2-氰基丙烯酸酯新化合物抗烟草花叶病毒活性与作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病毒病害的化学防治是目前植物病理学科研究的热点和难点。本文以烟草为材料,对贵州大学精细化工研究开发中心研制的GU188[3-甲硫基-3-(2-硝基苯氨基)-2-氰基丙烯酸乙酯]新化合物及病毒星抗烟草花叶病毒(TMV)的生物活性、生化机制以及GU188抗TMV的分子生物学机理进行了较为全面深入的研究,其结果如下:
     1、对TMV的生物活性
     新化合物GU188对烟草花叶病毒(TMV)具有较好的预防效果,防效优于宁南霉素。在普通烟上的预防效果达58.33%,高于在心叶烟上的防效;在心叶烟上的治疗效果为38.94%,在普通烟上的治疗效果达44.44%,显著高于宁南霉素。与离体钝化试验相比,新化合物GU188在心叶烟活体叶片上的枯斑抑制率明显高于离体的枯斑抑制率,预防及治疗作用的枯斑抑制率分别达31.04%和53.31%。30%病毒星WP250 mg.L~(-1)处理对烟草花叶病毒(TMV)具有较好的预防和治疗效果,与GU188 250 mg.L~(-1)处理及对照药剂宁南霉素处理的效果相当。
     2、药物活性的生化机制分析
     对防御酶的影响:接种后药剂处理,GU188 250 mg·L~(-1)、CK1(宁南霉素)处理烟草叶片内的过氧化物酶(POD)活性高峰与对照活性高峰出现时间相同,活性峰值以GU188 250mg·L~(-1)最高;接种后药剂处理,GU188药物250 mg·L~(-1)和CK1(宁南霉素)处理烟草叶片的POD活性值提前达到峰值,这可能是由于接种后用GU188 250 mg·L~(-1)、CK1(宁南霉素)处理,引起酚类物质氧化、木质素及木栓质合成速度加快,提前达到高峰,进而也能引起多酚氧化酶(PPO)活性提前达到高峰。药剂诱导的烟草叶片内的苯丙氨酸解氨酶(PAL)活性和对照烟草叶片的PAL活性都在接种后6d达到高峰,且GU188 250 mg·L~(-1)处理的活性峰值最高。这可能是因为药剂诱导刺激了细胞,控制PAL防御体系的基因表达量增加,促进PAL催化的代谢产物大量合成,抵抗烟草花叶病毒(TMV)的侵入、扩展。药剂诱导后接种,烟草叶片内的PPO活性高峰出现时间推迟,从接种后4d开始,各药剂处理的PPO活性均明显高于对照;接种后药剂处理,各处理的PPO活性明显高于对照的PPO活性,活性高峰比对照提前出现。经药剂诱导后,除GU188药物250 mg·L~(-1)处理过氧化氢酶(CAT)活性在接种后0d时提前达到高峰外,其它处理及对照的CAT活性均在接种后8d达到活性高峰。
     对烟草抗病性的激发:理想的植物病毒抑制剂不仅能够钝化病毒的活性,更为重要的是能够通过激发植物的抗病毒机制,来限制病毒在体内的复制、扩展和症状的产生。本研究中发现具有良好治疗作用的GU188 250 mg·L~(-1)处理能够导致接种TMV的叶片蛋白质表达谱发生变化。大多数新出现的蛋白质可能涉及多种病程相关蛋白(PR蛋白),特别是PR-2a、PR-2b、PR-3组中的成员,此外还可能涉及PR-1、PR-4、PR-5b组中的成员。在没有N基因背景的普通烟上,GU188似乎也可以导致接种TMV的叶片蛋白质表达谱发生变化,但变化的总体趋势是蛋白质浓度和种类减少,至处理后24h达到最低,处理后48h的蛋白质浓度与处理前相当。在普通烟中新出现的3条带,很可能就是PR-1、PR-4组中的酸性蛋白成员,这一现象具有重要意义。
     3、药物活性的分子机理分析
     为了揭示GU188抑制烟草花叶病毒(TMV)在分子水平上的活性机理,本研究共设三种处理:处理A(treatment A),单独接种TMV;处理B(treatment B),烟草叶片接种TMV10h后再涂抹GU188药剂(500 mg·L~(-1));处理C(treatment C),单用GU188药剂(500 mg·L~(-1))涂抹烟草叶片。对照叶片涂抹磷酸缓冲液(PBS,pH7.2),采用基于拟南芥基因组的寡聚核苷酸芯片对GU188所诱导的烟草叶片基因的表达进行了探测。结果表明:A处理(单独接种TMV)有260个基因有效表达,上调基因为180个,下调基因为80个;B处理(TMV接种后再施用GU188药剂)有175个基因有效表达,上调基因为55个,下调基因为120个;C处理(单独施用GU188药剂)有83个基因有效表达,上调基因10个,下调基因73个。三种处理间的基因表达具有明显的规律性:即被TMV诱导的大部分上调表达基因,施用药剂后表达为下调,相反被TMV诱导的大部分下调表达基因,施用药剂后则表达为上调;单独旌药处理也表现出相同的趋势,但有效表达基因数量比接种TMV后再施用药剂的少。初步从基因水平上证明GU188药剂具有抵消或部分抵消TMV引起的寄主不正常表达以及治疗效果优于预防效果的作用机理。GU188药剂的主要活性机理是纠正由TMV所诱导的烟草与RNA合成相关的基因的上调表达,从而实现对TMV利用寄主RNA合成机器复制自己的抑制,这是GU188提高寄主对烟草TMV侵染抗性的关键之所在。基因功能分析还表明TMV与寄主间存在着及其复杂的调控关系:TMV侵染后可以上调寄主细胞核蛋白、RNA合成、蛋白质合成、泛素介导的蛋白质分解途径相关的基因表达;TMV干扰了寄主体内激素相关基因的正常表达,较为突出的是与乙烯合成和发挥效应的基因被上调而赤霉素的相关基因被下调;与光合和呼吸作用相关的基因被TMV下调;细胞壁和细胞骨架合成相关的基因被下调;植物正常的抗逆途径的基因如热激蛋白、活性氧清除蛋白等的表达被下调;TMV在植物体内的信号传导途径可能是以钙信号传导途径为主,因为钙信号途径中的主要成员在TMV的侵染后其基因表达差异最大;此外芯片还检测到DNA脱甲基化基因、miRNA基因及组蛋白脱乙酰化酶基因的上调表达,显示了TMV可能在多种水平上实现对寄主的基因表达的调控。
     总之,通过本研究初步得知GU188抗TMV的生物活性机理主要通过控制寄主RNA合成系统的基因表达来抑制TMV的复制,这一结论对新药的筛选具有重要的参考意义。从基因表达水平上初步得出了GU188对TMV的治疗效果优于其预防效果,其整体防效应在50%左右。同时表明,基因芯片技术在药物机理研究中所具有的简单、快速和明确的作用,这一尝试为今后药物活性筛选和药物作用机理的研究提供了借鉴。此外,还检测到67个目前还未知功能的有效差异表达的基因,随着对这些基因功能的逐步诠释,对TMV诱导的寄主基因的表达以及抗TMV药物靶标的研究将会提供更好的依据。
The control of viral disease in plants has become an importance-area of research in the current-phytopathology. Biological activity, physiological achieve and inhibitory mechanistic actions of Gu188 [2-cyano-3-(methylthio)-3-(2-nitrophenylamino)acrylate], synthesized by Center for Research and Development of Fine Chemicals of Guizhou University are useful for further development of this kind of antivirus chemicals.
     1、Biological activities against TMV
     Prevention effects of GU188 on inhibition of TMV infecting tobacco were either higher than or equal to that of the control chemical, Ningnanmycin. Controlling effects of GU188 on common tobacco had reached 58.33% and higher than that on Nicotiana glutinosa. Compared with the result of the isolated inactivation experiment, blight inhibition rate of tested chemicals in living tobacco leaves was remarkably higher. The blight inhibition rates for preventive are curative effects reached up to 30.04% and 53.31% respectively. The results also showed that 250 mgL~(-1) of Bingduxing WP30% had preventive and curative effects, similar to those of 250 mgL~(-1) of GU188 and control (Ningnanmycin).
     2、Analysis of biochemical activities
     Activities of defense enzymes: Activities of several defense enzymes in the tobacco plant treated with the tested compounds were studied. When inoculated after being induced by the compound, the activity peak value of the POD in tobacco leaf appeared at the same time as the CK after treatment with GU188 activity peak value was found to be the highest. When treated with the compounds after inoculation, the activity of POD in the tobacco leaves treated with D2 and CK1 reached the peak value in the beginning. The PAL activity in the compound-induced tobacco leaf reached the highest level 6d after inoculation similar to the control treated tobacco leaf with the D2 treated are assuring the highest value. The PAL activity in the tobacco leaf treated with the tested compound after inoculation equally reached the highest level 6 days after being treated and was much higher than that of CK, which reached the peak value 2 days after inoculation. When inoculated after being induced by the tested compounds, the appearance of PPO activity peak in the tobacco leaf was delayed. From 4th day onward after being inoculated, the PPO activities of all the tested compounds were found to be remarkably higher than that of CK. When treated with the tested compounds after being inoculated, the PPO activities of all the treatments were significantly higher than that of CK and the peak value appeared earlier than that of CK. When induced by the tested compounds, except for D2's, CAT activity initially reached the highest level 0 day after inoculation, other CAT activities of CK achieved the peak value 8 days after inoculation. At the same time, the D treatment could cause some changes in the protein expression spectrum in the tobacco leaf inoculated with TMV.
     Stimulatory of resistance of tobacco: A better antivirus compound should not only inactivate action of virus but should also be able to stimulate ability of host's antivirus mechanism to inhibit virus' replication, spread and syndrome. In this study the compound D2 (250 mg·L~(-1) of GU188), showed better preventive and curative effects, could change the profile of protein expression after TMV infection. Most of the new protein bands the appeared should related to various PR proteins, especially the members of the group of PR-2a, PR-2b, PR-3 and members of the group of PR-1, PR-4, PR-5b. GU188 could also change the profile of protein expression in common tobacco in which there was no background of N gene after TMV infection. A decreasing trend was noticed with 24 h after treatment of GU188 reached the lowest point and 48 h resuming to the level before treatment. 3 bands appeared at common tobacco might be the acidic members of PR-1 and PR-4 group. The phenomenon is of enormous significance.
     3、Analysis of mechanism action of tested compound at the molecular level
     In order to study the mechanistic aspects pertaining to GU188 in gene expression for host plant leaves were detected by the analysis of microarrays based on Arabidopsis thaliana genome sequence. The results showed that the 260 genes in tobacco leaves inoculated by TMV alone (treatment A) were induced to exhibit significant expression changes, including 180 up-regulated genes and 80 down-regulated genes. There were 175 genes in tobacco leaves treated by inoculation of TMV and spray of GU188 at same time (treatment B) to display effective expression, which consisted of 55 up-regulated genes and 120 down-regulated genes. 83 genes in leaves treated by the compound but without inoculation of TMV (treatment C) were induced to exhibit effective expression, including 10 up-regulated genes and 73 down-regulated genes. Remarkable phenomena of the gene expression differences in 3 treatments were observed: almost entire up-regulated genes by TMV were down-regulated by the usage of the tested chemical, while most all of the down-regulated genes by TMV were found to be up-regulated by GU188. Similar results were obtained in treatment C except for the face that fewer genes were expressed as compared with that in treatment B. Analysis of gene functions showed that TMV-infection up-regulated expression of the genes in relation to the host nucleoproteins, synthesis of RNAs and proteins, and the protein degradation pathways mediated by ubiquitin and SUMO; TMV disturbed the normal gene expression associated with phytohormones metabolism in its host, down-regulated expression of the genes related to photosynthesis, respiration, construction of cell wall and cytoskeleton, normal anti-stress pathways such as heat shock protein and active oxygen scavenger protein; gene expression of main components in calcium signal pathway was altered sharply due to TMV infection; the cDNA microarray also identified the up-regulated genes of DNA demethylation, miRNA, HDACs, which demonstrated that TMV might regulate the host gene expression at various levels.
     To sum up, this paper explained that role of GU188 in improving tobacco resistance against TMV infection was probably achieved by counteraction or correction of abnormal gene expression in the host leaves induced by TMV. The key mechanism underlined that inhibition of GU188 against TMV reproduction was down-regulated the expression of genes relation to RNA synthesis in leaf cells because the RNA synthesis of TMV completely depends on the host's machine of RNA synthesis. And the judgment of the results also indicated that curing effects of tested chemical was probably better than its' preventing effect by judgment at gene transcription level. In addition, out of the 260 significant expression genes, there were 57 whose function could not be ascertained. We believe that with continuous of these gene functions, a clearer profile of gene expression induced by TMV infection in tobacco leaf would be achieved.
引文
1.下村撤.植物病毒抑制剂的实用性和研究状况[J].国外农学—植物保护,1985,(2):61-65.
    2.下村辙.抗植物病毒制剂的应用研究[J].植物防疫,1984,(7):117.
    3.马军安,邱德文,黄润秋,冯磊,柴有新.取代甲醛肟羧酸酯的合成及生物活性研究(Ⅴ)-拟除虫菊酸4-二甲(乙)氨基苯甲醛肟酯抗植物病毒活性[J].农药学学报,2000,2(4):91-93.
    4.马国胜,何博如.烟草病毒病的发生与防治研究进展[J].河南农业科学,2005,(2):42-46.
    5.马治华,邵瑞链,马红敏,成俊然,黄润秋.不对称环磷酸肟酯的合成和生物活性研究.[J].高等学校化学学报,1999,20(10):1574-1577.
    6.孔凡明,杨光,陈学平,夏凯,许志刚,周燮.烟草与TMV不同互作体系中的活性氧及抗氧化酶系活性比较[J].安徽农业大学学报,2002,29(3):217-223.
    7.王先斌.香菇培养物水浸液对烟草花叶病毒(TMV)侵染心叶烟的抑制作用[J].微生物学报.1986,26(4):363-365.
    8.王晓光,藏开保.农药的研究开发与发展趋势[J].湖南化工,2000,30(3):1-8.
    9.王海河,林奇英,谢联辉,吴祖建.黄瓜花叶病毒三个毒株对烟草细胞内防御酶系及细胞膜通透性的影响[J].植物病理学报,2001,31(1):43-49.
    10.王敬文,薛应龙.植物苯丙氨酸解氨酶的研究Ⅱ苯丙氨酸解氨酶在抗马铃薯晚疫病中的作用[J].植物生理学报,1982,8(1):35-43.
    11.邓光兵,万波,胡厚芝,陈家任,余懋群.宁南霉素对烟草花叶病毒的生物活性[J].应用与环境生物学报,2004,10(6):695-698.
    12.田波.植物病毒研究方法[M].北京:科学出版社,1987,7.
    13.龙韫先,张克胜,邱德文.N-吡唑啉酮基-α-氨基膦酸酯的合成及其生物活性的研究[J].高等学校化学学报,1996,17(8):1247-1249.
    14.刘国坤,谢联辉,林奇英,吴祖建,陈启建.15种植物的单宁提取物对烟草花叶病毒(TMV)的抑制作用[J].植物病理学报,2003,33(3):279-283.
    15.刘学瑞,张碧峰.抗植物病毒剂的研究与应用[J].国外农学—植物保护,1994,(3):8-11.
    16.刘学瑞,肖启明.植物源农药防治烟草花叶病毒机理初探[J].中国生物防治,1997,13(3):128-131.
    17.刘昕,黄润秋,李慧英,杨熠.O-(4-喹啉啉)羟肟酸硫代酯(酰胺)类化合物的合成及生物活性.[J].应用化学,1999,16(2):23-26.
    18.刘爱新,梁元存,张博,商明清.植物诱导抗病性研究进展[J].山东农业大学学报,1998,(3):410-413.
    19.刘道贵,程伟星,汤牛根,周方.植物抽提物防治植物病毒病的研究[J].安徽农业科学,2000,28(6):764-764,766.
    20.安德荣.植物病毒分类和鉴定的原理及方法[M].西安:陕西科学技术出版社,1995.
    21.曲凡歧,肖春华,钟鸣,黄筱玲.植物病毒病化学防治剂的探寻V N-(2-取代内基)DHT的制备及抗病毒活性[J].武汉大学学报(自然科学版),1996,42(4):389-393.
    22.曲凡歧,肖春华,徐小军,郑学根,黄筱玲.植物病毒病化学防治剂的探寻:Ⅶ2,4-二氧六氢-1,3,5-三嗪芳基取代化合物的合成[J].武汉大学学报(自然科学版),1997,43(2):145-149.
    23.曲凡歧,郑学根,黄筱玲.植物病毒病化学防治剂的探寻Ⅲ2,4-二氧六氢-1,3,5-三嗪N-酰基取代化合物的合成[J].武汉大学学报(自然科学版),1996,42(2):129-135.
    24.朱水方,裘维蕃.几种中草药抽提物对黄瓜花叶病毒引起的辣椒花叶病治疗作用初步研究[J].植物病理学报,1989,19(2):123-128.
    25.朱水方.植物病毒病的药剂防治研究[J].世界农业,1989,(9):40-42.
    26.朱毅勇,沈其荣,谢学东,王岩,梁永超.磷酸盐诱导黄瓜系统抗病中主要酶活性的变化[J].南京农业大学学报.1999.22(2)50-54.
    27.江山,郭雪柳,韩熹莱.一些抗植物病毒剂对烟草花叶病毒衣壳蛋白体外聚合过程的影响[J].中国病毒学,1996,11(1):77-79.
    28.江山,韩熹莱.病毒病化学防治的研究进展[J].中国病毒学,1995,10(1):1-7.
    29.江山.病毒唑在植物保护中的作用[J].植物保护,1991,17(6):35-36.
    30.江昌俊,余有本.苯丙氨酸解氨酶的研究进展[J].安徽农业大学学报,2001,28(4):425-430.
    31.许仁林.PR-蛋白与高等植物的诱导抗性[J].病毒学杂志,1989,(2):121-128.
    32.许良忠,郭玉晶,张书圣.植物病毒病化学防治研究进展[J].青岛化工院学院学报,2000,21(4):293-296.
    33.余迪求,岑川,李宝健,傅家瑞.植物系统获得的抗病性和信号传导[J].植物学报,1999,41(2):115-124.
    34.吴云峰,曹让,魏宁生,周广和.生物病毒农药筛选及应用[J].世界农业,1995,(5):35-36.
    35.吴云峰,曹让.几种药剂对病毒侵染和植物抗病性的影响[J].植物病理学报,1999,27(2):1-5.
    36.吴尔福,王明岐.植物病毒化学防治[M].北京:中国科学出版社,1996.
    37.宋凤鸣,郑重.枯萎病菌侵染后棉苗体内多酚氧化酶活性的变化[J].植物生理学通报,1997, 23(3):175-177.
    38.张成良.植物病毒分类学[M].北京:中国农业出版社,1996.
    39.张慧苹,宋宝安,王献友,胡德禹,金林红,薛伟,刁春玲,汪华.2-氰基丙烯酸醋类化合物的合成与抗病毒活性研究[C].中国化工学会农药专业委员会第十二届年会论文集,2005,95-98.
    40.李广敏,郭秀林,商振清,李兴红.多胺与番茄对烟草花叶病毒抗性的研究[J].华花农学报,1998,13(2):64-68.
    41.李合生,孙群,赵世杰.植物生理生化学实验原理和技术[M].北京:高等教育出版社,1999.
    42.李在国,黄润秋,杨华铮,李慧英.化学合成植物病毒抑制剂研究进展[J].农药,1998,37(5):3-6.
    43.李在国,黄润秋,杨炤,李慧英.含苯并噻唑杂环的a-氨基烷基膦酸二乙酯的合成及生物[J]高等学校化学学报,1998,19(12):1970-1974.
    44.李在国,黄润秋.植物病毒防治剂的作用机制[J].植物保护,1999,25(3):37-39.
    45.李重九,侯玉霞,王蔚霞,费菁,马立新,蔡祝南,刘仪.植物病毒选择性治疗药剂的筛选研究[J].植物病理学报,1997,27(4):343-348.
    46.李重九,费菁,福士幸治,川端润,田原哲士,水谷纯也,上田一郎.丙酰紫草素对病毒的钝化作用[J].中国农业大学学报,1997,2(5):47-50.
    47.杜春梅,李浩戈,赵秀香,吴元华,贝纳新.菌克毒克防治烟草普通花叶病毒(TMV)及对病程相关蛋白的诱导作用研究[J].中国烟草科学,2000,(3):4-6.
    48.汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2002.
    49.邱德文.抗植物病毒化合物的计算机辅助分子实际及其作用方式[D].北京农业大学博士学位论文,1995.
    50.邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995.
    51.陈利锋,宋玉立,徐雍皋,聂理,徐朗莱.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较[J].植物病理学报,1997,27(3):209-213.
    52.陈启建,刘国坤,吴祖建,林奇英,谢联辉.三叶鬼针草中黄酮甙对烟草花叶病毒的抑制作用[J].福建农林大学学报(自然科学版)2003,32(2):181-184.
    53.陈学平,姚忠达,郭家明,陈良友,陈龙,孟晓辉.不同烟草品种感染TMV过程中CAT、PAL活力变化研究[J].安徽农业大学学报,2002,29(2):103-107.
    54.陈彦春,常剑波,杨方.菌克毒克防治烟草花叶病药效初报[J].烟草科技,2001,8(17)
    55.陈顺,席海生 冯华 吴红艳.香菇菌多糖防治由病毒引起的马铃薯退化的试验研究[J].微生 物学杂志,1998,24(2):10-13.
    56.林存銮,裘维蕃.一些植物抽提液对番茄花叶病毒病(TMV-T)的治疗作用[J].植物保护学报,1987,14(4):217-219.
    57.欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1988,24(3):9-16.
    58.金林红,宋宝安,杨松,胡德禹.天然产物抗植物病毒剂国内外研究进展[J].农药,2003,42(4):10-12.
    59.金林红,钟惠民,宋宝安,胡德禹,杨松,刘刚.2-氰基丙烯酸酯的合成及其生物活性研究进展[J].合成化学,2005,13(2):113-117.
    60.侯玉霞,李重九,刘仪,蔡祝南,费菁.抗病毒剂对烟草花叶病毒与烟草叶绿体互作的影响[J].植物保护,1998,24(2):10-13.
    61.前田浩明.关于植物病毒抑制剂Rentemin[J].今月农业,1982,26(6):42-47.
    62.姚宇澄,杨熠,高俊,安天英,于学舜,李广仁,黄润秋.牛心朴子草抗植物病毒组分的生物活性研究[J].内蒙古工业大学学报,自然科学版,2002,21(1):1-4.
    63.逢丽丽,宋宝安,汪华,金林红.宁南霉素、病毒A、娃儿藤碱对烟草花叶病毒的室内毒力活性测定[J].农药,2005,44(4):176-178.
    64.倪长春,沈宙.植物系统获得抗性激活剂筛选方法探讨[J].现代农药,2004,(1):10-14
    65.徐均焕,李德葆,盛方镜,方月鲜.不同抗性的榨菜在芜蔷花叶病毒感染后细胞超微结构的研究[J].中国病毒学,1996,11(1):61-67.
    66.郭兴启,朱汉城,严敦余,李向东,竺晓平.大黄提取物对番茄花叶病毒(ToMV)病防治作用的研究[J].山东农业大学学报,1998,29(2):171-175.
    67.郭明.植物病毒抑制物的研究进展[J].甘肃农业科技,1992,7:28-29.
    68.高木康至,岛田和纯.伞菌类锯木屑培养物提取液对TMV的防治效果[J].日植病报,1977,43:211-214.
    69.曹永三,王振中.豇豆与锈菌互作中的活性氧代谢研究[J].植物病理学报,2004,34(2):146-153.
    70.深见顺一,上杉康彦(日),李树正,王笃枯,焦书梅译.农药实验法-杀菌剂篇[M].北京:农业出版社,1991:93-94.
    71.黄润秋,王惠林,周嘉.有机中间体的制备[M].化学工业出版社,北京,2001:224-225.
    72.黄润秋,孙建宇,李慧英,柴有新.取代苯甲醛肟羧酸酯的合成及生物活性研究(Ⅱ)[J].高 等学校化学学报,1998,19(8):1280-1282.
    73.黄润秋,李慧英,马军安,邱德文.4-肟醚基喹唑啉类化合物的合成及其抗植物病毒TMV活性[J].高等学校化学学报,1996,17(4):571-574.
    74.黄筱玲,尹传奇.植物病毒病化学防治剂的探寻Ⅰ5-含氟(硝基)苯并咪唑基苯氧乙酸衍生物的合成及抗植物病毒活性[J].武汉大学学报(自然科学版),1995,41(2):142-148.
    75.黄筱玲,董新荣,尹传奇,黄波,曲凡歧,程梅.5-含氟苯并咪唑衍生物的合成[J].武汉大学学报(自然科学版),1993,39(4):123-126.
    76.黄筱玲.植物病毒病化学防治剂的研究现状及应用前景[J].湖北化工,1996,13(A04):21-23,13
    77.裘维蕃.植物病毒学[M].北京:农业出版社,1985.
    78.雷新云,裘维蕃,于振华.一种病毒抑制物质NS-83的研制及其对番茄预防TMV初侵染的研究[J].植物病理学报,1984,14(1):1-7.
    79.廖林.不同抗性大豆品种感染大豆花叶病毒后一些生理生化性状的变化[J].中国油料,1994,1:26-28
    80.潘汝谦,黄旭明,古希昕.活性氧清除酶类在黄瓜感染霜霉病过程中的活性变化[J].植物病理学报,1999,29(3):287-288.
    81.薛应龙.苯丙氨酸解氨酶(PAL)活性的测定,植物生理学实验手册[M].上海:上海科学技术出版社出版,1985:191-192.
    82. Balasaraswathi R.; Sadasivam S.; Ward M.; Walker J. M. An antivirual protein from bougainvillea spectabilis roots; purification and characterization [J].Phytochemistry, 1998, 47 (8):1561-1565.
    83. Blencowe B.J. Alternative splicing:, new insights from global analyses [J].Cell, 2006, 126(1): 37-47.
    84. Bradley D.J.; Kjellbom P.; Lamb C.J. Elicitor and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response [J]. Cell, 1992, 70: 21-30.
    85. Broekaert W.F.; Marien W.; Terras F.R.; De Bolle M.F.; Proost P.; Van Damme J.; Dillen L.; Claeys M.; Rees S.B.; Vanderleyden J.; Cammue BPA. Antimicrobial peptides from amarathus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins [J]. Biochemistry, 1992, 31(17): 4308-4314.
    86. Broekaert W.F.; Van Parijs J.; Leyns F.; Joos H.; Peumans W.J. A Chitin-binding lectin from stinging nettle rhizomes with antifungal properties [J]. Science, 1989, 245:1100-1102.
    87. Buonaurioa R.; Torre G. D.; Montalbini P. Soluble superoxide dismutase (SOD) in susceptible and resistance host-parasite complex of phaseolus vulgaris and uromyces phasekli [J]. Physiology Molecular Plant Patholology, 1987, 31:173-184.
    88. Chen Z.; Klessig D. F. Identification of a soluble s alicylic acidbinding protein that may function in signal transduction in the plant disease-resistance response [J]. Proceedings of the National Academy of Sciences USA, 1991, 81: 8179-8183.
    89. Chen Z.C.; White R.F.; Antoniw J.E Effect of pokeweed antiviral protein (PAP) on the infection of plant viruses [J]. Plant Pathology, 1991, 40:612-610.
    90. Chigrin V.V.; Rozum L.V.; Zhigalkina T E. Hydrolytic enzyme activity in resistant and susceptible wheat varieties foiiowing infection with stem rust [J]. Fizologiya Rastenii, 1988, 35(4):781-787.
    91. Colby T.; Matthai A.; Boeckelmann A.; Stuible H.P. SUMO.-conjugating and SUMO-deconjugating enzymes from arabidopsis [J]. Plant Physiology, 2006, 142 (1):318-332.
    92. Durner J.; Klessig D.F. Salicylic acid is a modulator of tobacco and mammalian catalases [J]. Journal of Biological Chemistry, 1996.27:28492-28501
    93. Giovane A.; Servillo L.; Balestrieri C.; Raiola A.; D'Avino R.; Tamburrini M.; Ciardiello M.A.; Camardella L. Pectin methylesterase inhibitor [J]. Biochimica et Biophysica Acta, 2004, 1696 (2):245-252.
    94. Golem S.; Culver J.N.Tobacco mosaic vies induced alterations in the gene expression profile of arabidopsis thaliana [J]. Molecular Plant-Microbe Interactions, 2003, 16 (8):681-688.
    95. Guo Z.-J.; Li D.-B. Active oxygen species in plant disease resistance [J]. Acta Botanica Sinica, 2000, 42 (9): 881-891.
    96. Gupta V.P.; Naqvi Q.A. Inhibitory activities of plant extracts on virus infectin [J]. Acta Botanica Indica, 1991, 19(1):18-24.
    97. Hammond K.K.; Jones J.D.G. Response to plant pathogens in: biochemistry and molecular biology of plants [J]. American Society of Plant Physiologists, 2000, 1102-1156.
    98. Hilder V.A.; Powell K.S.; Gatehouse A. R.; Gatehouse J.A.; Gatehouse L.N.; Shi Y.; Hamilton W. O.; Merryweather A.; Newell C.A.; Timans J.C.; Peumans W.J.; Damme V.E.; Boulter D. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphides [J]. Transgenic Research.1995, 4: 18-25.
    99. Huppatz J.L.; Phillips J.N.; Rattigan B.M. Cyanoacrylates herbicidal and photosynthetic inhibitory activity [J]. Agricultural and Biological Chemistry, 1981, 45:2769-2773.
    100. Jennifer K.L.; Wojciech K.; Kaniewski N.T. Broad-spectrum virus resistsace in transgenic plants expressing pokeweed antiviral protein [J].Proceedings of the National Academy of Sciences USA,1993,90:7089-7093.
    101. Jorge M. V.; Hector E.F. Purification and biological activity of two ribosome inactivating proteins from mirabillis expansa [J].Phytopathology, 1998, 8(9):133.
    102. Kailash C.; Pratibha G. Singh K.L. Antivity activity of syzygium megacarapum against encephalitis causing virus [J].Indian Journal of Virology.1998, 14(1):31-35.
    103. Keen N.T. The molecular biology of disease resistance [J]. Plant Molecular Biology, 1992, 19(1): 109-122.
    104. Keppler L.D.; Baker C.J.; Atkinson M.M. Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells [J]. Phytopathol, 1989, 79 (9):974-977.
    105. Keppler L.D.; Novachky A.The initiation of menbrane lipid peroxidation during bacteria induced hypersensitive reaction [J]. Physiology Molecular Plant Patholology, 1987, 30: 233.
    106. KihoY.; Abet O.Y. Disassembling of tobacco masaic virus by membrane lipid isolated form tobacco leaves and polyornithine [J].Microbiol Immunol, 1979, 23: 735-748.
    107. Kim K.K.; Fravel D.R.; Papavizas G.C. Identification of a metabolite produced by talaromyces flavusas glucose oxidase and its role in the biocontral of verticcillium dahliae [J].Phytopathol, 1988, 78: 488.
    108. Klessig D.F.; Malamy J. The salicylic acid signal in plants [J].Plant Mol Biol.1994, 26: 1439-1458
    109. Kondakova V.; Schuster G. Emination of strawberry mottle virus and strawberry crinkle virus from isolate spices of three strawberry varieties by addition of Z, 4-dioxohydor-1,3,5-triazine to the nutrient medium [J].Phytopathology,1991,132:84-86.
    110. Kondorosi E.; Redondo N. M.; Kondorosi A. Ubiquitin-mediated proteolysis. To be in the right place at the right moment during nodule development [J]. Plant Physiology, 2005,137 (4): 1197-204.
    111. Kretz O., Creppy E.E.; Dirheimer G. Characterization of bolesatine, a toxic protein from the mushroom boletus satanas lenz and its' effects on kidney cells [J]. Toxicology, 1991, 66: 213-224.
    112. kuntz J.E.; Walker J.C. Virus inhibitor by extracts of spinach [J]. PhytoPathology, 1947, 37: 561-579.
    113. Lechner E.; Achard P.; Vansiri A. F-box proteins everywhere [J]. Current Opinion in Plant Biology, 2006, 9 (6):631-638.
    114. Lengrand M.; Kanfmann S.; Geffroy P. Biological function of pathogensis-related protein, four tobacco pathogensis-related protein are chtinases [J]. Proceedings of the National, 1987, 54: 6750-6754.
    115. Lerch B. On the inhibition of plant virus multiplication by ribavirin [J].Antiviral Rescearch, 1987, 7(5):257-270.
    116. Linthorst H.M.; Meuwissen R.J.; Kauffmann S.; Bol J.F. Constitutive expression of pathogensis-related protein PR-1, GRP and PR-5 in tobacco has no effect on vrius infection [J].The Plant Cell, 1989, 1: 285-291.
    117. Mackay S.P.; O'Malley P.J. Molecular modelling of the interaction between DCMU and the Q(B)-binding site of photosystem-Ⅱ [J]. Naturforsch, 1993, 48, 191-198.
    118. Mallory A.C.; Vaucheret H. Functions of microRNAs and related small RNAs in plants [J]. Nature Genetics, 2006, 38: 531-536.
    119. Mario M.S.; Rajgopal S.; Frank E.; Carl J.D. Rapid activation of phenylpropanoid metabolism in elicitor-treated hybrid poplar (Populus trichocarpa Torr. & Gray×Populus deltoids Marsh) suspension-cultured cells [J]. Plant Physiology, 1992, 98: 728-737.
    120. Mazati M E.L.; Kroll J.; Schuster G. Inhibition of Red Clover Mvottle Virus(RCMV) and Green Mottle Mosaic Virus(CGMMV) bys-azadihydrouracil, alkane monosulfonate and gyanognanidine [J]. Zentralbl.Mikrobiol, 1990, 145: 31-35.
    121. McLusky S.R.; Bennett M.H.; Beale M.H.; Lewis M.J.; Gaskin P.; Mansfield J.W. Cell wall alterations and localized accumulation of feruloyl-3'-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis alliii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis [J]. Plant Journal, 1999, 17 (5):523-534.
    122. Mitsuzawa H.; Kanda E.; Ishihama A. Rpb7 subunit of RNA polymerase Ⅱ interacts with an RNA-binding protein involved in processing of transcripts [J]. Nucleic Acids Rescerch, 2003, 31 (16): 4696-4701.
    123. Naofumi O.; Akira H. Purification and chemical properties of plantvlru infection from leaves of yucca recurvifolia salisb [J]. Agricultural Biology Chemistry, 1987, 51(3): 891-896.
    124. Narusaka Y.; NarusakaM H.T.; Ishii H. Induction of disease resistance in cucumber by acibenzolar-S-Methyl and expression of resistancerelated genes [J]. Annals of the Phytopathological Society of Japan, 1999, 65(2): 116-122.
    125. Okey E.N.; Duncan E.J.; Sirju C.G.; Sreenivasan T. N. Phytophthora canker resistance in cacao: role of peroxidase, polyphenoloxidase and phenylalanine ammonialyase [J]. Journal of Phytopathology, 1997,145 (7):295-299.
    126. Saze H.; Mittelsten S.O.; Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis [J]. Nature Genetics, 2003, 34 (1):65-69.
    127. Schuster G. Investigifion on the inhabition of potato virus x by some animo acide analogs [J]. Biochemistry physion Pflanz, 1992, 188(3):195.
    128. Schuster G.; Huber S. Evidence for the inhibition of potato virus Ⅹ replication at tow stages dependent on the concentration of ribavine, 5-azadihytrouracil as 1,5-diacety-5-azadihytrouracil [J]. Biochem Physiol Pflanzen, 1991, 187:429-438.
    129. Selvaraj C.; Narayanasamy P. Effect of plant extracts in controlling rice tungro [J]. International Rice Research Notes, 1991, 16(2):2122.
    130. Song B.-A.; Yang S.; Zhong H.-M.; Jin L.-H.; Hu D.-Y.; Liu G. Synthesis and bioactivity of 2-cyanoacrylates containing a trifluoromethylphenyl moiety [J]. Journal of Fluorine Chem, 2005, 126:87-92.
    131. Song B.-A.; Zhang H.-P.; Wang H.; Yang S.; Jin L.-H.; Hu D.-Y.; Pang L.-L.; He W. Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives [J] Agricultural and Food Chemistry, 2005, 53: 7886-7891.
    132. Stirp F.; Barbieri L.; Batelli M.G.; Soria M.; Lappi D.A. Ribosome inactivation proteins from plants present status and future propects [J]. Bio/Techology, 1992, 10: 405-412.
    133. Wang Q.-M.; Li H.; Li Y.-H.; Huang R.-Q. Synthesis and herbicidal activity of 2-cyano-3-(2-chlorothiazol-5-yl) methylaminoacrylates [J]. Agricultural and Food Chemistry, 2004, 52(7), 1918-1922.
    134. Yao Q.-Z.; Yu M.-M.; Ooi L.M.; Ng T.B.; Chang S.T.; Sun S. M.; Ooi V.C. Isolation and characterization of a type Ⅰ ribosome-inactivating protein from fruiting bodies of the edible mushroom (Volvariella volvacca) [J]. Agricultural and Food Chemistry, 1998, 46(2): 788-792.
    135. Yu C.; Hu D.-W.; Dong J.-H. The symptom difference induced by tobacco mosaic virus and tomato mosaic virus in tobacco plants containing the N gene is determined by movement protein gene [J]. Science in China, Serction C, 2004, 47 (6):503-508.
    136. Zhang H.-P.; Song B.-A.; Zong H.-M.; Yang S.; Jin L-H.; Hu D.-Y.; He W. Synthesis of 2-cyanoactylates containing pyridinyl moiety under ultrasound irradiation. [J]. Journal of Heterocyclic Chemietry, 2005, 42:1211-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700