基因检测和点突变识别的DNA探针及适配体生物传感新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的完成和功能蛋白质组学的研究进展,建立简单、灵敏、快速、特异性强、高通量的蛋白质和基因检测方法,已成为分析科学家们研究的重点之一。核酸碱基的突变与人类许多疾病有着直接的关系,因此实现单核苷酸突变准确灵敏的检测对疾病的早期诊断也有着重要的意义。核酸适配体是近年来发展起来的一类经体外人工进化程序筛选出的寡聚核苷酸。由于其不但和抗体一样能与配体高效、特异性地结合,而且具有许多抗体无法比拟的优点,因此将核酸适配体应用于生物传感器实现对包括蛋白质、小分子等目标物的检测有着巨大的发展潜力。
     鉴于电化学及压电检测技术所需仪器简单、检测成本低、易于实现微型化,且灵敏度较高等优点,本研究论文针对当前传感器设计中的探针固定化和检测方法两个关键技术,在电化学及压电DNA传感器用于基因检测和点突变识别以及电化学适配体传感器两方面开展了一些新方法研究工作。具体内容如下:
     (1)在第2章中,研制出一种新型的基于纳米多孔CeO2/壳聚糖复合膜的固定基质。用它来固定单链DNA探针,构建了检测与结肠癌高度相关的基因序列的电化学DNA生物传感器。该固定基质制备方法简单,成本低,结合了CeO2和壳聚糖的优点,具有良好的生物兼容性,无毒性和优越的电子传导性。将其用于固定结肠癌基因的互补探针序列,能够显著增强ssDNA探针在电极表面的负载量。制得的传感器检测目标的线性范围在1.6×10-11-1.2×10-7 M,检测下限为1.0×10-11 M,具有识别完全互补目标序列和四碱基错配序列的能力。
     (2)在第3章中,基于连接酶的高保真性和生物催化沉积反应,提出了用于高特异性识别单碱基突变的压电检测方法。实验中,目标DNA链先与连接在石英晶振上的DNA捕获探针杂交,再与生物素标记的等位特异性DNA检测探针杂交。只有在目标DNA链和检测探针完全匹配时,连接反应才能发生,即将捕获探针和检测探针相连接。否则,即使只有一个等位错配的基因,连接反应也不会发生。经过高温热处理,形成的双链解开,只有与目标链完全匹配的检测探针保留在电极表面。生物素化的检测探针继而与链酶亲和素化的辣根过氧化物(SA-HRP)绑定,辣根过氧化物催化过氧化氢氧化底物中的3, 3–二氨基联苯胺(DAB)在电极表面生成不溶性沉淀物,使压电频率响应显著增大。用该方法对β-地中海贫血基因-28位密码子的突变情况进行了检测,使突变型和野生型得到了很好的区分,对目标的检测线性范围为0.7-100 nM,检测下限达0.1 nM,是一个低成本高效率的检测方法。
     (3)在第4章中,基于等位基因特异性延伸法,结合酶催化银沉积的放大体系,提出了用于单碱基突变的电化学检测方法。首先,在金电极表面固定的等位特异性捕获探针。由于其与野生型目标链完全互补,在聚合酶的作用下能够发生延伸反应;而突变型目标链由于3’端与捕获探针发生错配,延伸反应不能进行,从而实现对突变型和野生型基因的区分。用1 M NaOH进行解链处理后,双链结构解开,目标链从电极表面脱落。在电极表面滴加与探针延伸部分相互补的生物素化的检测探针后,只有发生延伸反应的捕获探针链会进一步与生物素化的检测探针杂交,并引入链亲和素化的碱性磷酸酶,继而发生酶催化沉积银的反应。通过线性扫描伏安法可以检测出电极表面沉积的银。该方法成功用于β-地中海贫血基因-28位密码子单碱基突变的区分和定量检测,简单、快速、灵敏度高,线性范围为3.0×10-16-3.0×10-8 M,检测下限为1.0×10-16 M。
     (4)在第5章中,报道了基于目标物诱导置换适配体的无标记电化学传感器,用于以腺苷为分析物模型的目标物检测。该传感器使用1,6-巯基己醇自组装层修饰的金电极为传感基底,以巯基己醇为媒介组装金纳米颗粒层,能够增加巯基捕获探针的表面负载量,提高信号强度。含有腺苷适配体序列的一段寡核苷酸序列一部分可与捕获探针杂交,在电极表面形成捕获探针与适配体的双链复合物。含有腺苷的分析物的加入,把腺苷适配体序列置换下来,使其从电极表面解离,从而减少了电极表面核酸链的数量,使与核酸作用的电化学活性指示剂亚甲基蓝的量相应减少。指示剂的还原电流的大小能够反映被分析物的浓度。构造的传感器简单、快速、灵敏、选择性好,线形范围为5-1000 nM,检测下限为1 nM,同时具有简便快速的再生能力。
     (5)在第6章中,报道了基于抗体与生物素标记的适配体新型夹心的酶放大电化学免疫传感器,用于免疫球蛋白E(IgE)的检测。IgE多克隆抗体作为捕获探针通过半胱胺自组装层以及交联剂戊二醛的作用共价固定在金电极表面,与目标物发生免疫反应后,继续捕获生物素化的IgE适配体的检测探针,从而形成一种新型的夹心结构。之后,通过生物素与亲和素的特异性亲和作用,亲和素标记的碱性磷酸酯酶能与电极表面适配体上的生物素相结合,促使碱性磷酸酯酶催化底物抗坏血酸磷酸酯水解成强还原剂抗坏血酸,并将底液中的银离子还原成单质银,沉积到电极表面。沉积的银的量与电极表面捕获的目标IgE的量成正比,可以用溶出伏安法来定量。结果表明,该免疫传感器结合了抗体和适配体的双重特异性,并利用了酶催化银沉积体系的高灵敏性,检测目标蛋白的灵敏度高、特异性好,线性范围为0.1-100 nM,检测下限为0.02 nM。
     (6)第7章,同样基于抗体与适配体的新型夹心结构,构建了纳米金/壳聚糖电化学沉积复合膜的新型固定基质用于抗体的固定,采用亚甲基蓝为电活性指示剂,报道了检测凝血酶的无标记电化学方法。该复合膜结合了纳米金和壳聚糖独特的性能,提高了传感器的导电性能以及负载量。实验考察了纳米金/壳聚糖电化学沉积条件,并用扫描电子显微镜对该膜进行了表征。在这个工作中,在不改变适配体与目标物结合作用的基础上,对原凝血酶的适配体序列进行了适当延伸,以提高亚甲基蓝嵌入适配体中的量,增强信号响应。传感器构造方法简单、价格低廉,无需对探针进行任何修饰,凝血酶的线性响应范围是1-60 nM,检测下限为0.5 nM。
With the implement of the Human Genome Project and the development of the functional proteomics research, it’s an important domain that high sensitive assay methods were developed for the detection of the proteins and DNA. Because point mutations in genomic DNA have direct link with human diseases,there has been considerable interest in developing rapid and sensitive methods to detect point mutations.DNA aptamers are short nucleic acid ligands artificially selected for their high specificity and affinity for various targets including proteins, small molecules and even cells. Because of their numerous advantages over antibodies such as adaptability to various targets, ease in synthesis and storage, and versatility in labeling, immobilization, signaling and regeneration, the widespread application of aptamers to biosensors is expected to hold potential in the detection of various proteins and small molecules.
     Electrochemical and piezoelectric biosensors attract significant attention and become the research hotspot for their low-cost, fast response, being simple, sensitive and compatible with microfabrication technologies. Aiming at the key technique including probe immobilization method and detection method used in electrochemical biosensor, several novel methods been developed for electrochemical, piezoelectric DNA biosensors and electrochemical aptasensor. The detailed content is described as follows.
     1) In chapter 2,CeO2/Chitosan composite matrix was firstly developed for the single-stranded DNA (ssDNA) probe immobilization and the fabrication of DNA biosensor related to the colorectal cancer gene. The preparation method is quite simple and inexpensive. Such matrix combined the advantages of CeO2 and chitosan, with good biocompatibility, nontoxicity and excellent electronic conductivity. The matrix was used to immobilize completely complementary ssDNA probe with the target sequence and showed the enhanced loading of ssDNA probe on the surface of electrode. The established biosensor has high detection sensitivity, a relatively wide linear range from 1.6×10-11-1.2×10-7 M and the ability to discriminate completely complementary target sequence and four-base-mismatched sequence. The limit of the detection is 1.0×10-11 M.
     2) In chapter 3,a novel biosensing technique for highly specific identification of gene with single base mutation is proposed based on the implementation of the DNA ligase reaction and the biocatalyzed deposition of an insoluble product. The target gene mediated deposition of an insoluble precipitate is then transduced by quartz crystal microbalance (QCM) measurements. In this method, the DNA target hybridizes with a capture DNA probe tethered onto the gold electrode and then with a biotinylated allele-specific detection DNA. A ligase reaction is performed to generate the ligation between the capture and the detection probes, provided there is perfect match between the DNA target and the detection probe. Otherwise even when there is an allele mismatch between them, no ligation would take place. After thermal treatment at an elevated temperature, the formed duplex melts apart that merely allows the detection probe perfectly matched with the target to remain on the electrode surface. The presence of the biotinylated allele-matched probe is then detected by the QCM via the binding to streptavidin-peroxide horseradish (SA-HRP), which catalyzes the oxidative precipitation of 3, 3-diaminobenzidine (DAB) by H2O2 on the electrode and provides an amplified frequency response. The proposed approach has been successfully implemented for the identification of single base mutation in -28 site of theβ-thalassemia gene. The target gene can be determined in the range from 0.7 nM to 100 nM with a detection limit of 0.1 nM.
     3) In chapter 4,a novel electrochemical method for SNP detection is proposed based on allele-specific extension and enzymatic-induced silver deposition. Briefly, allele-specific capture probe firstly immobilized on the gold electrode, which perfectly matches with wild gene and can be extended, whereas mismatching with the mutant gene at 3' terminal bases cannot be extended. After denaturation with 1M NaOH, the formed duplexes unfold and target sequences dissociate from the electrode surface. Because the sequence extended perfectly match with biotin-modified detection probe, hybridization take place, and then streptavidin-conjugated alkaline phosphatase can be captured to the electrode surface due to the specific interaction of biotin and streptavidin. The enzyme-induced silver deposition is used to amplify the response. The electrochemical signal of silver is obtained by using linear sweep voltammetry. The present approach has been demonstrated with the identification of single-base mutation in -28 site (A to G) forβ-thalassemia gene and the wild type target can be determined in the range from with 3.0×10-16-3.0×10-8 M with a low detection limit of 1.0×10-16 M.
     4) In chapter 5 , a label-free electrochemical sensor using aptamer based on target-induced displacement is reported with adenosine as the model analyte. The sensing substrate is prepared using a gold electrode modified with a self-assembled monolayer of 1, 6-hexanedithiol that mediates the assembly of a gold nanoparticle film, which can increase the surface loading of capture probe and enhance the signal. An aptamer for adenosine is applied to hybridizing with the capture probe, yielding a double-stranded complex of the aptamer and the capture probe on the surface. The interaction of adenosine with the aptamer displaces the aptamer sequence and causes it to dissociate from the interface. This results in a decrease of absorption state of methylene blue. Then, the redox current of the indicator can reflect the concentration of the analyte. The fabricated sensor is shown to exhibit high sensitivity, desirable selectivity. The linear range for target detection is 5-1000 nM with a detection limit of 1 nM. The regeneration of the developed biosensor is simple and fast. 5) In chapter 6, an electrochemical immunosensor is reported by using
     aptamer-based enzymatic amplification with immunoglobin E (IgE) as the model analyte. The IgE-antibody is covalently immobilized as the capture probe on the gold electrode via a self-assembled monolayer of cysteamine. After the target captured, the biotinlynated anti-IgE aptamer is used as the detection probe. The specific interaction of streptavidin-conjugated alkaline phosphatase to the surface-bound biotinlynated detection probe mediates a catalytic reaction of ascorbic acid 2-phosphate substrate to produce a reducing agent ascorbic acid. Then, silver ions in the solution can be reduced, leading to the deposition of metallic silver on the electrode surface. The amount of deposited silver, which is determined by the amount of IgE target bound on the electrode surface, can be quantified using the stripping voltammetry. The results obtained demonstrated that the electrochemical immunosensor possesses high specificity and a wide dynamic range from 0.1-100 nM with a low detection limit of 0.02 nM, which possibly arises from the combination of the highly specific aptamer and the highly sensitive stripping determination of enzymatically deposited silver.
     6) In chapter 7, based on the principle of antibody-aptamer sandwich in chapter 6, we reported a label-free electrochemical biosensor for thrombin detection. A novel nanogold-chitosan composite film using the electrochemical deposition method was prepared to immobilize thrombin antibody. Combined the special properties of gold nanoparticles and chitosan, the composite film showed enhanced conductivity and loading ability. The electrochemical deposition conditions of the composite film was investigated and its surface morphology was characterized by SEM. Methylene blue (MB) as the electrochemical active marker intercalating in the probing aptamer was applied to offer the response signal by differential pulse voltammetry (DPV). With appropriate extended design of the aptamer sequence, the amount of MB intercalating in the aptamer was increased and the signal response was also enhanced. The fabricated sensor was simple and low-cost and without the need of labeling. The linear response range for thrombin detection covered 1-60 nM with a detection limit of 0.5nM.
引文
[1] Hashimoto K, Ito K, Ishimori Y. Microfabricated disposable DNA sensor for detection of hepatitis B virus DNA. Sensors and Actuators B,Chemical, 1998,46(3): 220-225
    [2] Wong E L S, Chow E, Gooding J J. DNA recognition interfaces: The influence of interfacial design on the efficiency and kinetics of hybridization. Langmuir, 2005, 21(15): 6957-6965
    [3] Joshi P P, Merchant S A, Wang Y. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Analytical Chemistry, 2005, 77(10): 3183-3188
    [4] Meric B, Kerman K, Ozkan D , et al. Electrochemical DNA biosensor for the detection of TT and hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta, 2002, 56(5): 837-846
    [5] Ye Y K, Zhao J H , Yan F , et al. Electrochemical behavior and detection of hepatitis B virus DNA PCR production at gold electrode. Biosensors and Bioelectronics, 2003, 18(12): 1501-1508
    [6] Wang J,Rivas G,Cai X,et a1.DNA electrochemical biosensors for environmental monitoring. Analytica Chimica Acta, 1997, 347(1): 1-8
    [7]王建龙.DNA生物传感器在环境污染监测中的应用.生物化学与生物物理进展,2001,28(1): 125-128
    [8] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical biosensors for environmental monitoring. Analytica Chimica Acta, 1998, 387(3): 297-307
    [9] Siontorou C G, Nikoleis D P, Miernik A, et al. Rapid methods for detection of Aflatoxin M1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interferences with transduction of DNA hybridization. Electrochim Acta, 1998,43(23): 3611-3617
    [10] Siontorou C G, Nikoleis D P, Tarus B, et al. DNA biosensor based on self-assembled bilayer lipid membranes for the detection of hydrazines. Electroanalysis, 1998, 10(10): 691-694
    [11] Chiti G, Marrazza G, Mascini M. Electrochemical DNA biosensor for environmental monitoring. Analytica Chimica Acta, 2000, 427(2): 155-164
    [12] Brabec V . DNA sensor for the determination of antitumor platinum compounds.Electrochimica Acta, 2000, 45(18): 2929-2932
    [13] Wang J, Rivas G, Cai X H, et a1.Accumulation and trace measurements ofphenothiazine drugs at DNA-modified electrodes. Analytica Chimica Acta.1996, 332(2): 139-144
    [14]宋玉民,康敬万,卢小泉,等.桑色素及其配合物与DNA作用的研究.高等学校化学学报, 2003, 24(2): 249-251
    [15] Palec E, Fojta M, Tomschik M, et a1.Electrochemical biosensors for DNA hybridization and DNA damage. Biosensors& Bioelectonics, 1998, 13(6): 621-628
    [16]孙星炎,徐春,刘盛辉,等.DNA电化学传感器在DNA损伤研究中的应用.高等学校化学学报,1998,19(9): 1393-1396
    [17] Wang J, Nielsen P E, Jiang M, et a1. Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance. Analytical Chemistry, 1997, 69(24): 5200-5202
    [18] Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273(528): 1516-1517
    [19] Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nature Genetics, 1997, 17(1): 21-24
    [20] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(6822): 928–933
    [21] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291(5507): 1304–1351
    [22]吴冠芸,王申五.基因诊断.北京:人民卫生出版社, 1988:131-144
    [23]吴冠芸,方福德.基因诊断技术及应用.北京:北京医科大学、北京协和医科大学联合出版社, 1992:203-208
    [24] Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics: Single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. Journal of the American Chemical Society, 2003, 125(23): 6937-6945
    [25] Nico1ini C, ErokhinV, Faccin P, et a1. Quartz balance DNA sensor.Biosensors& Bioelectronics, 1997, 12(7): 613-618
    [26] Wang J. Towards genoelectronics: Electrochemical biosensing of DNA hybridization. Chemistry - A European Journal, 1999, 5(6): 1681–1685
    [27] Erdem A. Nanomaterial-based electrochemical DNA sensing strategies. Talanta, 2007, 74(3): 318–325
    [28]张炯,万莹,王丽华,宋世平,樊春海.电化学DNA生物传感器.化学进展,2007, 19(10): 1576-1584
    [29] Fan X, White I, Shopova S, et a1. Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 2008, 620(1-2): 8-26
    [30]刘超,周雪芳,徐远胜.光学DNA生物传感器.光电子技术与信息, 2002, 15(3): 27-30
    [31] Sauerbrey G. Use of a quartz vibrator for weighing thin layers on a microbalance. Z. Physik, 1959, 155(2): 206-222
    [32] Fawcett N C, Evans J A, Chien L, et al . Nucleic acid hybridization detected by piezoelectric resonance. Analytical Letters,1988, 21(7):l099-1114
    [33]高志贤,晁福寰.DNA生物传感器及其研究进展.生物技术通讯, 2000, 11(1): 45–53
    [34] Liu T, Tang J, Zhao H. Particle size effect of the DNA sensor amplified with gold nanoparticles. Langmuir, 2002, 18(14): 5624-5626
    [35] Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst, 2001, 126(9): 1502-1504
    [36]赵元弟,庞代文,王宗礼,等.电化学脱氧核糖核酸传感器.分析化学, 1996, 24 (3): 364-368
    [37] Ferguson J A, Boles T C, Adams C P, et al. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nature Biotechnology, 1996, 14(13): 1681-1684
    [38] Paul A E, Piunno, Ulrich J K, Robert H E, et al. Fiber-optic DNA sensor for fluorometric nucleic acid determination. Analytical Chemistry, 1995, 67(15): 2635-2643
    [39] Wang Q, Yang X H, Wang K M. Enhanced surface plasmon resonance for detection of DNA hybridization based on layer-by-layer assembly films.Sensors and Actuators B: Chemical, 2007, 123(1): 227-232
    [40] Lin H, Michael D M, Sheila R N, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. Journal of the American Chemical Society, 2000, 122(38): 9071-9077
    [41] Bryce P N, Timothy E G, Mark R L, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Analytical Chemistry, 2001, 73(1): 1-7
    [42] Xu X H, Bard A J. Immobilization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescentdetection. Journal of the American Chemical Society, 1995, 117 (9): 2627-2631
    [43] Xu D K, Ma L R, L iu Y Q , et al. Development of chemiluminscent biosensing of nucleic acids based on oligonucleotide-immobilized gold surfaces. Analyst, 1999, 124(4): 533-536
    [44] Cheng F, Ajay A, Kavitha D B, et al. DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label. Biosensors and Bioelectronics, 2008, 24(2): 216-221
    [45] Liu X J, Tan W H. A Fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry, 1999, 71(22): 5054–5059
    [46] de-los-Santos-Alvarez P, Lobo-Casta?ón MJ, Miranda-Ordieres A J, et al. Current strategies for electrochemical detection of DNA with solid electrodes. Analytical and Bioanalytical Chemistry, 2004, 378(1): 104–118
    [47] Watterson J, Piunno P, Krull U J. Practical physical aspects of interfacial nucleic acid oligomer hybridisation for biosensor design. Analytica Chimica Acta, 2002, 469(1): 115–127
    [48] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 1997, 119(38): 8916–8920
    [49] Ikariyama Y, Yamauchi S, Yukiashi T, et al. One step fabrication of microbiosensor prepared by the coposition of enzyme and platinum particles. Analytical Letters, 1987, 20(11): 1791-1801
    [50] Lemeshko S V, Powdrill T, Belosludtsev Y Y, et al. Oligonucleotides form a duplex with non-helical properties on a positively charged surface. Nucleic Acids Research, 2001, 29(14): 3051–3058
    [51] Escosura-Mu?iz A, González-García M B, Costa-García A. DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosensors and Bioelectronics, 2007, 22(6): 1048–1054
    [52] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosensors and Bioelectronics, 1999, 14(1): 43–51
    [53] Sastrt M, Ramakrishnan V, Pattarkine M, et al. Hybridization of DNA by sequential immobilization of oligonucleotides at the air-water interface. Langmuir, 2000, 16(24): 9142–9146
    [54] Levicky R, Herne T M, Tarlov M J, et al. Using self-assembly to control the structure of DNA monolayers on Gold: A neutron reflectivity study. Journal of the American Chemical Society, 1998, 120(38): 9787-9792
    [55] Lao R J, Song S P, Wu H P, et al. Electrochemical interrogation of DNAmonolayers on Gold surfaces. Analytical Chemistry, 2005, 77(19): 6475-6480
    [56] Caruso F, Rodda E, Furlong D N, et al. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry, 1997, 69(11): 2043-2049
    [57] Ivanova E, Pham D, Brack N, et al. Poly(l-lysine)-mediated immobilisation of oligonucleotides on carboxy-rich polymer surfaces. Biosensors and Bioelectronics, 2004, 19 (11): 1363–1370
    [58] Korri-Youssoufi H, Garnier F, Srivtava P, et al. Toward bioelectronics:specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. Journal of the American Chemical Society, 1997, 119 (31): 7388-7389
    [59] Saoudi B, Despas C, Chehimi M, et al. Study of DNA adsorption on polypyrrole: interest of dielectric monitoring. Sensors and Actuators B: Chemical, 2000, 62 (1): 35-42
    [60] Garnier F, Korri-Youssouft H, Srivastava P, et al. Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles. Synthetic Metals, 1999, 100 (1): 89-94
    [61] Dupont-Filliard, Roget A, Livache T, et al. Reversible oligonucleotide immobilisation based on biotinylated polypyrrole film. Analytica Chimica Acta, 2001, 449 (1-2): 45–50
    [62] Dupont-Filliard A, Billon M, Livache T, et al. Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film. Analytica Chimica Acta, 2004, 515 (2): 271-277
    [63] Ramanaviciene A, Ramanavicius A.Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode. Analytical and Bioanalytical Chemistry, 2004, 379(2): 287-293
    [64] Xu C , Cai H , He P G, et al . Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst , 2001 , 126(1) : 62 -65
    [65] Xu C , Cai H , Xu Q , et al. Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection. Fresenius Journal of Analytical Chemistry, 2001, 369(5): 428-432
    [66] Yi H M, Wu L Q, Sumner J J, et al. Chitosan scaffolds for biomolecular assembly: Coupling nucleic acid probes for detecting hybridization. Biotechnology and Bioengineering, 2003, 83(6): 646-652
    [67] Yi H,Wu L Q,Ghodssi R, et al. A robust technique for assembly of nucleic acidhybridization chips based on electrochemically templated chitosan. Analytical Chemistry, 2004, 76(2): 365-372
    [68] Zhu N N, Chang Z, He P G, et al. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochimica Acta, 2006, 51(18): 3758 -3762
    [69] Wang M J , Sun C Y, Wang L Y, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(5): 1117-125
    [70] Feng Y Y, Yang T, Zhang W, et al. Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: Gold nanoparticle/polyaniline nanotube membranes. Analytica Chimica Acta, 2008, 616(2): 144-151
    [71] Liu S F, Li Y F, Li J R, et al. Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosensors & Bioelectronics, 2005, 21(5): 789-795
    [72] Xu Y, Ye X Y, Yang L, et al. Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis, 2006, 18(15):1471-1478
    [73] Cai H, Cao X, Jiang Y, et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Analytical and Bioanalytical Chemistry, 2003, 375(2): 287-293
    [74] Cai H, Xu C, He P, et al. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. Journal of Electroanalytical Chemistry, 2001, 510(1-2): 78-85
    [75] Kang J, Li X, Wu G, et al. A new scheme of hybridization based on the Aunano–DNA modified glassy carbon electrode. Analytical Biochemistry, 2007, 364(2): 165-170
    [76] Yang J, Yang T, Feng Y, et al. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Analytical Biochemistry, 2007, 365(1): 24-30
    [77] Li C Z Liu Y, Luong J. Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Analytical Chemistry, 2005, 77(2): 478-485
    [78] Fang B, Jiao S F, Li M G, et al. Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogoldmodified electrodes. Biosensors and Bioelectronics, 2008, 23(7):1175-1179
    [79] Lu L P, Wang S Q, Lin X Q. Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Analytica Chimica Acta, 2004, 519(2): 161-166
    [80] Chang H, Yuan Y, Shi N, et al. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Analytical Chemistry, 2007, 79(13): 5111-5115
    [81] Xu Y, Jiang Y, Cai H, et al. Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Analytica Chimica Acta, 2004, 516(1-2): 19-27
    [82] Tiwari A, Gong S. Electrochemical detection of a breast cancer susceptible gene using cDNA immobilized chitosan-co-polyaniline electrode. Talanta, 2009, 77(3): 1217–1222
    [83] Mikklesen S R. Electrochecmical biosensors for DNA sequence detection. Elect roanalysis, 1996, 8(1): 15-19
    [84] Lucarelli F, Tombelli S, Minunni M, et al. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta, 2008, 609(2): 139-159
    [85] Palecek E. Reaction of nucleic acid bases with the mercury electrode: Determination of purine derivatives at submicromolar concentrations by means of cathodic stripping voltammetry. Analytical Biochemistry, 1980, 108(1): 129-138
    [86] Wang H S, Ju H X, Chen H Y. Adsorptive stripping voltammetric detection of single-stranded DNA at electrochemically modified glassy carbon electrode. Electroanalysis, 2002, 14(23): 1615-1620
    [87] Wang J, Bollo S, Paz J L, et al. Ultratrace measurements of nucleic acids by baseline-corrected adsorptive stripping square-wave voltammetry. Analytical Chemistry, 1999, 71(9): 1910-1913
    [88] Wu K, Fei J, Bai W, et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Analytical and Bioanalytical Chemistry, 2003, 376(2): 205-209
    [89] Sun X Y, He P G, Liu S H, et al. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta, 1998, 47(2): 487-495
    [90] Patolsky F, Katz E, Willner I. Amplified DNA detection by electrogeneratedbiochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. Angewandte Chemie International Edition, 2002, 41(18): 3398-3402
    [91] Kelley S O, Barton J K, Jackson N. M, et al. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate Chemistry, 1997, 8(1):31-37
    [92] Kara P, Meric B, Zeytinoglu A, et al. Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples. Analytica Chimica Acta, 2004, 518(1-2): 69-76
    [93] Liu S H, Ye J N, He P G, et al. Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode. Analytica Chimica Acta, 1996, 335(3): 239-243
    [94] Choi Y S, Lee K S, Park D H. Gene detection using Hoechst 33258 on a biochip. Current Applied Physics, 2006, 6(4): 777-780
    [95] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 1993, 65(17): 2317-2323
    [96] Yan F, Erdem A, Meric B, et al. Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species. Electrochemistry Communications, 2001, 3(5): 224-228
    [97] Kelley O, Boon M, Barton K, et al. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Research, 1999, 27(24): 4830-4837
    [98] Kelley O, Jackson M, Hill G, et al. Long-range electron transfer through DNA films. Angewandte Chemie International Edition, 1999, 38(7): 941-945
    [99] Takenaka S, Yamashita K, Takagi M, et al. DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Analytical Chemistry, 2000, 72(6): 1334-1341
    [100] Tansil N, Xie H, Xie F, et al. Direct detection of DNA with an electrocatalytic threading intercalator. Analytical Chemistry, 2005, 77(1): 126-134
    [101] Jin Y, Yao X, Liu Q, et al. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosensors and Bioelectronics, 2007, 22(6): 1126-1130
    [102] Steichen M, Decrem Y, Godfroid E, et al. Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosensors and Bioelectronics, 2007, 22(9-10): 2237-2243
    [103] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl . Acad. Sci ., 2003, 100(16): 9134-9137
    [104] Immoos C, Lee S, Grinstaff M. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. Journal of the American Chemical Society, 2004, 126(35): 10814-10815
    [105] Jenkins D, Chami B, Kreuzer M, et al. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode. Analytical Chemistry, 2006, 78(7): 2314-2318
    [106] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: An electrochemical approach based on the combined use of ligase and reverse molecular beacon, Human Mutation, 2007, 28(6): 630-637
    [107] Kumamoto S, Watanabe M, Kawakami N, et al. 2’-Anthraquinone-conjugated oligonucleotide as an electrochemical probe for DNA mismatch. Bioconjugate Chemistry, 2008, 19(1): 65-69
    [108] de-los-Santos-Alvarez N, Lobo-Castanon M J, Mirando-Ordieres A J, et al. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. Journal of the American Chemical Society, 2007, 129(13): 3808-3809
    [109] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA probe forenzyme-amplified electrochemical detection of legionella pneumophila. Analytical Chemistry, 2007, 79(11): 4050-4055
    [110] So H M, Won K, Kim Y H, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. Journal of the American Chemical Society, 2005, 127(34): 11906–11907
    [111] Domínguez E, Rincónó, Narváez A. Electrochemical DNA sensors based on enzyme dendritic architectures: An approach for enhanced sensitivity. Analytical Chemistry, 2004, 76(11): 3132–3138
    [112] Hwang S, Kim E, Kwak J. Electrochemical detection of DNA hybridization using biometallization. Analytical Chemistry, 2005, 77(2): 579-584
    [113] Zhang P, Chu X, Xu X M , et al. Electrochemical detection of point mutation based on surface ligation reaction and biometallization. Biosensors and Bioelectronics, 2008, 23(10): 1435-1441
    [114] Wang J, Xu D, Kawde A-n, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry,2001, 73(22): 5576–5581
    [115] Cai H, Wang Y, He P, et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta, 2002, 469(2): 165-172
    [116] Cai H, Shang C, Hsing I M. Sequence-specific electrochemical recognition of multiple species using nanoparticle labels. Analytica Chimica Acta, 2004, 523(1): 61-68
    [117] Kerman K, Morita Y, Takamura Y, et al. Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization. Analytica Chimica Acta, 2004, 510(2): 169-174
    [118] Zhang J, Song S P, Zhang L Y, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Journal of the American Chemical Society, 2006, 128(26): 8575–8580
    [119] Kerman K, Saito M, Morita Y, et al. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Analytical Chemistry, 2004, 76(7): 1877–1884
    [120] Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Analytical Chemistry, 2003, 75(9): 2181–2187
    [121] Pingarron J , Yanez-Sedeno P , Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 2008, 53(19): 5848–5866
    [122] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Society, 2003, 125(11): 3214-3215
    [123] Wang J, Liu G, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. Journal of the American Society, 2004, 126(10): 3010-3011
    [124] Patolsky F, Lichtenstein A, Willner I. Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. Journal of the American Chemical Society, 2000, 122(2): 418–419
    [125] Patolsky F, Lichtenstein A, Willner I. Electronic transduction of DNA sensing processes on surfaces: Amplification of DNA detection and analysis ofsingle-base mismatches by tagged liposomes. Journal of the American Chemical Society, 2001, 123(22): 5194-5205
    [126] Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 2001, 19(3): 253-257
    [127] Feng K J , Li J S, Jiang J H, et al. QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification, Biosensors and Bioelectronics, 2007, 22(8): 1651-1657
    [128] Pang L L, Li J S, Jiang J H, et al. DNA point mutation detection based on DNA ligase reaction and nano-Au amplification: A piezoelectric approach. Analytical Biochemistry, 2006, 358(1): 99-103
    [129] Pang L L, Li J S, Jiang J H, et al. A novel detection method for DNA point mutation using QCM based on Fe3O4/Au core/shell nanoparticle and DNA ligase reaction. Sensors and Actuators B: Chemical, 2007, 127(2): 311-316
    [130] Mao X, Yang L, Su X, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2006, 21(7): 1178-1185
    [131] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505–510
    [132]付玉荣,邱宗荫. SELEX技术及其应用研究进展,国外医学病毒学分册, 2005, 3(12): 70-72
    [133]邬芳玉,张贝,张妮和. SELEX技术及核酸适配子在临床诊断中的应用前景,国外医学内科学分册, 2006, 11(33): 489-492
    [134] Yang Y, Kochoyan M, Burgstaller P, et al. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science, 1996, 272(5266): 1343–1346
    [135] Jiang Y X, Zhu C F, Ling L S, et al. Specific aptamer-protein interaction studied by atomic force microscopy. Analytical Chemistry, 2003, 75(9): 2112–2116
    [136] Nguyen D H, DeFina S C, Fink W H, et al. Binding to an RNA aptamer changes the charge distribution and conformation of malachite green. Journal of the American Chemical Society, 2002, 124(50): 15081–15084
    [137] Kandimalla V B, Ju H X. New horizons with a multi dimensional tool for application in analytical chemistry-aptamer. Analytical Letters, 2004, 37(11): 2215–2233
    [138] Lee J F, Hesselberth J R, Meyers L A, et al. Aptamer database. Nucleic Acids Research, 2004, 32(Database issue): D95–D100
    [139] Clark S L, Remcho V T. Aptamers as analytical reagents. Electrophoresis, 2002, 23(9): 1335–1340
    [140] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425-1429
    [141] Geiger A, Burgstaller P, von der Eltz H, et al. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Research, 1996, 24(6): 1029-1036
    [142] Mosing R K, Mendonsa S D, Bowser M T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Analytical Chemistry, 2005, 77(19): 6107-6112
    [143] Kirham P M, Neri D, Winter G. Towards the design of an antibody that recognises a given protein epitope. Journal of Molecular Biology, 1999, 285(3): 909–915
    [144] Radi A.-E, Acero Sanchez J L, Baldrich E, et al. Reusable impedimetric ptasensor. Analytical Chemistry, 2005, 77(19): 6320-6323
    [145] Xu D, Xu D, Yu, X, et al. Label-Free Electrochemical detection for aptamer-based array electrodes. Analytical. Chemistry, 2005, 77(16): 5107-5113
    [146] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition, 2005, 44(34): 5456–5459
    [147] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [148] Radi A E, Acero Sanchez J L, Baldrich E, et al. Aptamer-thrombin association reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society, 2006, 128(1): 117-124
    [149] Baker B R. , Lai R Y, Wood M S, et al. An Electronic, Aptamer-based small-molecule sensor for the rapid,label-Free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 2006, 128(10): 3138–3139
    [150] Xiao Y , Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society, 2005, 127(51): 17990–17991
    [151] Zuo X, Song S, Zhang, et al. A target-responsive electrochemical aptamer switch(TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society, 2007, 129(5): 1042-1043
    [152] Hansen J A, Wang J, Kawde A N, et al.Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemicalbiosensor. Journal of the American Chemical Society, 2006, 128(7): 2228–2229
    [153] Bang G S, Cho S, Kim B G. A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics, 2005, 21(6): 863-870
    [154] Le Floch F, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [155] Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications, 2006, 8(3): 505–511
    [156] Polsky R, Gill R, Kaganovsky L. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry, 2006, 78(7): 2268–2271
    [157] Numnuam A, Chumbimuni-Torres K Y, Xiang Y, et al. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Analytical Chemiatry, 2008, 80(3): 707-712
    [158] Zhou L, Ou L, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Analytical Chemistry, 2007, 79(19): 7492-7500
    [159] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemistry Society, 2007, 129(50): 15448–15449
    [160] Oliveira-Brett A N M, Vivan M, Fernandes I R, et al. Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta, 2002, 56(5): 959–970
    [161] Zhu Z W, Li C, Li N Q. Electrochemical studies of quercetin interacting with DNA. Microchemical Journal, 2002, 71(1): 57–63
    [162] La-Scalea M A, Serrano S H P, Ferreira E I, et al. Voltammetric behavior of benznidazole at a DNA-electrochemical biosensor. Pharmaceutical and Biomedical Analysis, 2002, 29(3): 561–568
    [163] Izzo V, Asaro M R, Forte G I, et al. Use of voltage gradient gel electrophoresis in apoptotic DNA analysis. Journal of Chromatography A, 2000, 890(2): 371-374
    [164] Zhao X J, Dytioco R T, TanW H. Ultrasensitive DNA detection using highlyfluorescent bioconjugated nanoparticles. Journal of the American Chemical Society, 2003, 125(38): 11474-11475
    [165] Wang J, Liu G D, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society, 2003, 125(11): 3214-3215
    [166] Peterlinz K A, Georgiadis R M, Herne T M, et al. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. Journal of the American Chemical Society, 1997, 119(14): 3401-3402
    [167] Okahata Y, Kawase M, Niikura K, et al. Kinetic Measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical Chemistry, 1998, 70(7): 1288-1296
    [168] Xie H, Zhang C Y, Gao Z Q. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Analytical Chemistry, 2004, 76(6): 1611-1617
    [169] Wang J. Electronalysis and biosensors. Analytical Chemistry, 1999, 71(12): 328R-332R
    [170] Abbaspour A, Mehrgardi M A. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Analytical Chemistry, 2004, 76(19): 5690-5696
    [171] Tlili C, Korri-Youssoufi H, Ponsonnet L, et al. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta, 2005, 68(1): 131-137
    [172] Donnell M J, Tang K, Kolster H, et al. High-density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry. Analytical Chemistry, 1997, 69(13): 2438-2443
    [173] Tonya M H, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society, 1997, 119(38): 8916-8920
    [174] Ozkan D, Erdem A, Kara P, et al. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochemistry Communications, 2002, 4(10): 796-802
    [175] Wang J, Jiang M. Toward genolelectronics: Nucleic acid doped conducting polymers. Langmuir, 2000, 16(5): 2269-2274
    [176] Ebersole R C, Miller J A, Moran J R, et al. Spontaneously formed functionallyactive avidin monolayers on metal surfaces: A strategy for immobilizing biological reagents and design of piezoelectric biosensors. Journal of the American Chemical Society, 1990, 112(8): 3239-3241
    [177] Liu S Q, Xu J J, Chen H Y. ZrO2 gel-derived DNA-modified electrode and the effect of lanthanide on its electron transfer behavior. Bioelectrochemistry, 2002, 57(2): 149-154
    [178] Zhu N N, Zhang A P, Wang Q J, et al. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Analytica Chimica Acta, 2004, 510(2): 163-168
    [179] Izu N, Shin W, Murayama N, Kanzaki S. Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis. Sensors and Actuators B, 2002, 87(1): 95-98
    [180] Sohlberg K, Pantelides S T, Pennycook S J. Interactions of hydrogen with CeO2. Journal of the American Chemical Society, 2001, 123(27): 6609-6611
    [181] Zoppi R A,Neves S, Nunes S P. Hybrid films of poly(ethylene oxide-b-amide-6) containing sol–gel silicon or titanium oxide as inorganic fillers: Effect of morphology and mechanical properties on gas permeability. Polymer, 2000, 41(14): 5461-5470
    [182] Okuma H, Watanabe E. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes. Biosensors and Bioelectronics, 2002, 17(5): 367-372
    [183] Yang M H, Yang Y H, Liu B, et al. Amperometric glucose biosensor based on chitosan with improved selectivity and stability. Sensors and Actuators B, 2004, 101(3): 269-276
    [184] Gong F C, Tang L H, Shen G L, et al. Fluorometric enzyme immunosensing system based on a renewable immunoreaction platform for the detection of Schistosoma japonicum antibody. Talanta, 2004, 62(4): 735-740
    [185] Maeda M, Mitsuhashi Y, Nakano K, et al. DNA-immobilized gold electrode for DNA-binding drug sensor. Analytical Sciences, 1992, 8(1): 83-85
    [186] Kerman K, Ozkan D, Kara P, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Analytica Chimica Acta, 2002, 462(1): 39-47
    [187] Kara P, Kerman K, Ozkan D, et al. Electrochemical genosensor for the detection of interaction between methylene blue and DNA. Electrochemistry Communications, 2002, 4(9): 705-709
    [188] Venkatesh S, Smith T J. Chitosan-membrane interactions and their probable role in chitosan-mediated transfection. Biotechnology and Applied Biochemistry, 1998, 27(3): 265-267
    [189] Hrapovic S, Liu Y L, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 2004, 76(4): 1083-1088
    [190] Liu G D, Lee T M H, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. Journal of the American Chemical Society, 2005, 127(1): 38-39
    [191] Schmalzing D, Belenky A, Novotny M A, et al. Microhip electrophoresis: a method for high-speed SNP detection. Nucleic Acids Research, 2000, 28(9): e43
    [192] Ross P, Hall L, Smirnov I, et al. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nature biotechnology, 1998, 16(13): 1347-1351
    [193] Mhlanga M M, Malmberg L. Using moleculor beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 2001, 25(4): 463-471
    [194] Okamoto A, Tanaka K, Fukuta T, et al. Design of base-discriminating fluorescent nucleoside and its application to T/C SNP typing. Journal of the American Chemical Society, 2003, 125(31): 9296-9297
    [195] Li H X and Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958–10961
    [196] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [197] Caruana D J, Heller A. Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-m-diameter microelectrode. Journal of the American Chemical Society, 1999, 121(4): 769-774
    [198] Huang T J, Liu M S, Knight L D, et al. An electrochemical detection scheme for identification of single nucleotide polymorphisms using hairpin-forming probes. Nucleic Acids Research, 2002, 30(12): e55
    [199] Su X, Robelek R, Wu Y, et al. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein. Analytical Chemistry, 2004, 76(2): 489-494
    [200] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detectiontechnique. Science, 1988, 241(4869): 1077-1080
    [201] Tobe V O, Taylor S L, Nickerson D A. Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Research, 1996, 24(19): 3728–3732
    [202] Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168
    [203] Karousos N G, Aouabdi S, Way A S, et al. Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Analytica Chimica Acta, 2002, 469(2): 189-196
    [204] Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society, 2002, 124(32): 9606-9612
    [205] Keighley S D. , Li Peng , Estrela P, et al.Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 2008, 23(8): 1291-1297
    [206] Gearheart L A, Ploehn H J, Murphy C J. Oligonucleotide adsorption to gold nanoparticles: A surface-enhanced raman spectroscopy study of intrinsically bent DNA. The Journal of Physical Chemistry B, 2001, 105(50): 12609-12615
    [207] Du H, Strohsahl C M, Camera J, et al. Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. Journal of the American Chemical Society, 2005, 127(21): 7932-7940
    [208] Markham N R, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research, 2005, 33(1): W577-W581
    [209] Liu L F, Tang Z W, Wang KM, et al. Using molecular beacon to monitor acting of E. coli DNA ligase. Analyst, 2005, 130(3): 350-357
    [210] Kirk B W, Feinsod M, Favis R, et al. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Research, 2002, 30(15): 3295-3311
    [211] Russom A, Haasl S, Brookes A J, et al. Rapid melting curve analysis on monolayered beads for high-throughput genotyping of single-nucleotide polymorphisms. Analytical Chemistry, 2006, 78(7): 2220-2225
    [212] Livak K J, Flood S J, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Application, 1995, 4(6): 357–362
    [213] Tyagi S, Kramer F R. Molecular beacons: Probes that fluoresce uponhybridization. Nature Biotechnology, 1996, 14(3): 303–308
    [214] Syvanen A C. From gels to chips:‘Minisequencing’primer extension for analysis of point mutations and single nucleotide polymorphisms. Human Mutation, 1999, 13(1): 1–10
    [215] Syv?nen A C, Aalto-Setala K, Kontula K, et al. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics, 1990, 8(4): 684–692
    [216] Tang Y, Feng F, He Frt al. Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative. Journal of the American Chemical Society, 2006, 128(46): 14972-14976
    [217] Lyamichev V, Mast A L, Hall J G, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnology, 1999, 17(3): 292–296
    [218] Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceeding of the National Academy of Sciences, 1991, 88(1): 189-193
    [219] Samiotaki M, Kwiatkowski M, Parik J, et al. Dual-color detection of DNA sequence variants by ligase mediated analysis. Genomics, 1994, 20(2): 238–242
    [220] Gerion D, Chen F, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Analytical Chemistry 2003, 75(18): 4766-4772
    [221] Ruiz-Ponte C, Carracedo A, Barros F. Duplication and deletion analysis by fluorescent real-time PCR-based genotyping. Clinica Chimica Acta, 2006, 363(1):138-146
    [222] Ross P L, Lee K, Belgrader P. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Analytical Chemistry, 1997, 69(20): 4197-4202
    [223] Griffin T J, Smith L M. Genetic identification by mass spectrometric analysis of single-nucleotide polymorphisms: Ternary encoding of genotypes. Analytical Chemistry, 2000, 72(14): 3298-3302
    [224] Hansen K M, Ji H F, Wu G, et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Analytical Chemistry, 2001, 73(7): 1567-1571
    [225] Biswal S L, Raorane D, Chaiken A, et al. Nanomechanical detection of DNAmelting on microcantilever surfaces. Analytical Chemistry, 2006, 78(20): 7104-7109
    [226] Cho M, Lee S, Han S-Y, et al. Electrochemical detection of mismatched DNA using a MutS probe. Nucleic Acids Research, 2006, 34(10): e75
    [227] Christopher B.G., Hans A.B., George M.W. Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface. Chem. Mater., 1995, 7(2): 252-254
    [228] Kleinjung F, Klu?mann S, Erdmann V A, et al. High-affinity RNA as a recognition element in a biosensor. Analytical Chemistry, 1998, 70(2): 328-331
    [229] Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip. Analytical Chemistry, 2005, 77(11): 3437-3443
    [230] Zayats M, Huang Y, Gill R, et al. Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society, 2006, 128(42): 13666-13667
    [231] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry, 2007, 79(7): 2933-2939
    [232] Zhou X L, Song S P, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society, 2007, 129(5): 1042-1043
    [233] Sa′nchez J L A, Baldrich E, Radi A E G, et al. Electronic off-on molecular switch for rapid detection of thrombin. Electroanalysis, 2006, 18(19-20): 1957-1962
    [234] Floch F L, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [235] Kawde A N, Rodriguez M C, Lee T M, et al. Label-free bioelectronic detection of aptamer–protein interactions. Electrochemistry Communications, 2005, 7(5): 537-540
    [236] Portellos M, Riva C E, Cranstoun S D, et al. Effects of adenosine on ocular blood-flow. Investigative Ophthalmology and Visual Science, 1995, 36(9): 1904-1909
    [237] McMillan M R, Burnstock G, Haworth S G. Vasodilatation of intrapulmonary arteries to P2-receptor nucleotides in normal and pulmonary hypertensive newborn piglets. British Journal of Pharmacology, 1999, 128(3): 543-548
    [238] Dunwiddie T V, Masino S A. The role and regulation of adenosine in the central nervous system. Annual Review of Neuroscience, 2001, 24(1): 31-55
    [239] Lin X H, Wu P, Chen W, et al. Electrochemical DNA biosensor for the detection of short DNA species of Chronic Myelogenous Leukemia by using methylene blue. Talanta, 2007, 72(2): 468-471
    [240] Erdem A, Kerman K, Meric B, et al. Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis, 2001, 13(3):219-223
    [241] P?nke O, Kirbs A, Lisdat F. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosensors and Bioelectronics, 2007, 22(11): 2656-2662
    [242] Hianik T, OstatnáV, ZajacováZ, et al. Detection of aptamer–protein interactions using QCM and electrochemical indicator methods. Bioorganic & Medicinal Chemistry Letters, 2005, 15(2): 291-295
    [243] Huang M F, Kuo Y C, Huang C C, et al. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis. Analytical Chemistry, 2004, 76(1): 192-196
    [244] Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP. biochemistry, 1995, 34(2): 656-665
    [245] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822
    [246] Nakane P K, Pierce G B. Enzyme-labeled antibodies; preparation and localization of antigens. Journal of Histochemistry Cytochemistry, 1966, 14(12): 929-931
    [247] Avrameas S, Uriel J. Method for labeling antigents and antibodys with enzymes and their application in immunodiffusion 24G5. Compt. Rend. Acad. Sci., 1966, 262(24): 2543-2545
    [248] Katz E, Alfonta L, Willner I. Chronopentiometry and faradaic impedance spectroscopy as methods for signal transduction in immunosensor. Sensor and Actuators B, 2001, 76(1-3): 134-141
    [249] Crew A, Alford C, Cowell D C, et al. Development of a novel electrochemical immuno-assay using a screen printed electrode for the determination of secretory immunoglobulin A in human sweat. Electrochimica Acta, 2007, 52(16): 5232-5237
    [250] Jayasena S. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999, 45(9): 1628-1650
    [251] Clark S, Remcho V. Aptamers as analytical reagents. Electrophoresis, 2002, 23(9):1335-1340
    [252] Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing-aptamers for ligand binding. TrAC Trends in Analytical Chemistry, 2003, 22(11): 810-818
    [253] Kyung M Y, Sang H L, Aesul I, et al. Aptamers as functional nucleic acids: In vitro selection and biotechnological applications. Biotechnology and Bioprocess Engineering, 2003, 8(2): 64-75
    [254] Robertson D, Joyce G. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature, 1990, 344(6265): 467-468
    [255] Osborne S, Ellington A. Nucleic acid selection and the challenge of combinatorial chemistry. Chemical Reviews, 1997, 97(2): 349-370
    [256] Drolet D, Moon-McDermott L, Romig T. An enzyme-linked oligonucleotide assay. Nature Biotechnology, 1996, 14(8): 1021–1025
    [257] Rye P, Nustad K. Immunomagnetic DNA aptamer assay. Biotechniques, 2001, 30(2): 290-295
    [258] Yang X, Li X, Prow T, et al. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Research, 2003, 31(10): e54
    [259] Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 79(4): 1466-1473
    [260] Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics, 2005, 20(10): 2168-2172
    [261] Chen Z P, Peng Z F, Jiang J H, et al. An electrochemical amplification immunoassay using biocatalytic metal deposition coupled with anodic stripping voltammetric detection. Sensors and Actuators B, 2007, 129(1):146-151
    [262] Kokado A, Arakawa H, Maeda M. New electrochemical assay of alkaline phosphatase using ascorbic acid 2-phosphate and its application to enzyme immunoassay. Analytica Chimica Acta, 2000, 407(1-2): 119-125
    [263] Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [264] Kotia R B, Li L, McGown L B. Separation of nontarget compounds by DNA aptamers. Analytical Chemistry, 2000, 72(4): 827-831
    [265] Pavlov V, Shlyahovsky B, Willner I. Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. Journal of the AmericanChemical Society, 2005, 127(18): 6522-6523
    [266] Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry, 2005, 77(4): 1147-1156
    [267] Lin C X, Katilius E, Liu Y, et al. Self-assembled signaling aptamer DNA arrays for protein detection. Angewandte Chemie International Edition, 2006, 45(32): 5296-5301
    [268] Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society, 2004, 126(5): 1384-1387
    [269] Wang X L, Li F, Su Y H, et al. Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Analytical Chemistry, 2004, 76(19): 5605-5610
    [270] Li J W, Fang X H, Tan W H. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [271] Heckel A, Mayer G. Light regulation of aptamer activity: An anti-thrombin aptamer with caged thymidine nucleobases. Journal of the American Chemical Society, 2005, 127(3): 822-823
    [272] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 2004, 126(38): 11768-11769
    [273] Evans-Nguyen K M, Fuierer R R, Fitchett B D, et al. Changes in adsorbed fibrinogen upon conversion to fibrin. Langmuir, 2006, 22(11): 5115-5121
    [274] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 2002, 74(17): 4488-4495
    [275] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie, 2005, 117(34): 5592–5595
    [276] Wang H, Yang X B, Bowick G C, et al. Identification of proteins bound to a thioaptamer probe on a proteomics array. Biochemical and Biophysical Research Communications, 2006, 347(3): 586-593
    [277] Baldrich E, Restrepo A, Sullivan C K. Aptasensor development: Elucidation of critical parameters for optimal aptamer performance. Analytical Chemistry, 2004, 76(23): 7053-7063
    [278] Wang P, Li Y X, Huang X, et al. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensingapplication for electrochemical determination of dopamine and uric acid. Talanta, 2007, 73(3): 431-437
    [279] Zhang L Y, Yuan R, Chai Y Q, et al. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and l-cysteine film on an Au electrode. Analytica Chimica Acta, 2007, 596(1): 99-105
    [280] Mao X, Jiang J H, Luo Y, et al. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta, 2007, 73(3): 420-424
    [281] Zhang S, Huang F, Liu B H, et al. A sensitive impedance immunosensor based on functionalized gold nanoparticle–protein composite films for probing apolipoprotein A-I. Talanta, 2007, 71(2): 874-881
    [282] Du Y, Luo X L, Xu J J, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007, 70(2): 342-347
    [283] Luo X L, Xu J J, Zhang Q, et al. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosensors and Bioelectronics, 2005, 21(1): 190-196
    [284] Xue M H, Xu Q, Zhou M, et al. In situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochemistry Communications, 2006, 8(9): 1468-1474
    [285] Zhang S B, Wu Z S, Guo M M, et al. A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label. Talanta, 2007, 71(4): 1530-1535
    [286] Li X Y, Jin L J, Mcallister T A. Chitosan-alginate microcapsules for oral delivery of egg Yolk Immunoglobulin (IgY). Journal of Agricultural and Food Chemistry, 2007, 55(8): 2911-2917
    [287] Kankia B I, Marky L A. Folding of the thrombin aptamer into a G-quadruplex with Sr2+: Stability, heat, and hydration. Journal of the American Chemical Society, 2001, 123(44): 10799-10804
    [288] Hianik T, OstatnáV, Sonlajtnerova M, et al. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry, 2007, 70(1): 127-133
    [289] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry, 2001, 294(2): 126-131
    [290] Vairamani M, Gross M L. G-quadruplex formation of thrombin-binding aptamerdetected by electrospray ionization mass spectrometry. Journal of the American Chemical Society, 2003, 125(1): 42-43
    [291] Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992, 355(6360): 564-566
    [292] Tuite E, Norden B. Sequence-specific interactions of methylene blue with polynucleotides and DNA: A spectroscopic study. Journal of the American Chemical Society, 1994, 116(17): 7548-7556
    [293] Tuite E, Kelly J M. The interaction of methylene blue, azure B, and thionine with DNA: Formation of complexes with polynucleotides and mononucleotides as model systems. Biopolymers, 1995, 35(5): 419-433
    [294] Rohs R, Sklenar H, Lavery R. Methylene blue binding to DNA with alternating GC base sequence: A modeling study. Journal of the American Chemical Society, 2000, 122(12): 2860-2866
    [295] Qi Z M, Matsuda M, Takatsu A, et al. In situ investigation of coadsorption of myoglobin and methylene blue to hydrophilic glass by broadband time-resolved optical waveguide spectroscopy. Langmuir, 2004, 20(3): 778-784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700