玉米苗期盐胁迫响应转录本表达谱构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是一种世界范围很严重的环境胁迫,它会造成农作物减产和品质降低。作物只能在原位对抗盐胁迫,它进化出一种适应的分子机制,包括很多功能(代谢的、生理的和形态学的)基因的表达。这些基因参与非常广泛的胁迫适应生理及代谢过程,包括细胞解毒,物质转运,能量维持,激素响应等。而这些功能基因的表达又受到精致的调控。这些调控包括转录水平的,如对细胞外信号的感知,细胞内信号的生成与传递,基因转录的总体调节(染色质变化),个别基因的特异转录调节;转录后水平的,如miRNA指导的靶基因转录本剪切或翻译抑制,蛋白质磷酸化和去磷酸化参与的信号途径,分子伴侣对胁迫相关蛋白质的保护,以及泛素化系统对蛋白转运信号的传递和蛋白质降解。这些基因在盐胁迫下的表达改变,就可重建细胞内稳态,达到对盐胁迫的适应和抵御。
     玉米,作为重要的粮食、饲料和生物能源作物,其产量对世界粮食安全影响巨大。玉米是一种盐敏感作物,而不同的玉米自交系之间,盐胁迫抗性相差很大。用高通量技术手段检测在盐胁迫条件下不同玉米自交系中表达量发生改变的转录本,对理解玉米盐胁迫响应的分子机制,揭示玉米自交系间盐胁迫抗性差异的分子基础意义重大。
     本研究利用高通量的技术手段SSH(消减杂交)和cDNA芯片技术检测了两个盐胁迫抗性差别很大的玉米自交系(盐胁迫敏感的黄早4和盐胁迫抗性的NC286)中表达量发生变化的转录本,认为这些转录本编码的蛋白质参与玉米的盐胁迫响应。许多调节因子和功能蛋白的编码基因在文库中被检测到。得到的主要结果包括:
     1、盐胁迫响应的蛋白激酶编码基因受到不同调节,而蛋白磷酸酯酶编码基因被诱导。说明盐胁迫条件下磷酸化/去磷酸化事件在胁迫信号传导中发挥作用。
     2、盐胁迫影响转录和翻译相关因子转录本的表达,进而影响转录、翻译的效率及特定转录本的转录和翻译。
     3、盐胁迫条件下,Ub/26S蛋白酶体系的作用加强,说明受损蛋白质增多,同时,蛋白酶体系的作用加强加快了氨基酸的代谢。
     4、盐胁迫抑制光合作用,从而影响能量供给。
     5、盐胁迫条件下,组蛋白和核糖体蛋白质编码基因倾向于被抑制表达,导致转录和翻译的全面抑制。
     6、盐胁迫下,细胞骨架成分蛋白质的编码基因倾向于受到抑制。
     7、与膜上物质转运相关的蛋白质编码基因都被盐胁迫条件诱导,加快膜上物质转运。
     对在SSH文库和cDNA芯片中共同检测到的8个ESTs,用RT-PCR技术构建了它们在不同胁迫(高盐、脱水和零上冷害)条件下玉米根系中的表达谱,发现盐胁迫和脱水胁迫的共同响应因子较多,而这两者与冷害的共同响应因子较少。
     microRNA是约21nt的非编码RNA,它在转录后水平调节基因的表达,广泛参与发育进程的调控,器官的极性,叶的生长及RNA代谢等。一些miRNA可被胁迫条件诱导,而且,一些miRNA的靶基因是胁迫响应基因,就暗示了miRNA可能在环境胁迫应答中起作用。
     利用一个含有10.1版本所有653个已知植物成熟miRNA探针的μParaflo~(TM)微流体芯片(LC science USA),搜寻了玉米根系中盐胁迫响应的microRNAs。结果显示,在盐胁迫敏感性不同的两个玉米自交系中,存在相同响应的miRNA家族,但大多数盐胁迫响应miRNA家族在两个自交系中的表达趋势并不相同。在两自交系各个时间点表达趋势都相同的共4个,来自2个miRNA家族;在两自交系之间的表达趋势相同,但表达发生改变的时间点不同的9个,来自4个miRNA家族;在两自交系中都检测到表达改变,但表达趋势(抑制或诱导)不同的48个,来自13个miRNA家族;仅在某一个自交系中表达量发生变化的18个,来自8个miRNA家族。其中,在两个自交系中受到相同或相似调节的microRNA可能代表了共同的胁迫响应机制,而在两自交系之间受到不同调控的,尤其是仅在某一个自交系中表达量发生变化的miRNAs可用于解释两自交系不同的盐敏感性。
     对由高通量技术获得的盐胁迫响应ESTs和miRNA基因,分别预测了其启动子区域的主要胁迫响应cis因子。发现盐胁迫响应的编码基因和非编码基因启动子区具有共同的胁迫响应cis因子,其中,ABRE,ARE和MYBS位点的出现频率最高。这说明盐胁迫响应的蛋白编码基因与非编码基因受到相同的胁迫信号调节。
Salt stress is one of the most serious abiotic stresses threaten the crop plants worldwide. High salinity causes serious damage to crop growth, resulting in lower quality and less yield. To survive under high salinity condition in their rooted lifestyle, crop plants have evolved a considerable degree of developmental plasticity, many genes change their expression profiles, which are involved in a broad spectrum of biochemical, cellular, and physiological processes. To cope with both ironic and osmotic stresses introduced by salt, many functional and regulating genes, including those involved in the cell detoxification, membrane transporting, energy maintaining, protein processing, and phytohormone responding, changed their expression profiles. In addition, these functional genes were regulated at different levels, such as the stress transduction cascades, which regulating gene expression at transcriptional level; miRNA dependent post transcriptional gene silencing were also involved in plant salt stress response .
     Maize (Zea mays L.) is one of the most important cereal crops in the world, it provides not only food and feed, but also material for bio-ethanol production, it is a crop that combined food, feed and fuel in one. Maize is salt-sensitive, and the salt sensitivities were distinct between maize inbred lines.
     Two maize inbred lines NC286 and Huangzao4 were selected with distinct salt stress sensitivity, SSH and cDNA chip hybridizing were processed between the salt stressed and un-stressed control materials. Differently expressed ESTs were detected. These ESTs were considered to be salt stress responsive ones, which involved in a vast spectrum of cellular and physiological processes.
     This research aimed in clarifies the genetic mechanisms of maize salt stress responsive and elucidates the relationship between differently expressed ESTs and distinct salt stress sensitivity. The main results derived from the high throughput methods were listed as following.
     1. Many protein kinase transcripts were differently regulated under salt stress, and the protein phosphatase transcripts were up-regulated, hinted that the reversible protein phosphorylation may play roles in salt stress signal cascades.
     2. Transcriptional and translational regulations occurred under salt shock.
     3. UB/26S mechanism was much more active under salt stress condition than in un-stressed control, which may resulted from the increasing of destroyed proteins. At the same time, activation of the protein degradation system may also enhance the re-use of amino acids.
     4. Salt stress may destroy the photosynthesis system, which in turn affect the energy supplement.
     5. Most of the histones and ribosomal proteins transcripts were repressed under salt stress, which may influence the repression of gene transcription and protein translation.
     6. Most of the ESTs encoding cellular framework proteins were repressed under salt shock.
     7. Most of the ESTs associated with membrane trafficking were detected to be up-regulated by the salt stress, which may play roles in re-establishing of homeostasis.
     In all, there are 8 co-detected ESTs from the SSH and cDNA chip. Expression profiles of these 8 ESTs under salt, dehydration and chilling stress were established. For most of the ESTs, the expression profiles under salt and dehydration stress were of the same, yet they were differing from those under chilling stress.
     Corn responds to salt stress via changes in gene expression, metabolism, and physiology. This adaptation is achieved through the regulation of gene expression at transcriptional and post-transcriptional levels. microRNAs (miRNAs) have been found to act as key regulating factors at post-transcriptional levels. However, little is known about the role of miRNAs in plants' responses to salt stress.
     A customμParaflo~(TM) microfluidic array (LC science USA) containing Release version 10.1 plant miRNA probes (http://microrna.sanger.ac.uk/) was used to discover salt stress responsive miRNAs using the differences in miRNAs expression between the salt-tolerant maize inbred line NC286 and the salt-sensitive maize line Huangzao4.
     Salt responsive miRNAs are involved in the regulation of metabolic, morphological and physiological adaptations of maize seedlings at the post-transcriptional level. The miRNA genotype-specific expression model might explain the distinct salt sensitivities between maize lines.
     miRNA microarray hybridization revealed that a total of 98 miRNAs, from 27 plant miRNA families, had significantly altered expression after salt treatment. These microRNAs displayed different expression profiles under salt stress, and miRNAs belonging to the same miRNA family showed the same behaviour. Interestingly, we found 18 miRNAs were only expressed in the salt tolerant maize line NC286, and 25 miRNAs showed a delayed regulating pattern in the salt sensitive line.
     For all the salt responsive ESTs and miRNA genes, the key stress related cis-elements in their promoter regions were predicted. The results showed that the most frequently detected stress related cis-elements ABRE, ARE and MYBs were of the same in saltresponsive ESTs and miRNA genes, suggesting that the salt stress responsive coding andnon-coding genes were regulated by the same up steam factors.
引文
1.蔡冲,吕均良,陈昆松.蛋白激酶的研究.亚热带植科学,2002,31(1):63-67
    2.高永生,王锁民,宫海军,赵志光,张承烈.盐胁迫下植物离子转运的分子生物学研究.草业学报,2003,12:18-25
    3.郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生下学报,2001,27(6):461-466
    4.郭望模,傅亚萍,孙宗修.水稻芽期和苗期耐盐指标的选择研究.浙江农业科学,2004,1:30-34
    5.李君明,宋燕,朱彤,迟庆勇,徐和金,周永健.番茄耐盐分子育种研究进展.分子植物育种2006,4(1):111-116
    6.刘俊,周一峰,章文华,刘友良.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响.西北植物学报,2006,2:254-258
    7.倪秀珍,张强.抗盐植物研究进展.特产研究,2004,4:58-62
    8.王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应.作物学报,2005,31(2):264-266
    9.王霞,候平,尹林克,冯大千,潘伯荣,刘君.土壤缓慢水分胁迫下柽柳植物内源激素的变化.新疆农业大学学报,2000,23(4):41-43
    10.杨洪强,梁小娥.蛋白激酶与植物逆境信号传递途径.植物生理学通讯,2001,37(3):185-191
    11.张显强,张宇斌,王家远,乙引.NaCl胁迫对玉米幼苗叶片蛋白质降解和脯氨酸累积的影响.贵州农业科学,2002,30(2):3-4
    12.张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用.植物生理与分子生物学学报,2004,30(4):455-459
    13.朱晓军,杨劲松,梁永超,娄运生,杨晓英.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503
    14.Achard P,Cheng H,De Grauwe L,Decat J,Schoutteten H,Moritz T,Van Der Straeten D.Peng J,Harberd NP.Integration of plant responses to environmentally activated phytohormonal signals.Science,2006,311(5757):91-94
    15.Agrawal GK,Tamogami S,Iwahashi H,Agrawal VP,Rakwal R.Transient regulation of jasmonic acid-inducible rice MAP kinase gene(OsBWMK1) by diverse biotic and abiotic stresses.Plant Physiology and Biochemistry,2003,41(4):355-361
    16.Banu MN,Hoque MA,Watanabe-Sugimoto M,Matsuoka K,Nakamura Y,Shimoishi Y,Murata Y.Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress.J Plant Physiol.2008 Epub ahead of print
    17.Baumberger N,Baulcombe DC.Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs.Proc Natl Acad Sci USA,2005, 102(33):11928-11933
    18. Berridge MJ. Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 1 (1): 11 -21.
    19. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001 409(6818):363-366
    20. Borsani O. Zhu J, Verslues PE. Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005. 123(7): 1279-1291
    21. Bowman JL. Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays, 2004, 26(9):938-942
    22. Bracht J, Hunter S, Eachus R, Weeks P, Pasquinelli AE. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA, 2004, 10(10): 1586-1594.
    23. Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE. Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol, 2005, 58(5):699-720
    24. Cheeseman JM. Mechanisms of Salinity Tolerance in Plants. Plant Physiol. 1988 87(3):547-550
    25. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33(20): e179
    26. Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet, 2007, 39(4):544-549
    27. Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H. Reactive oxygen species mediate Na~+-induced S0S1 mRNA stability in Arabidopsis. Plant J. 2008 53(3):554-65
    28. Close T J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins.PHYSIOLOGIA PLANTARUM 1996 97: 795-803
    29. Close T J. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. PHYSIOLOGIA PLANTARUM 1997 100: 291-296
    30. Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcription regulation. Science. 2002 296(5571): 1254-1258
    31. Conti L, Price G, O'Donnell E, Schwessinger B, Dominy P, Sadanandom A. Small Ubiquitin-Like Modifier Proteases OVERLY TOLERANT TO SALT1 and -2 Regulate Salt Stress Responses in Arabidopsis. Plant Cell. 2008 Epub ahead of print
    32. De Costa W, Z(o|¨)rb C, Hartung W, Schubert S. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant. 2007, 131(2):311-321.
    33. Denby K, Gehring C. Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol, 2005, 23(11):547-552
    34. Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R. Frommer WB. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell. 2004 16(12): 3413-3425.
    35. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A. 2006 103(21):8281-8286.
    36. Dorothea B, Ramanjulu S. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 2005,24,(1)23-58
    37. Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999 61:243-282
    38. Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 2007 30(10):1284-1298
    39. Foyer C H, Lopez- Delgado H, Dat J F. Hydrogen peroxide and glutathione - associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 1997 100 241 - 254.
    40. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. A miRNA involved in phosphate-starvation response in Arabidopsis. CurrBiol, 2005, 15(22):2038-2043
    41. Ghanem ME, Albacete A, Martíinez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot. 2008 59(11):3039-3050.
    42. Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene. 2008 415(1-2): 1-12
    43. Greenway H. Salt Responses of Enzymes from Species Differing in Salt Tolerance. Plant Physiol. 1972 49(2):256-259
    44. Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell, 2005, 17(1):256-267
    45. Guo P, Bai G, Carver B, Li R, Bernardo A, Baum M. Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics, 2007, 277(1): 1-12
    46. Hamilton EW 3rd, Heckathorn SA. Mitochondrial adaptations to NaCl: Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001, 126(3): 1266-1274
    47. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000 404(6775):293-296
    48. Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integr Genomics, 2005, 5(2): 104-16.
    49. He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor AppI Genet, 2004. 109(2):377-383
    50. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q. Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006 103(35): 12987-12992.
    51. Jacinta S. D' Souza, Man Mohan Johri ABA and NaCl activate myelin basic protein kinase in the chloronema cells of the moss Funaria hygrometrica. Plant Physiology and Biochemistry, 2002, 40:17-24
    52. Jakoby M, Weisshaar B, Dr(o|¨)ge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F: bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002. 7(3): 106-111
    53. Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J, 2006, 48(5):710-27
    54. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57:19-53
    55. Kant S, Kant P, Raveh E, Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na~+ uptake in T. halophila. Plant Cell Environ. 2006 29(7):1220-1234
    56. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 1999, 17(3):287-91
    57. Kaur S, Anil K. Gupta and Kaur N. Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regulation 1998, 26(2): 85-90
    58. Kim I, Rao H. What's Ub chain linkage got to do with it? Sci STKE. 2006 2006(330): 18
    59. Knight H, Knight MR. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 2001 6(6):262-7
    60. Koprivova A, North KA, Kopriva S. Complex signaling network in regulation of adenosine 5'-phosphosulfate reductase by salt stress in Arabidopsis roots. Plant Physiol. 2008 146(3): 1408-1420
    61. Kuhn JM, Schroeder JI. Impacts of altered RNA metabolism on abscisic acid signaling. Curr Opin Plant Biol, 2003, 6(5):463-469
    62. Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem. 2003 278(9):6862-6872.
    63. Kusano T, Sugawara K, Harada M, Berberich T. Molecular cloning and partial characterization of a tobacco cDNA encoding a small bZIP protein. Biochimica et Biophysica Acta (BBA)/Gene Structure and Expression, 1998, 1395(2): 171-175
    64. Lal S, Gulyani V, Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res. 2008 17(4):651-663
    65. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004, 23(20):4051-4060.
    66. Li HY, Wang TY, Shi YS, Fu JJ, Song YC, Wang GY, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). DNA Seq, 2007. 18(6):445-460
    67. Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta. 2008 228(2):225-240.
    68. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY. QTLs for Na~+ and K~+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet. 2004 108(2):253-260
    69. Liu GH, Chen J, Wang XC. VfCPKl, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant, Cell & Environment, 2006. 29 (11) 2091 -2099
    70. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14(5):836-843
    71. Luo J, Shen G, Yan J, He C, Zhang H. AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J. 2006 46(4):649-57.
    72. Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol. 2008 Epub ahead of print
    73. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant cell, 2005, 17:2186-2203
    74. Macrae D, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for double-stranded RNA processing by Dicer. Science, 2006, 311(5758): 195-198
    75. Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 2008 Epub ahead of print
    76. Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG MicroRNA promoter element discovery in Arabidopsis. RNA, 2006, 12(9): 1612-1619
    77. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell, 2008, 133(1): 116-127
    78. Mica E, Gianfranceschi L, Pè ME. Characterization of five microRNA families in maize. J Exp Bot, 2006, 57(11):2601-2612
    79. Mishra G, Zhang W, Deng F, Zhao J, Wang X. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 2006, 312(5771 ):264-266.
    80. Moreno A, Lumbreras V, Pages M. Drought tolerance in maize. Maydica, 2005, 50: 549-558
    81. Munns R. Comparative physiology of salt and water stress. Plant Cell Enviro, 2002, 25(2):239-250
    82. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y. Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007. 51(4):617-630
    83. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M. Voinnet O, Jones JD. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772):436-439
    84. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR 164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell. 2006 18(11):2929-2945.
    85. Ninnemann H, Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem Photobiol. 1996 64(2):393-398.
    86. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A. 2005 102( 10):3691 -3696
    87. Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiol. 2002 129(2):460-468
    88. Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett, 2007, 581(19):3592-3597
    89. Pines J, Lindon C. Proteolysis: anytime, any place, anywhere? Nat Cell Biol. 2005 7(8):731 -735.
    90. Prasad S R, Bagali P G, Hittalmani S. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci, 2000, 78:162-164
    91. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet. 2005 37(10):1141-1146
    92. Ronemus M, Vaughn MW, Martienssen RA. MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell. 2006 18(7): 1559-1574
    93. Sahi C, Singh A, Kumar K, Blumwald E, Grover A. Salt stress response in rice: genetics. molecular biology, and comparative genomics. Funct Integr Genomics, 2006, 6(4):263-84
    94. Sakamoto A, Alia, Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol. 1998 38(6): 1011-1019
    95. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci, 2006, 103(49): 18822-18827
    96. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D. Salt Tolerance of Glycinebetaine-Deficient and -Containing Maize Lines. Plant Physiol. 1995 107(2):631-638
    97. Schauer SE, Jacobsen SE, Meinke DW, Ray A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci, 2002, 7(11):487-491
    98. Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 2004, 9(5):236-243
    99. Sekmen AH, Türkan I, Takio S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant. 2007 131(3):399-411
    100. Shalem O, Dahan O, Levo M, Martinez MR, Furman I, Segal E, Pilpel Y. Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol Syst Biol, 2008,4:223
    101. Shi Q, Ding F, Wang X, Wei M. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem. 2007 45(8):542-550
    102. Shiozaki N, Yamada M, Yoshiba Y. Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. Theor Appl Genet, 2005, 110(7):1177-1186
    103. Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 2008, in press.
    104. Sullivan JA, Shirasu K, Deng XW. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics 2003 4, 948-958
    105. Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007, 12(7):301-309
    106. Sunkar R, Girke T, Zhu JK. Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res 2005, 33:4443-4454
    107. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 2008, 8:25
    108. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8):2001-2019
    109. Tassoni A, Franceschetti M, Bagni N. Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem. 2008 46(5-6):607-613.
    110. Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M. NaCl-induced changes in cytosolic free Ca~(2+) in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ. 2008 31(8): 1063-73.
    111. Trewavas AJ, Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997 9(7): 1181-1195
    112. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3:12
    113. Vaucheret H, Vazquez F, Crété P, Bartel DP.Vaucheret H, Vazquez F, Crete P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18(10): 1187-1197
    114. Verbruggen N, Villarroel R, Van Montagu M. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol. 1993 Nov;103(3):771-81
    115. Vogel G. Auxin begins to give up its secrets. Science, 2006, 313(5791): 1230-1231
    116. Wan B, Lin Y, Mou T. Expression of rice Ca~(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett, 2007, 581(6):1179-1189
    117. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol. 2008 67(6):589-602.
    118. Wang Y, Hindemitt T, Mayer KF. Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs. Bioinformatics, 2006, 22(21):2585-2589
    119. Waterhouse PM. Defense and counterdefense in the plant world. Nat Genet, 2006, 38(2): 138-139
    120. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A. 1993 90(21):9813-9817
    121. Wu L, Zhang Z, Zhang H, Wang XC, Huang R. Transcriptional modulation of ERF protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought and freezing. Plant Physiol. 2008 Epub ahead of print
    122. Wu Y, Wang Q, Ma Y. Chu C. Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Science, 2005, 168:847-853
    123. Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol. 2003 132(2):861-869.
    124. Yang JH, Han SJ, Yoon EK, Lee WS. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res, 2006, 34(6): 1892-1899
    125. Yang X, Liang Z, Wen X, Lu C. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol. 2008 66(1-2): 73-86
    126. Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 2007, 8(6):R96
    127. Zacchini M, Marotta A, de Agazio M. Tolerance to salt stress in maize callus lines with different polyamine content. Plant Cell Reports, 1997, 17: 119-122
    128. Zhang Y. miRU: an automated plant miRNA target prediction server. Nucleic Acids Res, 2005. 33(Web Server issue):W701-4.
    129. Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot (Lond). 2008 102(4):509-19
    130. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun, 2007, 354(2):585-590
    131. Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol. 2004 134(2):849-857
    132. Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta, 2008, doi:10.1016/j.bbagrm.2008.04.005
    133. Zhou X, Wang G, Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol, 2007, 3:103
    134. Zielinski RE. Calmodulin and Calmodulin-binding Proteins in Plants. Annu Rev Plant Physiol Plant Mol Biol. 1998 49:697-725.
    135. Z(o|¨)rb C, Schmitt S, Neeba A, Karl S, Linder M, Schubert S. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Science, 167, (2004) 91-100
    136. Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007 19(10):3019-3036

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700