益生菌Lactobacillus casei Zhang蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌广泛存在于动物、植物及自然环境中,是同人类生活和生产密切相关的重要微生物之一。Lactobacillus casei Zhang是内蒙古农业大学“乳品生物技术与工程”教育部重点实验室筛选自内蒙地区、蒙古国和新疆地区牧民家庭以传统方法制作的自然发酵酸马奶中,研究表明,该菌株具有许多重要益生性状和功能,尤其是对酸和胆盐具有较强的耐受性,是乳酸菌研究和益生菌开发利用的理想菌种。
     此项研究从蛋白质组的水平,对益生菌L. casei Zhang在胆盐和酸胁迫下蛋白质差异表达及其分子机制进行了探讨。将蛋白质组学技术与基因组学、代谢组学、传统生物学技术等相结合,为研究乳酸菌对环境胁迫的反应、耐受和适应机制,为益生菌分离筛选、开发推广,提供了较为全面系统的研究思路。
     研究利用液氮研磨法成功分离提取了L. casei Zhang菌体蛋白质,系统优化了干酪乳杆菌蛋白质组双向凝胶电泳技术(2-DE),使之有效地用于干酪乳杆菌双向凝胶电泳图谱的构建。利用上述方法和技术,研究首先建立了L. casei Zhang和对比菌株L. casei XM2-1在pI 4-7范围内不同生长阶段的全蛋白质表达图谱,并且比较了L. casei Zhang在胆盐和酸胁迫下差异表达蛋白质图谱。经过比较分析,研究利用质谱检测技术和生物信息学技术对其中差异表达蛋白质进行了鉴定、功能分类和代谢途径分析等。同时,利用实时荧光定量PCR技术对某些差异表达蛋白质的相应基因进行了mRNA水平的分析与验证。结果表明:
     经过对L. casei Zhang在对数生长期与稳定期双向凝胶电泳图谱分析显示,利用优化的蛋白质组双向凝胶电泳技术可以分离到L. casei Zhang约500个蛋白点,通过基质辅助激光解吸电离飞行时间质谱(MALDI-TOF/MS)鉴定出110种蛋白质,并对蛋白质功能、密码子偏好性、蛋白疏水性等进行了分析,从而构建了L. casei Zhang的参考双向凝胶电泳图谱。
     进一步比较分析L. casei Zhang对数生长期与稳定期的2-DE图谱表明,47种蛋白质在L. casei Zhang不同生长阶段的表达变化明显,其中33种蛋白质在稳定期时的蛋白表达量比对数生长期增强至少2.5倍,包括Dnak、GroEL、LuxS、PK和GalU等19种蛋白质表达量增强在3.0倍以上;此外,6种蛋白质表达量在稳定期下降2.5倍以上;2种蛋白质只在对数生长中期表达;8种蛋白质只发现于稳定期图谱中。根据功能分类,这些差异蛋白质主要为应激蛋白及代谢相关蛋白,可能与L. casei Zhang稳定期对环境变化具有较强耐受性有密切关系。同时,研究利用实时荧光定量PCR技术对其中的8个差异蛋白质,包括DnaK、GroEL、Hsp20-1、Hsp20-2、Galactose mutarotase related enzyme、Beta subunit of pyruvate dehydrogenase complex E1 componen、UDP-glucose pyrophosphorylase和Esterase C的相应基因进行了mRNA水平的动态变化分析,显示不同的基因具有的不同表达模式。而对比菌株L. casei XM2-1与L. casei Zhang的双向凝胶电泳图谱非常相似,说明了它们是同一种属,但是存在菌株间差异表达蛋白质。L. casei XM2-1在对数生长期与稳定期双向凝胶电泳图谱分析表明,有16种蛋白质表达变化明显,其中12种蛋白质在稳定期表达强度增强2倍以上,而有2种蛋白质表达量在稳定期下降。
     利用双向凝胶电泳技术和质谱技术,研究从蛋白质组的水平对L. casei Zhang在胆盐胁迫下的蛋白质差异表达情况及其胆盐耐受机制进行了初步探索。结果表明,与不含胆盐正常生长至对数生长中期的菌体相比,L. casei Zhang在含有1.5%胆盐的培养基中生长至对数生长期中期,有26种蛋白质表达发生了变化,其中包括应激蛋白、糖代谢蛋白、肽酶、氨基酸代谢蛋白、转录蛋白、核糖体蛋白、核酸代谢蛋白和脂肪代谢蛋白等,说明L. casei Zhang应对胆盐应激具有复杂的调控机制,不是一种或几种蛋白质发生作用。经过实时荧光定量PCR验证和短时间胆盐胁迫蛋白质组研究,其中与应激作用、维持细胞膜稳定性及抗氧化等机制相关联的蛋白质可能在L. casei Zhang耐胆盐中起到非常重要的作用。此外,在研究中还发现,GroEL、DnaK、UspA、GalU、NagA、LuxS、EF-Tu和30S ribosomal protein S2等蛋白质在L. casei Zhang稳定期蛋白质组比较中表达量也增强,也许暗示胆盐与酸应激对干酪乳杆菌有某些相似的胁迫作用,从而诱导了共同的应激机制。但是,胆盐和酸胁迫这两种不同的环境压力也可诱导L. casei Zhang产生不同的特异性表达差异蛋白质,也表明了不同胁迫可能对L. casei Zhang产生不同的影响。
     L. casei Zhang和对比菌株L. casei XM2-1酸胁迫下生长蛋白质变化结果显示,在不同pH值条件下生长时,分别有15种和14种蛋白质表达发生了变化,主要包括应激蛋白、脂酶、翻译因子等。两株菌在不同pH值下生长虽然有相似的蛋白差异点,但也有个别差异蛋白质表现出菌株依赖性,可能是不同菌株在酸胁迫下特异性表达的差异蛋白质。
     利用双向电泳技术和质谱技术,对酸和胆盐环境胁迫下干酪乳杆菌L. casei Zhang差异蛋白质组进行了比较研究,不仅有利于从分子水平上揭示其耐受和适应酸和胆盐胁迫的机制,还可以为L. casei Zhang的安全性和其他益生特性研究,提供理论依据,从而为开发、利用和推广我国具有自主知识产权的益生菌干酪乳杆菌L. casei Zhang奠定基础。
Lactobacillus casei Zhang, isolated from traditional home-made koumiss in Inner Mongolia of China, was considered as a new probiotic bacterium by probiotic selection tests, especially L. casei Zhang was able to anti-acid and bile salts.
     In this study, a proteomic research was carried out to identify and characterize proteins expressed by L. casei Zhang under acid or bile salts stress after optimizing the two-dimensional gel electrophoresis (2-DE) conditions.
     Cytosolic proteins of the strain cultivated in MRS broth in the exponential phase and stationary phase were resolved by two-dimensional gel electrophoresis (2-DE) using pI 4-7 linear gradients. The number of protein spots quantified from the gels was 487±21 (exponential phase) and 494±13 (stationary phase) respectively, among which a total of 110 proteins were identified by MALDI-TOF/MS and/or MALDI-TOF/TOF according to significant growth phase-related differences or high expression intensity proteins. Accompanied with analysis of the COG, CAI, GRAVY value of each protein identified to the whole set of genes encoding proteins of L. casei Zhang, the study provided a very first insight into the profile of protein expression as a reference map of L. casei.
     Forty-seven spots of L. casei Zhang were also found in the study showing statistically significant differences between exponential phase and stationary phase. Thirty-three of them increased at least 2.5-fold in the stationary phase in comparison with the exponential phase, and including nineteen protein spots (e.g., Hsp20, Dnak, GroEL, LuxS, PK, GalU) whose intensity up-shifted above 3.0-fold. The transcriptional profiles were conducted to confirm several important differential expression proteins by using real-time qRT-PCR. The analysis suggests that the differentially expressed proteins were mainly categorized as stress response proteins and key components of central and intermediary metabolism, implicating these proteins might play potential important role for the adaptation to the surroundings, especially the accumulation of lactic acid in the course of growth, and the physiological processes in bacteria cell. The furter proteomic analysis of L. casei XM2-1 in exponential phase and stationary phase found that sixteen spots were in the study showing statistically significant differences, including 12 proteins up-shifted and 2 proteins down-regulated. From one point of view, the similarity of 2-DE maps between L. casei XM2-1 and L. casei Zhang proved they are belonging to the species of L. casei. From another point, there was particularly differential expression proteins depended on the individual strain.
     Proteome of L. casei Zhang was studied to achieve a better understanding of the ability to anti-bile salts stress. The protein patterns obtained under growing with 1.5 % or bile salts free condition were compared by 2-DE. Twenty-six proteins were identified to display clearly differential expression, and function annotation demonstrated that they mainly belonged to stress response proteins, carbohydrates metabolism, maintaining membrane stability, amino acid metabolism and anti-oxidative stress response, translation, ribosomal protein, nucleotide metabolism, fat acid metabolism and unknown function. The findings indicated that the response of L. casei Zhang to bile salts stress involves a complex physiological mechanism. From the results of further proteomic study, which the L. casei Zhang instantaneous exposing in 1.0 % oxgall for 30min under changeless of pH condition, the conserved hypothetical protein LCAZH_0885, cysteine synthase, acetyltransferase, aminopeptidase C, and dioxygenase, which deduced by long time bile salts stress, were also found changing expression. Moreover, transcriptional expression of some genes was validated by using the real-time qRT-PCR. On these results, the analysis presumes that proteins involved in the stress response, maintaining cell membrane stability, and anti-oxidative stress response may be playing an important role for bile salts tolerance in L. casei strains.
     To identify proteins that are differentially expressed by two strains of L. casei Zhang and L. casei XM2-1 growing under conditions of low pH, whole cellular proteins extracted from bacteria grown in batch culture at pH 7.0 or 5.5 were analyzed by 2-DE electrophoresis. Fifteen and forteen proteins, including stess proteins, esterase, and translation factor, etc., altered expression at low pH respectively in L. casei Zhang and L. casei XM2-1. Tht futher analysis shows that there were similar deduced proteins by the acid stress in both L. casei strains, and also had the special expression proteins depended on each strain.
引文
1 Wilkins M R,Sanchez J C,Gooley A A,Appel R D,Humphery-Smith I,Hochstrasser D F,Williams K L. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genetic Engineering Rev,1996,13:19-50.
    2贺福初.蛋白质组学研究——后基因组时代的生力军[J].科学通报,1999,44(2): 113-122.
    3何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报:自然科学版,2002,38(4):58-562.
    4 Omenn G. S.,The HUPO human plasma proteome project[J].Proteomics,2007, 1(8):769-779.
    5高雪,郑俊杰,贺福初.我国蛋白质组学研究现状及展望[J].生命科学,2007, 19(3):257-263.
    6 He F. Human liver Proteome Project: Plan, Progress, and perspectives. Mol Cell Proteomics, 2005, 4:1841-1848.
    7曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊,2002,3:167-169.
    8 O'Farrell et al.High resolution two-dimensional electrophoresis of proteins[J].1975,The Journal Biological Chemistry,250(10):4007-4021.
    9牛屹东.蛋白质双向电泳实验手册[M].北京:北京大学医学出版社,2006.
    10 Klose J., Kobalz U.Two-dimensional eletrophoresis of proteins: an updated protocol and implications for a function analysis of the genome [J].Electrophoresis, 1995, 16:1034-1059.
    11郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    12王凤茹.双向电泳应注意的几个关键问题[J].生物技术通报,2005,6:62-64.
    13李林,吴家睿,李伯良.蛋白质组学的产生及其重要意义[J].生命科学,2002,30(6):533-539.
    14 Shevchenko A,Loboda A,Shevchenko A,Ens W,Standing KG.MALDI quadrupole time-of-flight mass spectrometry:a powerful tool for proteomic research[J].Anal Chem, 2000, 72:2132-2141.
    15钟丽君,万乐人,彭嘉柔.Q-Tof Ultima Global质谱仪的简介及应用[J].现代仪器,2005,11(1):32-34.
    16孙瑞祥,付岩,李德泉,张京芬,王晓彪,盛泉虎,曾嵘,陈益强,贺思敏,高文.基于质谱技术的计算蛋白质组学研究[J].中国科学信息科学,2006,36(2):222-234.
    17 Zenobi R, Knochenmuss P. Ion formation in MALDI mass spectrometry[J].Mass Spectrometry Rev,1998,17:337-366
    18钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社,2003.
    19 Cole R.B. Some tenants pertaining to electrospray ionisation mass spectrometry[J]. J Mass Spectrometry, 2000, 35:763-772.
    20 Traini M.,Gooley A.A.,Ou K., et al. Towards an automated approach for protein identification in proteome projects [J]. Electrophoresis, 1998,19:1941-1949
    21陈铭.后基因组时代的生物信息学[J].生物信息学,2OO4,2(2):29
    22成海平,钱小红.蛋白质组研究的技术体系及其进展[J].生物化学与生物物理进展,2000,27(6):584-588.
    23康熙雄,王雅杰,张锟.蛋白质组学及其临床应用[J].诊断学理论与实践,2004,3(5):313-315.
    24王阳梦,何聪芬,董银卯.蛋白质组学研究中的新技术[J].生物技术通报,2005,5:46-50.
    25薛晓芳,吴松锋,朱云平,贺福初.用EM算法改进鸟枪法蛋白质鉴定中的无标记定量方法[J].分析化学,2007,35(1):19-24.
    26鲁劲松,孙启玉,谢益学等.蛋白质芯片技术研究进展[J].中国科学基金,2005, 5:277-281.
    27杨胜利.系统生物学研究进展[J],中国科学院院刊,2004,19(1):31-34.
    28金世琳.乳酸菌的科学与技术[J].中国乳品工业,1998,26(2):14-16.
    29郭本恒.益生菌[M].北京:化学工业出版社,2004,1-15.
    30杨洁彬,郭兴华等.乳酸菌——生物学基础及应用[M].北京:中国轻工业出版社,1991.1-3.
    31 Paul R. R., Morgan S., Hill C. Preservation and fermentation: past, present and future [J]. Int J Food Microbiol, 2002,79:3-14.
    32杨洁彬,郭兴华等.乳酸菌—生物学基础及应用[M].北京:中国轻工业出版社,1999,247.
    33郭兴华主编.益生菌基础与应用[M].北京科学技术出版社, 2002:1.
    34凌代文.乳酸菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999,1-25
    35 Champomier-Verges M. C., Maguin E., Mistou M. Y., Anglade P., Chich J.F. Lactic acid bacteria and proteomics: current knowledge and perspectives [J].J Chromatography, 2002, 771:329.
    36 Stiles, M.E., Holzapfel W.H. Lactic acid bacteria of foods and theircurrent taxonomy [J].Int J Food Microbiol, 1997.36: 1-29.
    37 Bolotin A., Wincker P., Mauger S., et al.The complete genome sequence of the lactic acid bacterium lactococcus lactis ssp.lactis IL1403[J]. Genome Res, 2001, 1:731.
    38 Perrin C., Gonzalez-Marquez H., Gaillard J. L., Guimont C. Reference map of soluble proteins from Streptococcus thermophilus by two-dimensional electrophoresis [J]. Electrophoresis, 2000, 21:949.
    39 Guillot A., Gitton C., Anglade P., Michel-Yves Mistou. Proteomic analysis of Lactococcus lactis, a lactic acid bacterium [J]. Proteomics, 2003, 3: 337-354.
    40 Anglade P., Demey E., Labas V., Le Caer J.P., Chich J.F. Towards a proteomic map of Lactococcus lactis NCDO 763[J]. Electrophoresis, 2000, 21: 2546-2549.
    41 Cohen D. P., Renes, J., Bouwman F. G., Zoetendal E.G., Mariman,E., de Vos W.M., Vaughan E.E. Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database [J]. Proteomics, 2006, 6: 6485–6493.
    42 Lim E.M., Ehrlich D.S., Maguin E. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. Bulgaricus [J]. Electrophoresis. 2000, 21: 2557-2561.
    43 Lorca G.L., de Valdez G.F. The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress [J]. Cryobiology, 1999, 39:144-149.
    44 Yuan, J., Zhu, L., Liu, X., et al. Proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705 [J]. Mol Cell Proteomics, 2006, 5: 1105-1118.
    45 Arena S., D’Ambrosio C., Renzone G., Rullo R., Ledda L., Vitale F., Maglione G., Varcamonti M., Ferrara L., Scaloni A. A study of Streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations [J]. Proteomics, 2006, 6:181-192.
    46 Manso M.A., Leonil J., Jan G., Gagnaire V. Application of proteomics to the characterisation of milk and dairy products [J]. Int Dairy J, 2005, 15: 845-855.
    47 Savijoki K., Suokko A., Palva A., Varmanen P. New convenient defined media for [35S] methionine labeling and proteomic analyses of probiotic lactobacilli [J]. Lett Appl Microbiol, 2006, 42:202-209.
    48 Woufers J.A., Sander J. W., de Vos Willem M. J.K., Kuipers O. P., Abee T. Clustered organization and transcriptiona1 analysis of a family of five csp genes of Lactococcus lactis MG1363[J]. Microbiology, 1998, 144: 2885-2893.
    49 Ang D., Liberek K., Skowyr D., Zyliczl M., Georgopoulos C. Biological role and regulation of the universally conserved heat shock proteins [J]. J Biol Chem, 1991, 266:24233-24236.
    50 Sanders J.W., Venema G., Kok J. Environmental stress responses in Lactococcus lactic [J]. FEMS Microbial Rev, 1999, 23: 463-501.
    51 EI Demerdash H. A. M., Heller K. J., Geis A. Application of the shsp gene, encoding a small heat shock protein, as a food-gradese lection marker for lactic acid bacteria [J]. Appl Environ Microbiol, 2003, 69: 4408-4412.
    52 Kullen M. J., Klaenhammer T.R. Identification of the pH inducible, proton-translocating F1FO-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization [J]. Mol Microbiol, 1999, 33:1152-1161.
    53 Quivey Jr. R.G., Faustoferri R., Monahan K., Brady L. J., Hamilton I.R., Hillman J.D., Bleiweis A.S. Shifts in membrance fatty acid profiles associated with acid adaptation of Streptococcus mutans [J]. FEMS Microbiol Lett, 2000, 189:89-92.
    54 Cotter D. Paul and Hill Colin. Surviving the acid test: responses of gram-positive bacteria to low pH [J]. Current Microbiology and Molecular Biology Reviews, 2003, 67:429-453.
    55乌日娜,武俊瑞,孟和,张和平.乳酸菌酸胁迫反应机制研究进展[J]. 2007, 27(2): 62-66.
    56 Gutierrez J.A., Crowley P.J., Cvitkovitch D.G., et al. Streptococcus mutants ffh, a gene encoding a homologue of the 54ku subunit of the signal recognition particle, is involved to acid stress [J]. Microbiology, 1999, 145:357-366.
    57 De Angelis M., Gobbetti M.. Environmental stress responses in Lactobacillus: A review [J]. Proteomics, 2004, 4:106-122.
    58 De Angelis M., Gobbetti M., Bini L., Pallini V., Cocconcelli P. S. The acid-stress response in Lactobacillus sanfranciscensis CB1 [J]. Microbiology, 2001, 147: 1863-1873.
    59 Wilkins J.C., Homer K.A. & Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions [J]. Appl Environ Microbiol, 2002, 68:2382-2390.
    60 Wouters J.A., Mailhes M., Rombouts F.M., de Vos W.M., Kuipers O.P., Abee T. Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus 1actis MG1363 [J]. Appl Environ Microbiol, 2000, 66: 3756-3763.
    61杨凤秋,朱正歌.实时定量PCR技术及应用[J].生物学杂志, 2006, 23(3):44-46.
    62 Abe A., Inoue K., Tanaka T., Kato J., Kajiyama N., Kawaguchi R., Tanaka S., Yoshiba M., Kohara M. Quantitative of hepatits patitis B virus genomic DNA by real-time detection PCR [J]. J Clin in Microbiol, I999, 37: 2899-2903.
    63 Bustin S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J]. J Mol Endocrinol, 2000, 25: 169-193.
    64张燕,沈茜.一种快速构建cRNA标准曲线检测基因表达方法的建立[J].生物化学与生物物理进展, 2003, 30 (3): 474-477.
    65 Giulietti A., Overbergh L., Valckx D., Decallonne B., Bouillon. R., Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression [J]. Methods, 2001, 25: 386-401.
    66孟博,王敬强,李娜,马延和,刘斯奇.腾冲嗜热厌氧菌热休克蛋白60及其基因表达的热激动态变化分析[J].微生物学报, 2006, 46(2):269-274.
    67 Wang W., Meng B., Chen W., Ge X., Liu S., Yu Jun. A proteomic study on postdiapaused embryonic development of brine shrimp (Artemia franciscana) [J]. Proteomics, 2007, 7, 3580-3591
    68 Penaud S., Fernandez A., Boudebbouze S., Ehrlich S.D., Maguin E., van de Guchte M. Induction of heavy-metal-transporting CPX-Type ATPases during acid adaptation in Lactobacillus bulgaricus [J]. Appl Environ Microbiol, 2006, 72: 7445-7454.
    69 Kandler O., Weiss N. Regular non-sporing grampositive rods. GenusLactobacillus [M]. In Burgey’s Manual of Systematic Bacteriology, Vol. II. Sneath, P. H. A., Mair, N. S., Sharpe, M. E., Holt, J. G., eds. Baltimore: Williams & Wilkins. 1986, p1209-1234.
    70 Coeuret V., Guéguen M., Vernoux J.P. Numbers and strains of lactobacilli in some probiotic products [J]. Int J Food Microbiol, 2004, 97: 147-156.
    71 Wu R., Wang L., Wang J., Li H., Menghe B., Wu J., Guo M., Zhang H. Isolation and preliminary probiotic selection of Lactobacilli from koumiss in Inner Mongolia[J]. J Basic Microbiol. 2009,49:1-9.
    72张和平,孟和毕力格,王俊国等分离自内蒙古传统发酵酸马奶中L.casei Zhang潜在益生特性的研究[J].中国乳品工业, 2006, 34(4): 4-10.
    73云月英,王立平,张和平,陈永福,孟和毕力格.喂饲L. casei Zhang对大鼠体内脂质代谢的影响[J].微生物学通报,2006,33(3):60-65.
    74张和平,张七斤,任贵强,包秋华.乳酸杆菌对攻毒小鼠的保护作用和对肠道菌群的影响[J].微生物学通报,2007,34(3):447-451.
    75张和平,张七斤,孟和毕力格,任贵强,阿木尔吉日嘎拉. L. casei Zhang对小鼠T淋巴细胞亚群及血清IgG和肠黏膜SIgA的影响[J].中国乳品工业,2006,34(10):4-9.
    76托娅,苏雅勒玛,张和平.乳杆菌L. casei Zhang对小鼠血清中细胞因子水平的影响[J].食品科学,2006,27(11):488-491.
    77托娅,张和平.一株分离自内蒙古传统酸马奶中的乳酸杆菌L. casei Zhang对小鼠免疫功能的影响[J].中外医疗,2008,Vol.27:39-42.
    78王俊国,孟和毕力格,张和平,陈永福,包秋华.干酪乳杆菌Zhang对大鼠抗氧化能力的影响[J].营养学报,2008,30(1):1-6.
    79任贵强,张七斤,张和平,孟和毕力格,阿木尔吉日嘎拉.两株乳酸菌对鸡新城疫HI抗体效价影响的研究[J].中国家禽,2006, 28(4):10-17.
    80宋新宇,张七斤,张和平,孟和毕力格.乳酸杆菌DNA对鸡新城疫疫苗和禽流感疫苗免疫增强作用的研究[J].畜牧与兽医科学,2007, 1:23-25.
    81张七斤,宋新宇,张和平,孟和毕力格.乳酸杆菌成分对疫苗免疫增强作用的研究[C].中国畜牧兽医学会动物微生态学分会第三届第八次学术研讨会论文集,中国,广州: 2006.
    82 Zhang W.Y., Yu D.L., Sun Z.H., Chen X., Bao Q., Meng H., Hu S. and Zhang H. Complete nucleotide sequence of plasmid plca36 isolated from Lactobacillus casei Zhang [J]. Plasmid, 2008, 60:131-135.
    83 Monedero V., MazéA., Bo?l G., Zú?iga M., Beaufils S., Hartke A.,Deutscher J. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolim and connection to cold shock response [J]. J Mol Microbiol Biotechnol, 2007, 12: 20–32.
    84小崎道雄,内村泰等.乳酸菌実験マニュアル[M].東京:倉書店,1992,p29-72.
    85 Blankenhorn D., Phillips J., Slonczewski J.L. Acid- and Base-Induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by Two-Dimensional Gel Electrophoresis [J]. J Bacteriol, 1999, 181: 2209-2216.
    86 J.萨姆布鲁克,D.W.拉塞尔著.黄培堂等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2002,68-105.
    87 Lauber W.M., Carroll J.A., Dufield D.R., Kiesel J.R., Radabaugh M.R., Malone J.P. Mass spectrometry compatibility of two–dimensional gel protein ins [J]. Electrophoresis, 2001, 22: 906-918.
    88 Guimont C.,Chopard M. A., Gaillard J. L. Comparative study of the protein composition of three strains of Streptococcus thermophilus grown either in M 1 7 medium or in milk [J]. Le Lait, 2002, 82: 645-65.
    89闻玉梅主编.现代医学微生物学[M].上海:上海医科大学出版社,1999.p12-20.
    90何庆华,吴永宁,印遇龙.乳酸菌差异蛋白组学研究进展[J].食品与发酵工业,2007, 33(8):113-117.
    91 Peter G., Reichart O. The effect of growth phase, cryoprotectants and freeze-drying rates on the survival of selected micro-organisms during freeze-drying and thawing [J]. Acta. Alimentaria, 2001, 30:89-97.
    92 Saarela M., Rantala M., Hallamaa K., Nohynek L., Virkajarvi I., Matto J. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria [J]. J Appl Microbiol, 2004, 96:1205-1214.
    93 Lin M.Y., Young C.M. Folate levels in cultures of lactic acid bacteria [J]. Int Dairy J, 2000, 10: 409-413.
    94 Kim W.S., Ren J., Dumm N.W. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses [J]. FEMS Microbiol, 1999, 171: 57-65.
    95 Büttner K., Bernhardt J, Scharf C., Schmid R., M?derU., Eymann C., Antelmann H., V?lker A., V?lker U., Hecker M A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis [J].Electrophoresis, 2001, 22: 2908-2935.
    96 Gonzalez-Marquez H., Perrin C., Bracquart P. Guimont C., Linden G. A
    16 kDa protein family overexpressed by Streptococcus thermophilus PB18 in acid environments [J]. Microbiol, 1997, 143: 1587-1594.
    97 Begley M., Gahan C. G., Hill C. The interaction between bacteria and bile [J]. FEMS Microbiol Rev, 2005, 29: 625-51.
    98 Flahaut S., Frere J., Boutibonnes P., Auffray Y. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis [J]. Appl Environ Microbiol, 1996, 62:2416-20.
    99 Leverrier P., Dimova D., Pichereau V., Auffray Y., Boyaval P., Jan G.. Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis [J]. Appl Environ Microbiol, 2003, 69:3809-3818.
    100刘建军,房师松,李习艺,陈晓燕,李喜梅,赵锦,庄志雄.蛋白质组研究技术平台的建立——双向电泳条件的建立及优化[J].卫生研究, 2004, 33(3), 327-330.
    101 van de Guchte M., Serror P., Chervaus C., Smokvina T., Ehrlich S.T. and Maguin E. (2002) Stress responses in lactic acid bacteria.Antonie van Leeuwenhoek 82, 187–216.
    102 Lorca G.L., Valdez G.F. A low-pH inducible, stationary-phase acid-tolerance response in L.acidophilus CRL639 [J]. Current Microbial, 2001, 42: 21-25.
    103 Pessione E., Mazzoli R., Giuffrida M.G., Lamberti C., Garcia-Moruno E., Barello C., Conti A., Giunta C. A proteomic approach to studying biogenic amine producing lactic acid bacteria [J]. Proteomics, 2005, 5: 687-698.
    104俞峻,马康涛.分子伴侣的多重功能[J].生物化学与生物物理进展, 1998, 25(2):106-110.
    105 Rechinger K.B., Siegumfeldt H., Svendsen I., Jakobsen M.“Early”protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and two-dimensional gel electrophoresis [J]. Electrophoresis, 2000, 21:2660-2669.
    106 Veinger L., Diamant S., Buchner J., Goloubinoff P. The small heat shock protein IbpB from Escherichia coli stabilises stress-denatured proteins for subsequent refolding by a multichaperone network [J]. J Biol Chem, 1998, 273:11032-11037.
    107 Nystroèm T., Neidhardt F.C. Isolation and properties of a mutant of Escherichia coli with an insertional inactivation of the uspA gene, which encodes a universal stress protein [J]. J Bacteriol, 1993, 175: 3949-3956.
    108 Nystroèm T., Neidhardt F.C. Effects of overproducing the universal stress protein, UspA, in Escherichia coli K-12 [J]. J Bacteriol, 1996, 178: 927-930.
    109 Gustavsson N., Diez A., Nystrom T. The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage [J]. Mol Microbiol, 2002, 43:107-117.
    110 Kvint K., Nachin L., Diez A., Nystrom T. The bacterial universal stress protein: function and regulation [J]. Curr Opin Microbiol, 2003, 6:140-145.
    111 Viana R., Perez-Martnez G., Monedero V. The glycolytic genes pfkand pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate: sugar phosphotransferase system and repressed by CcpA [J]. Arch Microbiol, 2005, 183: 385-393.
    112 Ramos A., Neves A.R,. Ventura R., Maycock C., Lopez P., Santos H.Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis [J]. Microbiol, 2004, 150:1103-1111.
    113 Lee K., Lee H.G., Pi K., Choi Y.J. The effect of low pH on protein expression by he probiotic bacterium Lactobacillus reuteri [J]. Proteomics, 2008, 8: 1624-1630.
    114 Len A.C., Harty D.W., Jacques N.A., Stress-responsive proteins are upregulated in Streptococcus mutants during acid tolerance [J]. Microbiology, 2004, 150: 1339-1351.
    115 Soo P., Horng Y., Lai M., Wei J., Hsieh S., Chang Y., Tsai Y., Lai H. Regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity [J]. J Bacteriol, 2007, 189:109-118.
    116 de Kok A., Hengeveld A.F., Martin A., Westphal A.H. The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria [J]. Biochim Biophys Acta, 1998, 1385:353-366.
    117 Boelsa I.C., van Kranenburg R., Hugenholtz J., Kleerebezem M., de Vos W. M. Sugar catabolism and its impact on the biosynthesis and engineeringof exopolysaccharide production in lactic acid bacteria [J]. Int Dairy J, 2001, 11:723-732.
    118 Vincent F., Yates D., Garman E., Davies G. J., Brannigan J.A. The Three-dimensional structure of the N-Acetylglucosamine-6-phosphate deacetylase, NagA, from Bacillus subtilis [J]. J Biol Chem, 2004, 279: 2809-2816.
    119 Stark H., Rodnina M.V., Wieden H.J., Zemlin F., Wintermeyer W., van Heel, M. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex [J]. Nat Struct Biol, 2002, 9:849-854.
    120 Caldas T.D., Yaagoubi A.E., Richarme G. Chaperone properties of bacterial elongation factor EF-Tu [J]. J Biol Chem, 1998, 273:11478-11482.
    121 Konings W.N., Verena S, Koning S., Driessen A.J.M. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments [J]. Antonie van Leeuwenhoek, 2002, 81: 61-72.
    122 Jones, P.M., and George, A.M. Subunit interactions in ABC transporters: towards a functional architecture [J]. FEMS Microbiol Lett, 1999, 179:187-202.
    123 Cvitkovitch D.G., Gutierrez J.A., Behari J., Youngman P.J., Wetz J.E., Crowley P.J., Hillman J.D., Brady L.J., Bleiweis A.S. Tn917-lac mutagenesis of Streptococcus mutans to identify environmentally regulatedgenes [J]. FEMS Microbiol Lett, 2000, 182:149-154.
    124 Wen Z.T., Burne R.A. LuxS-Mediated Signaling in Streptococcus mutans is involved in Regulation of Acid and Oxidative Stress Tolerance and Biofilm Formation. J Bacteriol, 2004, 186:2682-2691.
    125 Sztajer H., Lemme A., Vilchez R., Schulz S., Geffers R., Yip C.Y., Levesque C.M., Cvitkovitch D.G., Wagner-Dobler I. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation [J]. J Bacteriol, 2008, 190: 401-415.
    126 Tannock G.W., Ghazally S., Walter J., Loach D., Brooks H., Cook G., Surette M., Simmers C., Bremer P., Dal Bello F., Hertel C. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol [J], 2005, 71: 8419-8425.
    127 Winzer K., Hardie K. R., Burgess N., Doherty N., Kirke D., Holden, M.T., Linforth R., Cornell K. A., Taylor A. J., Hill P. J., Williams P. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone[J].Microbiol,2002, 148:909-922.
    128 VanBogelen, R.A., and Neidhardt, F.C. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli [J]. Proc Natl Acad Sci USA., 1990, 87: 5589-5593.
    129 Aiyar S.E., Gaa T., Gourse R.L. Acidic proteome of growing and resting Lactococcus lactis metabolizing maltose [J]. J Bacteriol, 2002, 84: 1349-1358.
    130李妍.益生菌Lactobacillus casei Zhang高密度培养技术及发酵过程中关键酶基因表达变化的研究[D].内蒙古农业大学博士位论文, 2008.
    131 Dunne C., O’Mahony L., Murphy L., Thorton G., Morrissey D., O’Halloran S., Feeney M., Flynn S., Fitzgerald G., Daly C., Kiely B., O’Sullivan G. C., Shanahan F., Collins J. K. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings [J]. Am J Clin Nutr, 2001, 73: 386-392.
    132 Flahaut S., Hartke A., Giard J. C., Auffray Y. Alkaline stress response in Enterococcus faecalis: adaptation, cross–protection and changes in protein synthesis [J]. Appl Environ Microbiol, 1997, 63: 812-814.
    133 Flahaut S., Hartke A., Giard J. C., Benachour A., Boutibonnes P., Auffray A. Relationship between stress responses towards bile salts acid and heat treatment in Enterococcus faecalis [J]. FEMS Microbiol Lett, 1996, 138: 49-54.
    134 Sanchez B., Champomier–Verges M., Anglade P., Baraige F., de los Reyes–Gavilan C. G., Margolles A., Zagorec M. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809 [J]. J Bacteriol, 2005, 187: 5799-5808.
    135 Bron P. A. The molecular response of Lactobacillus plantarum to intestinal passage and conditions [D]. PhD thesis. 2003. Wageningen Centre for Food Sciences, Wageningen, the Netherlands.
    136 Nesper J., Lauriano C. M., Klose K. E., Kapfhammer D., Krai A., Reidl J. Characterization of Vibrio cholera E1 Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation [J]. Infect Immun, 2001, 69: 435-445.
    137 Chassaing D., Auvray F. The lmo1078gene encoding a putativeUDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenesat lowtemperature [J]. FEMS Microbiol Lett 2007, 275:31-37.
    138 Bonofiglio L., Garcia E., Mollerach M. Biochemical characterisation of the pneumococcal UTP-glucose 1- phosphate uridyltransferase (GalU) essential for capsule biosynthesis [J]. Curr Microbiol, 2005, 51: 217-221.
    139 Heaton M. P., Neuhaus F. C. Biosynthesis of D–alanyl–lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D–alanine–activating enzyme [J]. J Bacteriol, 1992, 174:4707-4717.
    140 Fischer, W., Rosel P. The alanine ester substitution of lipoteichoic acid (LTA) in Staphylococcus aureus [J]. FEBS Lett, 1980, 119:224-226.
    141 MacArthur, A. E., Archibald A. R Effect of culture pH on the D–alanine ester content of lipoteichoic acid in Staphylococcus aureus [J]. J Bacteriol, 1984, 160:792-793.
    142 Forsthoefel N. R., Vernon D. M., Cushman J. C. A salinityinduced gene from the halophyte Mesembryanthemum crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase [J]. Plant Mol Biol, 199,.29:213-226.
    143 Lebeer S., leyden J.V.,Sigrid C. J., De Keersmaecker.Genes and Molecules of lactobacilli supporting probiotic action[J].Microbiol Mol Biol Rev, 2008,72:728-764.
    144 Bernstein C., Bernstein H., Payne C.M., Beard S. E., Schneider J. Bile salt activation of stress response promoters in Escherichia coli [J]. Curr Microbiol, 1999, 39: 68-72.
    145 Graumann P., Schroder K., Schmid R., Marahiel M. A. Cold shock stress induced proteins in Bacillus subtilis [J]. J Bacteriol, 1996, 178:4611-4619.
    146 Sperandio B., Polard P., Ehrlich D. S., Renault P., Guedon E. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403 [J]. J Bacteriol, 2005, 187:3762-78.
    147 Stadtman E. R., Remmen H. v., Richardson A., Wehr N. B. Levine R.L. Methionine oxidation and aging [J]. Biochim Biophys Acta, 2005, 1703:135-140.
    148 Fox E. M., Raftery M., Goodchild A., Mendz G. L. Campylobacter jejuni response to ox-bile stress [J]. FEMS Immunol Med Microbiol, 2007, 49:165-72.
    149 Duche O., Tremoulet F., Glaser P., Labadie J. Salt stress proteins induced in Listeria monocytogenes [J]. Appl Environ Microbiol, 2002, 68:1491-8.
    150 Garrigues C., Stuer-Lauridsen B., Johansen E. Characterisation of Bifidobacterium animalis subsp, lactis BB-12 and other probiotic bacteria using genomics, transcriptomics and proteomics [J]. Aust J Dairy Technol, 2005, 60:80-92.
    151 Fenster K.M., Parkin K.L., Steels J.L. Intracellular esterase from Lactobacillus casei LILA: nucleotide sequencing, purification, and characterization [J]. J Dairy Sci, 2003, 86:1118-1129.
    152 Fox P.F., Singh T.K., McSweeney P.L. Biogenesis of flavour compounds in cheese [J]. Adv Exp Med Biol, 1995, 367:59-98.
    153 Yebra M.J., Viana R., Monedero V., Deutscher J., Martíneza G.P. An esterase gene from Lactobacillus casei cotranscribed with genes encoding a phosphoenolpyruvate: sugar phosphotransferase system and regulated by a LevR-like activator and sigma54 factor [J]. J Mol Microbiol Biotechnol, 2004, 8:117-28.
    154 Prasad J., McJarrow P., Gopal P. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying [J]. Appl. Environ. Microbiol. 2003,69:917-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700