胆囊癌的蛋白质组学分析及AnnexinA3-miRNA对胆囊癌细胞的生物学效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分胆囊癌患者血清及正常人血清的蛋白质组学分析
     目的应用比较蛋白质组学方法研究胆囊癌患者及正常人血清之间差异表达的蛋白质,筛选胆囊癌血清标志物以及可能与胆囊癌发病相关的蛋白质。方法利用双向凝胶电泳(2-DE)对6例胆囊癌患者及6例正常人血清的总蛋白进行分离,并用质谱仪对两组间差异蛋白质点进行肽指纹谱和串联质谱鉴定。利用蛋白质印迹分析和免疫组化法检测差异蛋白在胆囊癌患者和健康人血清及组织的表达。结果共有24个蛋白点被成功鉴定。其中在胆囊癌患者血清中高表达的有12个,它们是Splicing factor 3B subunit 5,Cystatin-B,S100A10 Protein,Histone H2B type 2-E, Profilin-1,Eukaryotic translation initiation factor 1A,Isoform 1 of Eukaryotic translation initiation factor 5A-1,FERM domain containing 3 , haptoglobin protein , Glyceraldehyde-3-phosphate dehydrogenase,Serum amyloid P-component precursor,harmonin isoform b3。在胆囊癌患者血清中表达降低的有12个,分别是Apolipoprotein A-I precursor,Myosin regulatory light chain 2,Isoform 1 of Protein canopy homolog 2 precursor,Proteasome subunit beta type-2,ARHGDIA,Superoxide dismutase [Mn],Isoform 1 of Ficolin-3 precursor,zinc alpha-2-glycoprotein 1,HP haptoglobin isoform 2 preproprotein,CD5 antigen-like precursor,CLU clusterin isoform,ITIH4 71kDa protein。Western印迹及免疫组化证实了S100A10蛋白和结合珠蛋白(haptoglobin protein)在胆囊癌患者血清及组织中高表达。结论以2-DE结合质谱鉴定是血清差异蛋白质组学研究的可靠平台。本实验所得的S100A10等差异表达蛋白可能是潜在的诊断胆囊癌的分子标志物或控制肿瘤生长的治疗靶点。
     第二部分人胆囊癌组织及胆囊良性组织的蛋白质组学分析
     目的应用比较蛋白质组学方法研究人胆囊癌组织和胆囊良性组织之间差异表达蛋白质。方法利用双向凝胶电泳(2-DE)对6例胆囊癌组织和6例胆囊良性组织的总蛋白进行分离,并用质谱仪对两组间差异蛋白质点进行肽指纹谱和串联质谱鉴定。利用蛋白质印迹分析和免疫组化法检测差异蛋白在胆囊癌组织和胆囊良性组织的表达。结果共有17个蛋白点被成功鉴定。其中在胆囊癌组织中高表达的有9个,它们是AnnexinA3, Phosphatidylethanolamine-binding protein 1(PEBP1),ACTG1 protein,GAPDH,Alcohol dehydrogenase,Fructose-bisphosphate aldolase,Interferon-induced protein with tetratricopeptide,acyl-CoA dehydrogenase,TTR protein;在胆囊癌组织中表达降低的有8个,分别是Superoxide dismutase,Plasma retinol-binding protein precursor,Alpha-crystallin B chain,Hemoglobin,Cathepsin D precursor,Aldo-keto reductase family 1 member B10,Tripartite motif-containing 45,Serotransferrin precursor。Western blot和免疫组化结果显示差异表达蛋白AnnexinA3和Phosphatidylethanolamine-binding protein 1(PEBP1)在胆囊癌组织中表达上调,与2-DE结果一致。结论以2-DE为基础的蛋白质组学技术是肿瘤研究的一种重要手段。本实验所得的AnnexinA3、PEBP1等差异表达蛋白可能成为潜在的诊断胆囊癌的分子标志物或控制肿瘤生长的治疗靶点。
     第三部分AnnexinA3-miRNA对胆囊癌细胞的生物学效应的研究
     目的构建针对AnnexinA3的miRNA真核表达载体,并导入胆囊癌细胞,探讨其对AnnexinA3基因的干扰作用以及对胆囊癌细胞生物学效应。方法人工合成AnnexinA3-miRNA的寡核苷酸链,将其插入到pcDNA?6.2-GW/EmGFPmiR载体中;采用脂质体转染法将构建重组体导入人胆囊癌细胞系SGC-996中;采用实时荧光定量PCR(Real-Time PCR)、免疫印迹法(Western blot)分别检测转染细胞AnnexinA3mRNA和蛋白的表达变化。采用细胞计数法检测实验组和对照组SGC-996细胞的增殖;用流式细胞术(FCM)检测转染AnnexinA3-miRNA载体的SGC-996细胞周期及凋亡;用细胞划痕实验观察各组SGC-996细胞的随意运动能力的变化;利用Transwell小室测定转染AnnexinA3-miRNA载体的SGC-996细胞的穿膜侵袭力。结果成功构建了AnnexinA3的miRNA真核表达载体AnnexinA3-miRNA;转染AnnexinA3-miRNA载体后,SGC-996细胞AnnexinA3 mRNA和蛋白表达均较对照组明显下降(p<0.05)。实验组SGC-996细胞增殖较对照组明显减慢(p<0.05)。干扰前后细胞周期无明显差异(p>0.05),但细胞凋亡明显增加(p<0.05)。干扰后胆囊癌细胞迁移能力明显下降(p<0.05)。实验组穿过基底膜的侵袭细胞数量明显少于对照组(p<0.01)。结论AnnexinA3-miRNA真核表达载体构建成功,转染SGC-996细胞后获得稳定表达,并可特异性封闭AnnexinA3的表达。该载体不仅可抑制SGC-996细胞增殖,诱导SGC-996细胞凋亡,而且还可显著抑制SGC-996细胞的侵袭力,为胆囊癌基因治疗研究提供了实验依据。
Part I Proteome analysis of human gallbladder cancer serum and normal human serum
     Objective To compare the serum proteome difference of gallbladder carcinoma patients and healthy subjects, and to provide experimental evidence for finding serum biomarkers of gallbladder cancer. Methods Proteomes of 6 pairs of clinical gallbladder cancer serum samples and normal human serum samples were obtained by two-dimensional gel electrophoresis(2-DE). Comprehensive analyses of proteins were focused on total protein spots exhibiting statistical alternations between the two groups. Protein identification was done by peptide mass fingerprinting with tandem mass spectrometry(MS). Western blot and immunohistochemistry(IHC) were used to detect the expression levels of differential protein S100A10 and haptoglobin in an independent series of serum and tissue samples. Results A total of 12 protein spot-features were found to be significantly increased and 12 significantly decreased in gallbladder cancer serum, including: Splicing factor 3B subunit 5, Cystatin-B, S100A10 Protein, Histone H2B type 2-E, Profilin-1, Eukaryotic translation initiation factor 1A, Isoform 1 of Eukaryotic translation initiation factor 5A-1, FERM domain containing 3, haptoglobin protein, Glyceraldehyde-3-phosphate dehydrogenase, Serum amyloid P-component precursor, harmonin isoform b3, Apolipoprotein A-I precursor, Myosin regulatory light chain 2, Isoform 1 of Protein canopy homolog 2 precursor, Proteasome subunit beta type-2, ARHGDIA, Superoxide dismutase [Mn], Isoform 1 of Ficolin-3 precursor, zinc alpha-2-glycoprotein 1, HP haptoglobin isoform 2 preproprotein, CD5 antigen-like precursor, CLU clusterin isoform, ITIH4 71kDa protein. The increased levels of S100A10 and haptoglobin protein found to be associated with gallbladder cancer was further confirmed by Western blot and immunohistochemistry analysis.
     Conclusion These results suggest that the combination of 2-DE with MS provides an effective strategy to discover differentially expressed proteins in gallbladder cancer which may be molecular markers for diagnosis or therapeutic targets.
     Part II Proteome analysis of human glabbladder cancer tissue and benign gallbladder tissue
     Objective To find out potential molecular targets for gallbladder carcinoma diagnosis and treatment by analyzing and comparing the proteins expressed in human gallbladder carcinoma tissue and benign gallbladder tissue.
     Methods Proteomes of 6 pairs of glabbladder cancer tissue samples and benign gallbladder tissues were analyzed by two-dimensional gel electrophoresis(2-DE). Comprehensive analyses of proteins were focused on total protein spots exhibiting statistical alternations between the two groups. Protein identification was done by peptide mass fingerprinting with mass spectrometry(MS). In addition, Western blotting and immunohistochemistry (IHC) were performed to examine the expression of certain candidate proteins in an independent series of samples. .
     Results Protein extracts of individual sample in each type of tissues were separated on two-dimensional gels. Seventeen proteins were successfully identified by MS, in which nine proteins were overexpressed in tumors and the other eight proteins were underexpressed. Western blotting and IHC further validated up-regulated expressions of two candidate protein in tumorous tissues: AnnexinA3 and PEBP1.
     Conclusion These results suggest that the combination of 2-DE with MS provides an effective strategy to discover differentially expressed proteins in gallbladder cancer which may be molecular markers for diagnosis or therapeutic targets.
     Part III Study of Biological Effects of AnnexinA3-miRNA in Gallbladder Cancer Cells
     Objectives To construct recombinant interfering RNA(miRNA) plasmid vector targeting annexinA3, and observe its impact on the growth and apoptosis of human gallbladder cancer cell line SGC-996 in vitro. Methods An annexinA3-miRNA targeting human annexinA3 mRNA common sequence was synthesized and it was inserted into pcDNA?6.2-GW/EmGFPmiR vector. The recombinant plasmid was transfected into SGC-996 cell by Lipofectin. The proliferation of SGC-996 cell was assessed by cell counting in experimental and control groups. The cell cycle and apoptosis of SGC-996 cells was observed by flow cytometry(FCM). The migratory and invasive ability of these cells was detected by scratch-wound healing assay and Transwell.
     Results The recombinant plasmids containing annexinA3 miRNA were successfully constructed. The expressions of annexinA3 mRNA and protein in SGC-996 cells of experimental groups were significantly decreased,compared to controls(p<0.05). The proliferation of SGC-996 cells in experimental groups was inhibited, compared to controls(p<0.05). FCM analysis showed that the cell cycle had no change, but annexinA3-miRNA can promote apoptosis(p<0.05). AnnexinA3 knockdown cells (pcDNA6.2-miR) exhibited significant decrease in migration. The number of migrated SGC-996 cells in experimental group was far less compared with controls(p<0.01). Conclusions It indicated that miRNA eukaryotic expression vector for annexinA3 would be successfully established. The administration of annexinA3-miRNA in SGC-996 cells can down-regulated annexinA3 expression, inhibit proliferation, induced apoptosis, and also inhibit the migratory and invasive ability. It suggested that miRNA-based targeting annexinA3 strategy might build the experimental foundation for the research of gene therapy in gallbladder cancer.
引文
[1] Albores-Saavedra J, Alcantra-VazquezA, Cruz-OrtizH, et al. The precursor lesions of invasive gallbladder carcinoma Hyperplasia, atypical hyperplasia and carcinoma in situ. Cancer, 1980, 45: 919~ 927.
    [2] Wakai T, Shirai Y, Yokoyama N, et al. Early gallbladder carcinoma does not warrant radical resection. Br J Surg, 2001, 88: 675~ 678.
    [3] Varshney S, ButiriniG, Gupta R. Incidental carcinoma of the gallbladder. Eur J Surg Oncol, 2002, 28: 4~ 10.
    [4] Ogura Y, Mizumoto R,Isaji S et a1. Radical operation for carcinoma of the gallbladder: presestatus in Japan. World Surg, 1991, 15(3): 337~ 343.
    [5] Fahim RB, McDonald JR, Richards JC et al. Carcinoma of the gallbladder: a study of its mode of spread. Ann Surg, 2006, 156:114~124.
    [6] Orth K, Beger HG. Gallbladder carcinoma and surgical treatment. Langenbecks Arch Surg, 2000; 385: 501~ 508.
    [7] Tsuji T, Kanemitsu K, Hiraoka T, et al. A new method to establish the rational extent of hepatic resection for advanced gallbladder cancer using dye injection through the cystic artery. HPB-(Oxford) , 2004; 6(1): 63~ 66
    [8]邹声泉,张林.全国胆囊癌临床流行病学调查报告.中国实用外科杂志, 2000, 20(1): 43~ 46.
    [9] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494~498.
    [1] Wasinger VC, Cordwell SJ, Cerpa Poljak A, et a1. Progress with geneproduct mapping of the Mdlicutos: Mycoplaanla genitalium. Electrophoresis, 1995, 16(7): 1090- 1094.
    [2] Rahman Roblick R, Roblick U J, Hellman U, et al. p53 targets identified by protein expression profiling. Proc-Natl-Acad-Sci-U-S-A, 2007 Mar 27; 104(13): 5401- 5406.
    [3] Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol-Cancer, 2007, 6: 25.
    [4] Chung C H, Levy S, Chaurand P, et al. Genomics and proteomics: emerging technologies in clinical cancer research. Crit-Rev-Oncol-Hematol, 2007, 61(1): 21- 25.
    [5] Chen R, Pan S, Brentnalr TA, et al. Profiling of Pancreaticcancer for biomarker. Mol Cell Proteolnics, 2005; 4(4): 523-533.
    [6] Bjorhall K. Mliotis T, Davidsson P. Comparison of different depletion strategies forinproved resulotion in proteomic analysis of human serum samples. Proteomics, 2005; 5(1): 307-317.
    [7] Heizmann CW, Ackermann GE, Galichet A. Pathologies involving the S100 proteins and RAGE. Subcell Biochem. 2007; 45: 93-138.
    [8] Donato R. S100: a muhigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functiona roles. Int J Biochem Cell Biol, 2001, 33: 637-668.
    [9] Yinemura Y, Endou Y, Kimura K, et a1. Inverse expression of S100A4 and E-cadherin is associated with metastatie potential in gastric cancer. Clin Can Res, 2000, 6: 4234-4242.
    [10] Johnsson N, Nguyen Van P, Soling HD. Functionally distinct serine phosphorylation sites of p36, the cellular substrate of retroviral protein kinase: differential inhibition of reassociation with p11. EMBO J, 1986, 5(13): 3455-3460.
    [11] Gu GY, Xie XD, Shi J, et al. Expression and significance of protein kinase substrate p36 in human urinary bladder cancer. J Med Coll PLA, 1997;12(1)47-49.
    [12] Bhavani K, Monte S, Brown NV. Effect of ethanol on p36 Protein kinase substrate and insulin receptor substrate 1 expression and tyrosyl phosphorylation in human hepatocellular carcinoma cells. Alcohol Clin Exp Res, 1995, 19(2):441-446.
    [13] Liu J, Rothermund CA, Ayala-Sanmartin J. Nuclear annexin II negatively regulates growth of LNCaP cells and substitution of ser 11 and 25 to glu prevents nucleo-cytoplasmic shuttling of annexin II. BMC Biochem, 2003, Sep 9; 4(1): 10-16.
    [14] Langlois MR, Delanghe JR. Biological and clinical significance of haptogtobin polymorphism in humans. Clin Chem, 1996, 42: 1589-1600.
    [15] Zhao Q, Duan W, Wu YM, et al. [Analysis of serum biomarkers of ovarian epithelial cancers based on 2-DE DIGE and MALDI TOF/TOF]. Zhonghua Zhong Liu Za Zhi. 2008, 30: 754-758.
    [16] Russell ST, Zimmerman TP, Domin BA. Induction of lipolysis in vitro and lose of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Aeta, 2004, 1636(1):59-68.
    [17] Russell ST, Tisdale MJ. Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo. Br J Cancer, 2002, 87(5): 580-584.
    [18] Abdul-Rahman PS, Lim BK, Hashim OH. Expression of high-abundance proteins in sera of patients with endometrial and cervical cancers: analysis using 2-DE with silver staining and lectin detection methods. Electrophoresis. 2007 Jun;28(12):1989-1996.
    [19] Descazeaud A, de la Taille A, Allory Y, et, al. Characterization of ZAG protein expression in prostate cancer using a semi-automated microscope system. Prostate, 2006 Jul 1; 66(10): 1037-1043.
    [20] Pennacchio LA, Myers RM. Isolation and characterization of the mouse cystatin B gene. Genome Res. 1996, 6: 1103-1109.
    [21] Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9 gene expressiong in glioblastoma cell line via RNA inference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene, 2004, 23(27): 4681-4689.
    [22]郭长青,王明荣,李继昌,等. cystatin B基因在人食管癌中的表达.中华消化杂志, 2001, 6: 343-345.
    [23] GRONBORG M, KRISTIANSEN TZ, IWAHORI A, et a1. Biomarker discover from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics, 2006, 5(1):157-171.
    [24] Ayscough KR. In vivo functions of actin-binding proteins. Curr Opin Cell Biol, 1998, 10(1): 102
    [25] Janke J, Schluter K, Jandrig B, et al. Suppression of tumorigenicity in breast cancer cells by the microfilament protion profilin1. J Exp Med, 2000, 191(10): 1675.
    [26] ]Bassuk AG, Barton KP, Anandappa RT, et al. Expression pattern of the Ets-related transcription factor Elf-1. Mol Med. 1998, 4(6): 392-401.
    [27] Lelievre E, Lionneton F, Soncin F, et al. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Biochem Cell Biol, 2001, 33(4): 391-407.
    [28] Liu SL, Lin X, Shi DY, et a1. Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways .Arch Biochem Biophys, 2002, 406: 173-182.
    [29] Toh Y, Kuninaka S, Oshiro T, et a1. Overexpression of manganese superoxide dismutase mRNA may correlate with aggressiveness in gastric and colorectal adenocarcinomas. Int J Oncol, 2000; 17: 107-112.
    [30] Janssen AM, Bosman CB, Kruidenier L , et a1. Superoxide dismutases in the human colorectal cancer sequence. J Cancer Res Clin Oncol, 1999; 125: 27-335.
    [31] Tokunaga K, Nakamura Y, Sakata K, et al. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res, 1987, 47(21): 5616.
    [32] Vila MR, Nicolas A, Morote J , et al. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer, 2000, 89(1): 152.
    [33] Revillion F, Pawlowski V, Hornez L, et al. glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer, 2000, 36(8): 1038.
    [34] Schek N, Hall BL, Finn OJ. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human pancreatic adenocarcinoma. Cancer Res, 1988, 48: 6354.
    [1] Lu CA, C.Altieri D, Tanigawa. Expression of a novel antiapoptosis gene, surviving, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res, 1998; 58(9):1808~ 1.
    [2] Ross TS, Whiteley B, Graham RA, et al. Cyclic hydrolasetran sfected 3T3 cells have low levels of inositol 1, 2-cyclic phosphate and reach confluence at low density. J Biol Chem,l99l, 266: 9086- 9092.
    [3] Emst JD, Hore E, Blaekwood RA, et a1. Purification and eharaeterization of anabundan t eytosolie protein from human neutrophils that promotes Ca2+ dependent aggregation of isolated specific gran ules. J Clin Invest, 1990, 85: 1065-1071.
    [4] Yan XD, Pan LY Proteomic analysis of human ovarian cancer cell lines and their platinum-resistant clones. Zhonghua Fu Chan Ke Za Zhi, 2006, Sep; 41(9):584-587.
    [5] K?llermann J, Schlomm T, Bang H, et a1. Expression and prognostic relevance of annexin a3 in prostate cancer. Eur Urol, 2008 Dec; 54(6): 1314-23. Epub 2008 Jan.
    [6] Liu YF, Xiao ZQ, Li MX, et a1. Quantitative proteome analysis reveals annexin A3 as a novel biomarker in lung adenocarcinoma. J Pathol. 2009 Jan; 217(1): 54-64.
    [7] Yeung K, Seitz T, Li S, et a1. Suppression of Raf-1 kinase activity and MAP kinase signaifing by RKII). Nature, 1999, 401r6749): 173-177.
    [8] Lorenz K, Lohse M J, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature, 2003, 426(6966): 574-579
    [9] Yeung KC, Rose DW, DhilIon AS, et a1. Raf kinase inhibitor protein interacts with NF-KB-inducing kinase and TAK1 and inhibits NF-KB activation. Mo1 Ce1l Biol, 200l, 2l(21): 7207-7217.
    [10] Fu Z,Smith PC,Zhang L,et a1.Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst, 2003, 95(12): 878-889
    [11]肖良,丁书茂,鲁志松,等.SOD模拟化合物对离体肝癌细胞内DNA的损伤作用.肿瘤防治杂志,2004,l1(11):l130-l132.
    [12] Rochefort H, Garcia M, Glondu M, et a1. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview [J]. Clin Chim Acta, 2000, 291(2):157-170.
    [13]刘贵秋.组织蛋白酶D与恶性肿瘤的侵袭和转移的相关性研究.中国肿瘤临床与康复, 2007, l4(6): 555-557.
    [14] Bmbm T, Oukhattar L. Purification and characterization of glyceraldehyde-3- phosphate dehydrogenase from europearl pilelmrd sardina pilchardus. Acta Bioehim Biophys Sin, 2007, 39(12): 947-954.
    [15] Harada N, Yasunaga R, Higashimura Y, et al. Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostatecancer cells. J Biol Chem. 2007 Aug 3; 282(31):22651-22661. Epub 2007 Jun 6.
    [16] Hansen CN, Ketabi Z, Rosenstierne MW. et al. Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 2009 Jan;117(1): 53-59.
    [17]Shih JY, Lee YC, Yang SC, et a1. Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clin Exp Metastasis, 2003, 20(1): 69-76.
    [18]万里凯李航黎乐群,等.超声联合1,6二磷酸果糖醛缩酶对肝癌诊断价值的研究.中国实用医药, 2008, 3( 2l): 6-7.
    [19]李航,黎乐群,万里凯,等. 1,6-二磷酸果糖醛缩酶对无水酒精注射治疗原发性肝癌中的观察.中国肿瘤临床,2004,31,309.
    [20]Castaldo G, Calcagno G, Sibillo R, et al. Quantitative analysis of aldolase A mRNA in liver discriminates between hepatocellular carcinoma and cirrhosis. Clin Chem, 2000, 46(7): 901-906.
    [21]Ojika T, Imaizumi M, Watanabe H, et al. [An immunohistochemical study on three aldolase isozymes in human lung cancer]. Nippon Kyobu Geka Gakkai Zasshi, 1992, 40(3): 382-386.
    [22]Takashi M, Zhu Y, Nakano Y, et al. Elevated levels of serum aldolase A in patients with renal cell carcinoma. Urol Res, 1992, 20(4): 307-311.
    [23] Liu L, Wang J, Liu B, et al. Serum levels of variants of transthyretin down-regulation in cholangiocarcinoma. J Cell Biochem, 2008 Jun 1; 104(3): 745-55.
    [1] Eibashir SM, Harborth J. Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498.
    [2]孟颖,汤华,强冉,等. MicroRNA对肿瘤细胞活性的影响.肿瘤, 2006, 26: 692-693.
    [3] Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA. 2003 Mar; 9(3): 277-9.
    [4] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854.
    [5] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulatesdevelopmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901-906.
    [6] Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408: 86-89.
    [7] Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2005, 37: 766-770.
    [8] Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 2005, 120: 21-24
    [9] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294: 862-864.
    [10] Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev, 2002, 16: 1616-1626.
    [11] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297.
    [12] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23: 4051-4060.
    [13] Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J, 2005, 24: 138-139.
    [14] Yi RQin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003, 17: 3011-3016.
    [15] Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004, 10: 185-191.
    [16] Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell, 2004, 16: 861-865.
    [17] Yekta S, Shih III, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004, 304: 594-596.
    [18] Boden D, Pusch O, Silbermann R, et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res, 2004, 32: 1154-1158.
    [19] Yu Z, Raabe T, Hecht NB. MicroRNA Mim122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod, 2005, 73: 427-433.
    [20] Ambros V. The functions of animal microRNAs. Nature, 2004, 431: 350-355.
    [21] Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mo Cell, 2002, 9: 1327-1333.
    [22] McManus MT, Petersen CP, Haines BB, et al. Gene silencing using micro-RNA designed hairpins. RNA, 2002, 8: 842-850.
    [23] Dickins RA, Hemann MT, Zilfou JT, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet, 2005, 37: 1289-1295.
    [24] Zhou H, Xia XG, Xu Z. An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res, 2005, 33: e62
    [25] S Mussunoor, GI Murray. The role of annexins in tumour development and progression. J Pathol .2008; 216:131-140.
    [26] Park JE, Lee DH, Lee JA, et al. Annexin A3 is a potential angiogenic mediator. Biochem Biophys Res Commun. 2005 Dec 2;337(4):1283-1287. Epub 2005 Oct 10.
    [27] Liu YF, Xiao ZQ, Li MX, et al. Quantitative proteome analysis reveals annexin A3 as a novel biomarker in lung adenocarcinoma. J Pathol. 2009 Jan; 217(1):54-64.
    [28] K?llermann J, Schlomm T, Bang H, et al. Expression and prognostic relevance of annexin A3 in prostate cancer. Eur Urol. 2008 Dec; 54(6): 1314-1323. Epub 2008 Jan 16.
    [29] Yan XD, Pan LY. [Proteomic analysis of human ovarian cancer cell lines and their platinum-resistant clones]. Zhonghua Fu Chan Ke Za Zhi. 2006 Sep; 41(9): 584-587.
    [30] Schostak M, Schwall GP, Poznanovi? S, et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection. J Urol. 2009Jan;181(1):343-353. Epub 2008 Nov 13.
    [31] Liu YF, Xiao ZQ, Li MX, et al. Quantitative proteome analysis reveals annexin A3 as a novel biomarker in lung adenocarcinoma. J Pathol. 2009 Jan; 217(1): 54-64.
    [32] Wang JW, Peng SY, Li JT, et al. Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer Lett. 2009 Aug 18;281(1):71-81. Epub 2009 Mar 18.
    [33] Yan X, Yin J, Yao H, Mao N, Yang Y, Pan L. Increased Expression of Annexin A3 Is a Mechanism of Platinum Resistance in Ovarian Cancer. Cancer Res. 2010 Jan 26. [Epub ahead of print]
    [34] Wang Y, Singh R, Massey AC, et al. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J Biol Chem, 2008, 283(8): 4766-4777.
    [1]黄洁夫.有关胆囊癌的若干问题.中国实用外科杂志,1997,17(9):517-519.
    [2]郑树森,梁廷波,秦运升,等.原发性胆囊癌98例疗效及预后评析.中华外科杂志,2004,42(9):517-519.
    [3]田华,陈力,刘挂杰,等.意外胆囊恶性肿瘤的外科治疗.中华外科杂志,2005,43(13):836-838.
    [4] Abi B, Neugut AI. Diagnostic and nmnagement issues in gallbladder carcinoma. Oncology. 1995, 9(1): 19-24.
    [5]石景森,刘刚,周连锁,等.原发性胆囊癌601例临床分析.中华肝胆外科杂志,1993,4:216~218.
    [6] Diehl AK. Epidemiology of gallbladder cancer: a synthesis of recent data. J Natl Cancer Inst, 1980, 65: 1209-1214.
    [7] Nervi F. Frequency of gallbladder cancer in Chile: a high-risk area. Int J Cancer, 1988, 4l(5): 657-660.
    [8] Zatonski WA, Lowenfels AB, Boyle P, et a1. Epidemiologic aspects of gallbladder cancer: a case-control study of the SEARCH program of the international agency for research on cancer. J Natl Cancer Inst, 1997, 89: l132-l138.
    [9] Lowenfels AB, Maisonneuve P, Boyle P, et al. Epidemiology of gallbladder cancer. Hepatogastroenterology. 1999, 46(27): 1529-1532.
    [10] Roa I, Ibacache G, Carvallo J, et al. [Microbiological study of gallbladder bile in a high risk zone for gallbladder cancer]. Rev Med Chil. 1999 Sep;127(9):1049-1055.
    [11] Metz DC. Helicobacter colonization of the biliary tree: commensal, pathogen, or spurious finding? Am J Gastroenterol. 1998, 93(10):1996-1998.
    [12]石景森.原发性胆囊癌的流行病学研究.肝胆胰外科杂志,2003,15(1):1-3.
    [13] Kozuka S, Tsubone M, Yasui A, et a1. Relation of adenoma to carcinoma in the gallbladder. Cancer, 1982, 50(10): 2226-2234.
    [14] Ootani T, Shirai Y, Tsukada K, et al. Relationship between gallbladder carcinoma and the segmental type of adenomyomatosis of the gallbladder. Cancer. 1992 Jun 1; 69(11): 2647-2452.
    [15]张林,邹声泉.胆囊腺瘤一腺癌中的DNA含量和基因表达.中华肝胆外科杂志,2004,10(7):460-462.
    [16] Itokawa F, Itoi T, Nakamura K, et al. Assessment of occult pancreatobiliary reflux in patients with panereaticobiliary disease by ERCP. J Gastroenterol, 2004, 39: 988-994.
    [17] Xiao X, Li H, Lu Z , et al. Potential diagnostic value of pancreatic isoamylases for pancreaticobiliary maljunction with mild biliary dilatation in patients and a porcine model. J Pediatr Surg, 2004, 39: 1490-1494.
    [18] Sai JK, Suyama M, Kubokawa Y, et al. Occult pancreatobiliary reflux and gallbladder carcinoma. Nippon Shokakibyo Gakkai Zasshi, 2003, 100: 981-986.
    [19]肖现民.不断加深对胰胆管合流异常的认识.肝胆外科杂志,2003,11:161-162.
    [20] Itoi T, Tsuchida A, Itokawa F, et al. Histologic and genetic analysis of the gallbladder in patients with occult pancreatobiliary reflux. Int J Mol Med, 2005, 15: 425-430.
    [21] Mizuno M, Kato T, Koyawa K. An analysis of mutagens in the contents of the biliary tract in pancreaticobiliary maljunction. Surg Today, 1996, 26: 597-602.
    [22] Yang Y, Fujii H, Matsumoto Y, et al. Carcinoma of the gallbladder and anomalous arrangement of the pancreaticobiliary ductal system: cell kinetic studies of gallbladder epithelial cells J Gastroenterol, 1997, 32: 801-807.
    [23] Nagai M, Watanabe M, Iwase T, et al. Clinical and genetic analysis of noncancerous and cancerous biliary epithelium in patients with pancreaticobiliary maljunction. World J Surg, 2002, 26: 91-98.
    [24] Ichikawa Y, Kamiyama M, Sekido H, et al. Telomerase activity and Bcl-2 expression in gallbladders of pancreaticobiliary maljunction patients: a preliminary study. J Hepatobiliary Pancreat Surg, 2004, 11: 34-39.
    [25] Salvatore Madonia, Emma A. Cal9-9 to Rule Out pancreatic or Billary cancer Among Patients with Cholestasis:An Unsuitasle Test? Digestive Disease and Science, 2007, 52(4): 1125.
    [26] Aretxabala X, Riedeman JP, RoaI et a1. CA19-9 and earcinoembryonic antigen in gallbladder cancer. Rev Med Chil, 1996, 124(1): 11.
    [27]丁华.肿瘤标志物糖类抗原CA19-9的临床应用进展.广西医学,2004,26(5):693
    [28] Matsuda M, Shimizu Y, Chikamatsu E, et al. [Role of carcinoembryonic antigen, carbohydrate antigen 19-9 and cytology of bile in diagnosis of biliary and pancreatic cancer]. Nippon Geka Gakkai Zasshi. 1991 Jun; 92(6): 716-721.
    [29] St Laurent M, Esterl RM Jr, Halff GA, et al. Gallbladder carcinoma producing alpha-fetopmtain. J Clin Gastroenterol, 1999, 28(2): 155-158.
    [30] Wongkham S, Sheehan JK, Boonla C, et a1. Serum MUC5AC mucin as a potential marker for cbolangiocarcinoma. Cancer Lett. 2003, 195(1): 93-99.
    [31] Noguchi Yoshikazu, Saito Aya, Yohei Miyagi, et al. Suppression of facilitative glucose transporter 1 mRNA can suppresstulnor growth. Cancer Lett, 2000, 154 (2): 175-182.
    [32] Kim YW, Park YK, Yoon TY, et a1. Expression of the GLUT1 glucoe transporter in gallbladder carcinoma. Hepatogastroenterology, 2002, 49(46): 907-909.
    [33] Uchida N, Tsutsui K, Ezaki T, et al. Combination of assay of human telomerase reverse transcriptase mRNA and cytology using bile obtained by endoscopic transpapillary catheterization into the gallbladder for diagnosis of gallbladder carcinoma. Am J Gastroenterol. 2003 Nov; 98(11): 2415-2419.
    [34] Giatromanolaki A, Koukourakis MI, Simopoulos C, et al. Vascular endothelial growth factor (VEGF) expression in operable gallbladder carcinomas. Eur J Surg Oncol, 2003 Dec; 29(10): 879-883.
    [35]武华,赵靖,李正中. PCNA在胆囊癌中的意义.肿瘤研究与临床,1996,3: 149-150.
    [36]莫华,黎冠群,危群. Ki-67抗原在原发性胆囊癌中的表达及其意义.实用癌症杂志,2001,1:44-46.
    [37]许元鸿,郭仁宣,郭克建.表皮生长因子受体在原发性胆囊癌中的表达及其预后意义.中国医科大学学报, 1998, 27(1): 42-44.
    [38]朱亚青,陈时周,陈玉泉.转化生长因子β1在胆囊癌中的表达及意义.肝胆胰外科杂志, 2001, 4: 207-208.
    [39]陈汝福,邹声泉.雌激素受体与原发胆囊癌临床病理关系的研究.肝胆外科杂志, 1999, 7(4): 312-313.
    [40] Watanable M, Asska M, Tanaka J, et al. Point mutation of K-ras gene codon in biliary tract tumors. Gastroenterology, 1994; 107: 1147-1153.
    [41] Imai M, Hoshi T, Ogawa K. K-ras codon 12 mutation in billiary tract tumors detected by polymerse chain reaction denatuning gradient gel electrophoresis. Cancer, 1994; 73: 2727-2733.
    [42] Ajika T, Fujimori H, Onoyama H, et al. K-ras gene mutation in gallbladder carcinoma and dysplasia. Gut, 1996; 38: 426-428.
    [43] Hanada K, Tsuchida A, Iwao T, et al. Gene mutations of K-ras in gallbladder mucosae and gallbladder caicinoma with an anomalous junction of the pancreaticobiliary duct. Am J Gastroenterol, 1999; 94:1638-1641.
    [44] Roa I, Melo A, Roa J, et al. P53 gene mutation in gallbladder cancer. Rev Med Chil, 2000; 128: 251-258.
    [45] Jonas S, Springmeier G, Tauber R, et al. p53 hot-spot mutational analysis in advanced Western gallbladder carcinoma. World J Surg, 1997 Sep; 21(7): 768-772.
    [46]沈振斌,童赛雄,施达仁,等. P53和平P16在胆囊癌中的表达.肿瘤,1998;18:341-342.
    [47] Roa I, Villaseca M, Araya J, et al. p53 tumour suppressor gene protein expression in early and advanced gallbladder carcinoma. Histopathology. 1997, 31(3): 226-230.
    [48] Kasuya K, Watanabe H, Nakasako T, et al. p53 protein overexpression and K-ras codon 12 mutation in pancreatic ductal carcinoma: correlation with histologic factors. Pathol Int, 1997, 47(8): 531-539.
    [49] Yukawa M, Fujimofi T, Hirayawa D, et a1. Expression of oncogene products and growth factors in early gallbladde cancer and advanced gallbladder cancer and chronic cholecystitis. Human pathol, 1993, 24(1): 37-40.
    [50]汪群,孙权.细胞周期素D-1及相关基因在胆管癌中的进展.国外医学,外科学分册,2005,(5):359-362.
    [51]陈澍周,陈玉泉,施沈平,等.胆道肿瘤组织中p62和p21表达的临床意义.中华肝胆外科杂志,2001,2:94-97
    [52] Wang BL, Zhai HY, Chen BY, et al. Clinical relationship between MDR1 gene and gallbladder cancer. Hepatobiliary Pancreat Dis Int, 2004, 3(2): 296-299.
    [53] Roa E I, Lantadilla H S, Ibacache S G, et al. [p53 and p27 gene expression in subserosal gallbladder carcinoma]. Rev Med Chil, 2009 Aug; 137(8): 1017-1022.
    [54] Kim JH, Kim HN, Lee KT, et al. Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumour Biol, 2008; 29(1): 41-49.
    [55] Fan YZ, Fu JY, Zhao ZM, et al. Inhibitory effect of norcantharidin on the growth of human gallbladder carcinoma GBC-SD cells in vitro. Hepatobiliary Pancreat Dis Int, 2007 Feb; 6(1): 72-80.
    [56]刘付宝,李江涛,刘颖斌,等.原发性胆囊癌染色体比较基因组杂交分析.中华实验外科杂志,2007,12:1466-1467.
    [57] Sato M, Ishida H, Konno K, et a1. Localized gallbladder cacinoma: sonographic findings. Abdom Imaging, 2001, 26(6): 619-622.
    [58] Bach AM, Loring LA, Hann LE, et a1. Gallbladder cancer: can ultrasonography evaluate extent of disease?. J Ultrasound Med, 1998, 17(5): 303-30.
    [59] Fujita N, Noda Y, Kobayashi G, et a1. Diagnosis of the depth of invasion of gallbladder carcinoma by EUS. Gastrointest Endosc, 1999, 50(5): 659-663.
    [60] Inui K, Nakazawa S. Diagnosis of depth of invasion of gallbladder carcinoma with endosonography. Nippon Geka Gakkai Zasshi, 1998, 99(10): 696-699.
    [61] Komatsuda T, Ishida H, Konno K, et a1. Gallbladder carcnoma: color Doppler sonography. Abdom Imaging, 2000, 25 (2): 194-197.
    [62] Kim BS, Ha HK, Lee IJ, et a1. Accuracy of CT in local staging of gallbladder carcinoma. Acta Radiol, 2002, 43(1): 71-76.
    [63] Yoshimitsu K, ,Honda H, Shinozaki K, et a1. Helical CT of the local spread of carcinoma of the gallbladder: evaluation according to the TNM system in patients who underwent surgical resection. AJR, 2002, 179(2): 423-428.
    [64] Vialle R, Velasco S, Milin S, et al. [Imaging in the diagnosis and the staging of gallbladder tumors]. Gastroenterol Clin Biol. 2008 Nov; 32(11): 931-41.
    [65] Hatano S, Kondoh S, Akiyama T, et a1. Evaluation of MRCP compared to ERCP in the diagnosis of biliary and pancreatic duct. Nippon Rinsho, 1998, 56(11): 2874-2879.
    [66] Wells P, Gunn RN, Alison M, et al. Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res. 2002, 62(20): 5698-5702.
    [67] Bos R, van Der Hoeven JJ, van Der Wall E. et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002, 20(2): 379-87.
    [68] Anderson CD, Rice MH, Pison W, et al. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangioma . J Gastrointest Surg, 2004, 8: 90-97.
    [69] Kato T, Tsukamoto E, Kuge Y, et al. Clinical role of 18F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur J Med Mol Imaging, 2002, 29: 1047-1054.
    [70] Koh T, Taniguchi H, Yamaguchi A, et al. Differential diagnosis of gallbladder cancer using positron emission tomography with fluorine-18-labeled fluorodeoxyglucose (FDG-PET). J Surg Oncol, 2003, 84: 74-81.
    [71] Rodriguez-Fernandez A, Fomez-Rio M, Llamas-Elvira JM, et al. Positron emission tomography with [18F]-fluoro-2-deoxy-D-glucose for gallbladder cancer diagnosis. Am J Surg, 2004, 188: 171-175.
    [72] Jaffer F A, Weissleder R. Molecular imaging in the clinical arena. JAMA, 2005, 293(7): 855-862.
    [73] Barrett T, Brechbiel M, Bernardo M, et al. MRI of tumor angiogenesis. J Magn Reson Imaging, 2007, 26(2): 235-249.
    [74] Ntziachristos V, Bremer C, Graves EE, et al. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging, 2002, 1(2): 82-88.
    [75] Ntziachristos V, Tung CH, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med, 2002, 8(7): 757-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700