毕赤酵母表达的两种植酸酶的分离纯化与表征及其N-糖基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是关于重组毕赤酵母(Pichia pastoris)高密度发酵的发酵液中两种植酸酶的分离纯化与表征、糖基化研究、结晶实验及其变性与复性的研究。使用CM-Sephadex C-50弱阳离子交换色谱分离技术,从基因重组的植酸酶发酵液中分离纯化出两种植酸酶,CMⅠ和CMⅡ,经SDS-PAGE和N-末端氨基酸测序鉴定,均为单一组分。
    植酸酶CMⅠ和CMⅡ分子量分别为55.3kD和53.1kD,二者作用的最适温度均为55℃,最适pH都是5.0,在37℃下CMⅠ的Km是0.42mmol/L,CMⅡ的Km是0.79mmol/L, Cu2+,Fe2+,Al3+和Zn2+对两种酶活性有较强的抑制作用,CMⅡ的酶比活力明显高于CMⅠ的酶比活力,两种植酸酶具有相同的N-端序列。
    用N-糖基化酶Endo H对两种植酸酶进行N-糖基化分析,CMⅠ相对含糖量为13.1%,CMⅡ相对含糖量为10.9%(分别以未去糖基的两种植酸酶分子量为对照),证实是糖基化的不同引起植酸酶CMⅠ和CMⅡ分子量的差异。分别测定去糖基后的酶活性,CMⅠ比活力降低为原来的81%,而CMⅡ比活力基本不变,CMⅡ比活力仍比CMⅠ高,表明植酸酶肽链糖基化会影响植酸酶活性,在一定糖基化程度下对植酸酶的活力起稳定甚至提高的作用。
    根据Crystal Screen配制了38种结晶条件进行两种植酸酶结晶尝试,确定了Crystal Screen中的第12号条件,即:30% 2-丙醇,0.1mol/L NaHepes,0.2mol/L MgCl2,pH7.5作为结晶条件,其中CMⅡ得到晶体。
    改进H.D.Bae等报道用氯化钴做染色剂对植酸酶SDS-PAGE电泳胶染色,建立一种可以通过SDS-PAGE对比染色法特异检测植酸酶酶活性的新方法:SDS-PAGE结合硫酸亚铁-钼酸铵对比染色法。
    植酸酶在经过热、SDS-PAGE电泳完全变性后,仍能部分复性。利用SDS-PAGE对比染色法研究植酸酶的复性机理,发现Triton X-100和低温是植酸酶复性的关键,为蛋白质重折叠机制和蛋白质一级结构决定蛋白质高级结构提供了又一个证据。
Two types of ecto-phytase, which were isolated and characterized from recombinant Pichia pastoris yeast, were studied on their N-glycosylation, crystal birth and renaturation. The two phytases, CMⅠand CMⅡ, were isolated from the fermentation of phytase by gene recombinant with one step of CM-Sephadex C-50 chromatography. They were identified to be homogeneous with SDS-PAGE and the partial N-terminal amino acid sequences.
    The molecular weight of CMⅠand CMⅡ were 55.3kD and 53.1kD respectively, and their optimum temperature and pH were the same as 55℃ and 5.0. The Km values of CMⅠunder 37℃ was 0.42mmol/L, and the Km values of CMⅡunder 37℃ was 0.79mmol/L. The activity of CMⅠand CMⅡ could be inhibited by Cu2+, Fe2+, Al3+, and Zn2+ . The specific activity of CMⅡ were higher than that of CMⅠ. The partial N-terminal amino acid sequence of two phytases were identical .
    The N-glycosylation analysis was performed with Endoglycosidase H, CMⅠ and CMⅡwere about 13.1% and 10.9% glycosylated respectively (calculations were made on the basis of original molecular weight before deglycosylation). It was testified that the difference between their molecular weight were induced by the different extents of N-glycosylation. After deglycosylation, it was found that the specific activity of CMⅠwas reduced to 81 percent of original specific activity of CMⅠ, while deglycosylation had little effect on the specific activity of CMⅡ. And the specific activity of CMⅡ was still higher than that of CMⅠ after deglycosylation. It showed that N-glycosylation of the phytases could stabilitate, even enhance the specific activity of the two phytases.
     According to the Crystal Screen, crystal birth was tested with 38 kinds of crystal conditions. Under the 12nd condition (i.e. 30% 2-Propanol, 0.1mol/L NaHepes pH7.5, and 0.2 mol/L MgCl2), the crystal of CMⅡ was obtained.
    Bae et al reported a staining method for detecting phytase activity. Here the method was improved, and a novel SDS-PAGE counterstaining, which was SDS-PAGE and ferrous sulfate-ammonium molybdate counterstaining, was established to detect phytase activity specially.
    After thermal denaturation and SDS-PAGE, the phytases could recover their activity partially. The mechanism of renaturation was studied with SDS-PAGE counterstaining. It
    
    
    showed that Triton X-100 and low temperature had played key roles in refolding the phytases. This provided a new evidence for understanding protein refolding mechanism and the theory of the primary structure of proteins determining the advanced structure.
引文
[1]宋友礼,颜亨宸.植酸与植酸酶.中国医药工业杂志,2002,33(3):151-154.
    [2]汪世华,吕茂洲,孙长春,等. 植酸酶的现状及研究进展. 广州食品工业科技,2002,18(1):54-57.
    [3]周帼萍,李文薇,徐丽. 植酸酶的研究与应用概况.武汉工业学院学报,2002,1:31-35.
    [4]马玺,单安山.植酸酶研究进展及其在饲料工业中的应用. 粮食与饲料工业,2001,4:27-30.
    [5]朱靖环,杨永红,毛华明. 植酸酶的研究与应用进展. 微生物学杂志,2002,22(1):43-46.
    [6]黄遵锡,章克昌. 植酸酶基础与应用研究概况. 食品与发酵工业,1998,25(2):54-59.
    [7]黄遵锡,章克昌. 植酸酶作用机理初探. 工业微生物,1999,29(4):12-14.
    [8]Young-OK Kim, Hyung-Kwoun Kim, Kyung-Sook Bae, et al.Purification and properties of a thermostable phytase from Bacillus sp.DS11. Enzyme and Microbial Technology,1998,22:2-7.
    [9]苗雪霞,李喜梅,王金荣,等.根霉植酸酶的分离纯化和酶学性质研究.农业大学学报,1998,21(3):53-58.
    [10]王亚茹,姚斌,曹虹,等.枯草芽孢杆菌中植酸酶的纯化和酶学性质.微生物学报,2001,41(2):198-203.
    [11]Anne Casey, Gary Walsh . Purification and characterization of extrecelluar phytase from Aspergillus niger ATCC 9142. Bioresource Technology,2003,86:183-188. 
    [12]李明刚,郝亚恒,但野利秋.番茄植酸酶分离提纯及其特性研究.烟台大学学报,1998,11(4):258-266.
    [13]陈惠,王鸿宁,谢晶.黑曲霉N25的分离纯化及酶学性质研究.四川农业大学学报,2001,19(1):1-3.
    [14]Raf Greiner, Edith Haller, Ursula Konietzny, et al.Purification and characterization of phytase from Klebsiella terrigena. ARCHIVES OF BIOCHEMISTRY AND BIOPHYNICS,1997,341(2): 201-206.
    [15]Vosilios M.E.Andriotis, James D.Ross. Isolation and characterization of phytase from domant Corylus avellana seeds. Phytochemistry,2003,64:689-699.
    [16]Maria De Angelis, Giovanna Gallo, Maria Rosaria Corbo, et al. Phytase activity in sourdough lactic acid bacteria:purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology,2003,87:259-270.
    [17]Young-OK Kim, Hyung-Kwoun Kim, Kyung-Sook Bae, et al.Purification and properties of a thermostable phytase from Bacillus sp.DS11. Enzyme and Microbial Technology,1998,22:2-7.
    [18]姚 斌,范云六.植酸酶的分子生物学与基因工程.生物工程学报,2000,16(1):1-5.
    [19]Shieh T R, Ware J H.Survey of microorganisms for the production of extracellular phytase.Applied Microbiol,1968,6(9):1348-1351.
    [20]Yamadak, Minoda Y, Yamamoto S.Phytase from Aspergillus terreus.AgriBiol Chem,1968,32(10):1275-1282.
    
    
    
    [21]Powar V K, Jagannathan V.Purification and properties of phytate-specific phosphatase from Bacillus subtilis.J Bacteriol,1982,151(3):1102-1108.
    [22]Greiner R, Konietzny U, Jany K D. Purification and characterization of two phytases from Escherichia coli.Arch Biochem Biophys,1993,303(1):107-113.
    [23]Shirai K, Revah-moiseev S, Garcia Garibay M et.al. Ability of some strains of lactic acid bacteria to degrade phytic acid. Letters Appl Biol Sci,1994,19:366-369.
    [24]Bajwa W, Meyhack B, Rudolph H et.al.Structural analysis of the two tandemly repeated acid phosphatase genes in yeast.Nucleic Acids Res,1984,12(20):7721-7739.
    [25]潘冬梅,李弘剑,李白桦,等.无花果曲霉植酸酶发酵及酶动力学.暨南大学学报,2001,22(5):107-112.
    [26]Panchal T, Wodzinski R J. Comparison of glycosylation patterns of phytase from Aspergillus niger (A. ficuum) NRRL 3135 and recombinant phytase. Prep Biochem Biotechnol,1998 ,28(3):201-217.
    [27]Howson S J, Davis R. P.Production of phytate-hydrolyzing enzyme by some fungi.Enzyme Microb.Technol,1983(5):377-382.
    [28]Kemme P A, Jongbloed A. W, Mroz Z.The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status.J.Anim.Sci,1997,75:2129-2138.
    [29]Lambrechts C, Boze H, Moulin G, et al.Utilization of phytate by some yeast. Biotechnol Biotechnol.Lett,1992,14:61-66.
    [30]Lambrechts C, Boze H, Segueilha L, et al.Influence of culture conditions of Schwanniomyces castellii phytase.Biotechnol.Lett,1993,15:399-404.
    [31]AL-A sheh S, Duvnjak Z.The effect of phosphate concentration on phytase production and the reduction of phytic acid content in canola meal by Aspergillus carbonarius during a solid-state fermentation process. Appl Microbiol Biotechnol,1995,43(1):25-30.
    [32]Marisa K C, Rudy J.Wodzinski.Strain improvement of Aspergillus nigerfor phytase production. Appl.Microbio.Biotech-nol,1994,41:79.
    [33]江均平. 热稳定的曲霉植酸酶.微生物学报,1996,36(6):476-478.
    [34]赵允鳞. 无花果曲霉(NRRL 3135)与黑曲霉(AsN 70)植酸酶产酶条件的研究.食品与发酵工业,1996(3):42-45.
    [35]褚西宁,王朝建,袁静明.变灰青霉固态发酵降解植酸的初步研究. 微生物通报,1996,23(4):217-220.
    [36]姚斌,张春义,王建华,等.高效表达具有生物学活性的植酸酶的毕赤酵母.中国科学,1998,3:237-243.
    [37]Ullah A.H.J, Dischinger H.C.Jr.Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing.Biochem Biophys ResComm,1993,192:747-753.
    [38]Van Hartingsveldt W, VanZeijl C.M.J, et al. Cloning,characterization and overexpression of the phytase encodeing gene (phyA) of Aspergillus niger.Gene,1993,127(1):87-94.
    
    
    [39]夏立秋,程海娜,陈宇,等.植酸酶及其基因工程研究进展.激光生物学报,2001,10(3):231-235.
    [40]Abul H. J. Ullah, Edward J. Mullaney. Disulfide Bonds Are Necessary for Structure and Activity in Aspergillus ficuum Phytase. Biochemical and Biophysical Research Communications,1996,227:311-317.
    [41]Zongchao Jia, Serguei Golovan, QiluYe, et al. Purification,crystallization and preliminary X-ray analysis of the Escherichia coli phytase. Acta Crys,1998,D54:647-649.
    [42]Daniel Lim, Serguel Golovan, Cecil W.Forsberg, et al. Crystal structures of Escherichia coli phytase and its complex with phytase. Nature Structural Biology,2000,7(2):108-113.
    [43]杨清香,曹军卫,黄国锦. 糖基转移酶和去糖基化酶.氨基酸和生物资源,1997,19(2):38-43.
    [44]曾嵘,邵晓霞,王克夷,等.液相色谱-电喷雾质谱法分析牛胰核糖核酸酶B酶解肽谱,糖基化位点及糖型.生物化学与生物物理进展,1999,31(6):695-700.
    [45]许强,王克夷.异源表达系统中蛋白质糖基化.生物化学与生物物理进展,1999,31(2):111-115.
    [46]江均平. 凝胶板植酸酶活力检测. 微生物学通报,1996,23(5):316-317.
    [47]Bae H.D, Yanke L.J, Cheng K.J, et al. A novel staining method for detecting phytase activity. Journal of Microbiological Methods,1999,39:17-22.
    [48]许晓兴,许少春. 植酸酶及其应用前景. 饲料工业,1994,15(12):12-13.
    [49]赵永芳.生物化学技术原理及其应用.武汉大学出版社,1994年. 78-104.
    [50]汪家政,范明主编. 蛋白质技术手册. 北京:科学出版社,2000.
    [51]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature(London),1970,227:680-685.
    [52]郭尧君. 蛋白质电泳实验技术.北京:科学出版社,1999年2月.
    [53]高木俊夫. PAGE ポリㄗクリルアミドダル电气泳动法. 日本:广川书店,1990,54-61.
    [54]Lowry, O.H, Rosebrough, N.J., et al.Protein measurement with the Folin phenol reagent.J.Biol.Chem,1951,193:265-275.
    [55]Laursen R A.Solid-phase Edman degradation. An automatic peptide sequencer. Eur.J.Biochem.,1971,20(1):89-102.
    [56]夏其昌主编. 蛋白质化学研究技术进展. 北京:科学出版社,1997年10月.
    [57]Drenth Jetal.Protein crystals and their stability.Journal of Crystal Growth,1992,122:107-109.
    [58]Boistelle R, Astier JP.Crystallization mechanisms in solution.Journal of Crystal Growth,1988,90:14-30.
    [59]James K. Baird, Susan C. Hill, John C. Clunie.Kinetics of protein crystal nucleation and growth in the batch method.Journal of Crystal Growth,1999,196:220-225.
    [60]Yanming Han, Xin Gen Lei. Role of Glycosylation in the Functional Expression of an Aspergillus niger Phytase (phyA) in Pichia pastoris.Archives of Biochemistry and Biophysics , 1999,364(1):83-90.
    [61]沈同,王镜岩. 生物化学(第二版),上册. 高等教育出版社.
    
    
    
    [62]萨楚尔夫,罗辽复. 蛋白质热变性现象的研究. 内蒙古师范大学学报,2002,31(4):337-342.
    [63]Goldberg, Michel, Rainer Rudolph, et al. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry,1991,30(11):2790-2797.
    [64]史晋辉.蛋白质复性.生命的化学,2000,20(6):283-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700