicting Subcellular Localization of Proteins using Machine-Learned Classifiers. Bioinformatics, 2004. 20(4): 547-556.
    139. Itzkovitz S, Levitt R, Kashtan N, et al, Coarse-graining and self-dissimilarity of complex networks. Phys Rev E, 2005. 71: 016127.
    140. Hertz J, Krogh A, Palmer RG, Introduction to the Theory of Neural Computation. Addison-Wesley, Santa Fe Institute, Studies in the Sciences of Complexity: Lecture Notes, 1991.
    141. Mangan S, Alon U, Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA, 2003. 100(21): 11980-11985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700