小麦雄性不育相关基因SKP1的克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum)是世界上重要的粮食作物,是人类得以生存繁衍的重要物质基础,与其它作物一样,利用杂种优势也是提高其产量和改良品质的最有效方法。然而,小麦杂种优势理论与实践研究还远不如玉米、水稻、油菜等作物那样广泛与深入。尤其是小麦雄性不育最佳利用途径与机理研究目前已成为攻克小麦杂种优势利用这一世界性难题的重要突破口。概括国内外小麦不育类型,主流研究可分为两大方面,即生理型雄性不育和遗传型雄性不育。对其研究,不同学者侧重点不同,从育性基因、育性差异蛋白、育性生理生化代谢途径等都进行了系列研究。泛素蛋白酶途径是细胞内冗余蛋白质降解的重要途径,其帮助细胞内冗余蛋白质降解,并能保证细胞内部复杂的生理生化过程正常进行。一类参与泛素蛋白酶途径的小分子量蛋白SKP1(S-phase kinase-associated-protein 1)广泛存在于真核生物中。其主要参与SCF复合体的形成,为维护SCF复合体的生物学功能起到了举足轻重的作用。SCF与细胞周期调控有关,其在生物体内主要是调控细胞内泛素介导的蛋白质降解过程,同时参与细胞内发育的多项生理过程。本研究正是基于SKP1上述作用,以化学杀雄剂SQ-1作为小麦雄性不育诱导剂,以小麦品种西农2611为试验材料,分喷药和不喷药(对照)两种处理,采集其花药作为实验材料,以前人研究得出的结果,SQ-1诱导的小麦雄性不育大多发生在单核后期至二核期,故以处理和对照花药的二核期cDNA材料为基础,通过NCBI查询拟南芥SKP1基因的序列从而设计引物并进行SKP1基因全长的扩增,将分别从SQ-1处理的和未处理的二核期材料中扩增得到的序列进行序列同源性比对,同时,进行西农2611花药处于单核期,二核期,三核期各时期SKP1基因的荧光定量表达,试图为揭示小麦生理型雄性不育的机理奠定一定理论基础。通过研究,获得如下结果:
     (1)SKP1基因的表达与SQ-1诱导的小麦生理型雄性不育相关。
     (2)从西农2611处理的和未处理的二核期cDNA中扩增,五次重复测序,最终得到了一段852bp长度的基因序列,经过比对和判断是属于小麦SKP1基因家族中的一份子,从而得到了新的小麦西农2611二核期SKP1基因序列,并将其上传至NCBI文库。
     (3)分别所获得的SQ-1处理的二核期和对照二核期2611的两段全长基因序列利用软件DNAman进行序列比对,结果发现,这两段基因序列的比对结果显示,只有第477个碱基有差异,其余的碱基序列完全保持一致。将此二者基因序列利用PrimerPrimer5.0软件进行翻译表达并比较二者翻译的蛋白质序列,结果得出,一个碱基差异并不能引起蛋白质翻译的差异。由此看出,在经过SQ-1处理的材料和对照材料中,SKP1基因的转录并没有受到影响,也就是说,SQ-1处理小麦未能引起基因转录水平的差异。
     (4)利用荧光定量PCR技术对SKP1基因在生理型不育株和可育株花药中表达进行了定量分析。结果表明,该基因在不育株和可育株花药发育3个时期(单核、二核和三核)表达量均表现为下降趋势,并且该基因在不育株花药发育的三个时期表达均相对于可育株被明显抑制。推测该基因在花粉粒发育过程中下调表达可能影响了小麦花粉粒发育过程中蛋白质泛素降解途径而导致雄性不育。
The whea(tTriticum aestivum)is very impotant grain in world, also one of main material basis to our existing.It’s an effective measure of increasing production and improving quality by heterosis. However, The theory of heterosis and research of practice with wheat are not deeper than maize, rice, rape and other crops.So far, study on the mechanism of male sterility is a significant breakthrough point for using heterosis.Summarized domestic and international wheat infertility type, It has two major aspects for studing male sterility including: male-sterility induced by Physiology and heredity. In the research, different scholars have different emphasis, they do these series study including the fertility of genes, difference of fertility proteins,physiological and biochemical metabolism. Ubiquitin proteasome pathway which can guarantee complex physilolgical and biochemical processes in proper operation is an important way to degradate redundancy protein in cells.One kind of low molecular weight protein SKP1(S-phase kinase-associated-protein 1)participating in ubiquitin proteasome pathway is found existing in eukaryotes broadly.It plays a decisive role in maintaining the biochemical function of SCF complex.The process of protein-degradating of ubiquitin mediated in cells is mainly regulated by SCF related with regulation in cell cycle.And at the same time, many physiological processes depends on SCF complex.
     In the study, male sterility intruduced by chemical hybrid agent SQ-1, the anther of xinong-2611 divided into two samples-the spraying and unspraying as the test object. From the former study,we find that male sterile induced by SQ-1 happens from the later of mononuclear to binuclear stage.So take cDNA of binuclear stage of the two samples as the test object,and then the primer of SKP2 gene is designed and amplificated based on sequence of SKP1 gene of arabidopsis from NCBI GeneBank.Next, make a homology comparison of the above sequence,and at the same time ,make an expression of quantification of SKP1 gene during mononuclear stage,binuclear stage and trinuclear stage,respectively in 2611.The study will lay the theoretical foundation for revealing the mechanism of male-sterile induced by physiology. The result is as follows via the experiment:
     (1)expression of SKP1 is related with physiological type male sterility by SQ-1 treated in wheat
     (2)used total RNA extracted from anthers in binuclear to strand cDNA by revearse transcrition,and then gene sequences(852bp) are finally gained. by comparison and judgement,the SKP1 gene sequence in binuclear stage of wheat2611 is found firstly and would to been submitted to NCBI GeneBank
     (3)Making a comparison of the two sequences achieved above with DNAman software,the result reveals that all bases remain unchanged except for the No.477 base.Through contrasting the protein sequences translated from the different bases with PrimerPrimer5.0 software,only one different base can’t cause difference of protein.Conclusion: transcription of SKP1 gene remains uninfluenced on both test object-the spraying and unspraying, in other words,SQ-1 can’t cause difference at transcriptional level on wheat.
     (4)Aalysis the expression of SKP1 gene of anthers in sterile plant and fertile plant induced by physiology respectively via fluorescence quantitatiye PCR technique. The results suggest that the expression of the gene all appears an decreasing tendency in three periods(mononuclear, binuclear and trinuclear)during the development of anthers in sterile and fertile plant. It’s obvious that the expression of the gene in sterility plant during this three periods was dramatically inhibited compared with that in fertile plant. As a result,it can be easily supposed that influencing the ubiquitin-proteasome proteolytic pathway in the development of pollen grains,down-regulated SKP1 gene expression can lead to male sterility.
引文
白洁,吴毓,李庆伟等. 2007.蛋白泛素化降解途径[J] .国际遗传杂志,30(2):114-118
    曹双河. 2002.小麦光温敏核雄性不育基因的初步定位和相关基因的克隆[D].中国农业大学博士学位论文.
    陈万义. 1999.化学杂交剂的进展[J].农药, 3838(1):1-6
    仇松英,许钢垣,武计萍,等. 2000.化杀杂种小麦优势表现分析[J].山西农业学, 28(1)1-5.
    邓景阳,高忠丽. 1980.太谷核不育小麦的发现与鉴定[J]中国科学, ( 2):157- 165.
    邓景杨,高忠丽. 1980.小麦显性雄性不育基因的发现与利用-太谷核不育小麦鉴定总结.作物学报, (2)84-98.
    丁晓东,马国文等. 2006.实时荧光定量PCR技术研究进展及其应用.内蒙古民族大学学报(自然科学版),21(6):665-668.
    傅大雄,阮仁武. 1993. KM型核质互作光温敏雄性不育的发现与两系法杂交小麦的拓建[J].西南农业学报, 6 (1):117-118
    傅鸿仪. 1983.高粱线粒体基因组的翻译产物与细胞质雄性不育性[J].遗传学报, 10(6):471-476.
    葛忠源熊东艳张启勇等. 2008.实时荧光定量PCR技术及应用.中国农业通讯, (13):12-14.
    关荣霞,郭小丽,刘冬麻,等. 2002.小麦T型细胞质雄性不育恢复基因M的ISSR标记分析[J].中国农业科学, 35(11): 1297-1301.
    关荣霞,刘冬成,张爱民. 2001.小麦T型雄性不育恢复基因的遗传分析及RAPD标记[J].农业生物技术报, 9(2):159-162.
    郭卉,张雪竹,等. 2008.泛素-蛋白酶体途径及其生物学作用的研究进展[J].现代生物医学进展,8(9):1786-1788.
    何蓓如,董普辉,宋喜悦,等. 2003.小麦温度敏感不育系A3314温敏特性研究[J].麦类作物学报, 23(1): 1-6.
    何觉民,戴君惕,邹应斌,等. 1992.两系杂交小麦研究I.生态雄性不育小麦的发现、培育及其利用价值[J].湖南农业科学,(5):1-3.
    黄寿松. 1988.蓝粒小麦雄性不育-保持系选育初报.西北植物学报,8(3):162-166.
    黄占景,沈银柱,刘植义,等. 1997小麦T型细胞质雄性不育系与相应保持系线粒体DNA的RAPD分析[J].遗传, 19(4):8-11.
    蒋明亮,王道全,张爱民,等. 1998新哒嗪类化合物9403对小麦去雄效应的初步研究[J].中国农业大学学报, 3(5)30-44.
    李伯良,李林,吴家睿,等. 1999,功能蛋白质组学.生物工程进展, 19(4):15-16
    刘宏伟,张改生,王军卫,等. 1998.新型化杀杂交剂GENESIS诱导小麦雄性不育的初步研究[J].西北植物学报, 18(2):218-222
    刘宏伟,张改生,王军卫.1998.化杀杂种小麦研究.陕西农业科学, (6):3-5.
    刘敬忠,闫梅,王立荣,等. 2005.实时荧光聚合酶链反应结合融解曲线分析在α地中海贫血基因诊断中的价值.中华检验医学杂志, 28(8):858-861
    吕德彬,闫滋福,程西永,等. 2000.不同基因型小麦雄性不育的化学诱导研究[J].河南农业大学学报, 36(1):1-3
    马翎健,宋喜悦,胡银岗,等. 2004.光敏小麦雄性不育系A 31的育性变异及遗传研究[J].西北农林科技大学学报:自然科学版, 32( 4): 5- 8.
    门淑珍,刘博林. 2001小麦显性雄性核不育材料后代不育株与可育株不同器官的蛋白质比较研究[J].作物学报, 27(1):117-122.
    荣德福,曹卫民. 1999.普通小麦光温敏雄性不育的类型与长日高温敏感型不育系的选育[J] .麦类作物,19(1):20-24.
    荣德福,李少华,郭拥军,等. 2001.两极光温敏感型小麦雄性不育系337 S的选育[J].湖北农业科学,(5):13-16.
    山东昌潍地区农业科学研究所. 1984潍型小麦雄性不育系研究现状.遗传育种协会讨论文集.26(1):1-5.
    邵锦震,顾勇. 2006.水稻剑叶蛋白质的双向电泳分析[J] .湖北师范学院学报(自然科学版), (8):696-699.
    舒群芳,王苏生,易清明. 1989雄性不育水稻胚乳蛋白的双向电泳分析[J].遗传,11(3):5-8.
    司智海,刘植义. 1991.普通小麦T型细胞质雄性不育系及其保持系线粒体多肽的电泳比较研究[J].遗传学报, 18(1):44-50.
    宋国琦,胡银岗,林凡云. 2006. YS型小麦温敏雄性不育系A3017育性相关基因的SSH分析[J].西北植物学报, 26(7):1301-1304.
    谭昌华,余国东,杨沛丰,等.重庆温光型核不育小麦的不育性研究初报[J].西南农学报, 1992, 5(1): 1- 4
    藤晓月,陈雪晖. 1996,小麦T型细胞质雄性不育系和保持系蛋白质的比较研究[J].作物学报, 22(3):264-270.
    王振华,刘宏伟,张改生,等. 2003. 3种新型化学杂交剂诱导小麦雄性不育效果比较[J].西北农林科技大学学报(自然科学版), (3)43-46.
    魏磊,丁毅,胡耀军,余金洪. 2002紫稻细胞质雄性不育系叶片全蛋白双向电泳分析[J].遗传学报, 29
    文李,刘盖,张再君,陶钧,万翠香,李绍清,朱英国. 2006.红莲型水稻细胞质雄性不育花药蛋白质组学初步分析[J].遗传, 28(3):311-316.
    谢锦云,李小兰,陈平,曹梦林,陈良碧,梁宋平. 2003.温敏核不育水稻花药蛋白质组初步分析[J]中国生物化学与分子生物学报, 19(2):215-221.
    徐传俊,李玲等. 2007.泛素蛋白酶体途径与植物生长发育[J].西北植物学报, 27(3):0635-0643
    杨春玲,郭瑞林,关立等. 2002.我国小麦杂种优势利用现状及存在的问题[J].河南农业学,(9):14-15.
    叶绍文,容珊.1980. E型小麦雄性不育系的研究.遗传学报, (1):23-25.
    叶绍文.1979.小麦雄性不育在高原地区的发现.遗传学报,6(1):32.
    尹会男,柴家科,等. 2004.泛素-蛋白酶体途径研究进展[ J].医学分子生物学杂志, 1(1):47-50
    于晓敏,蓝兴国,李玉花. 2006泛素/26S蛋白酶体途径与显花植物自交不亲和反应.植物学通报,23 (2):197-206
    曾维英,杨守萍,盖钧镒,喻德跃. 2008.大豆质核互作雄性不育系NJCMS1A和其保持系的不同器官蛋白质组比较研究[J].大豆科学,(1):8-14.
    张爱民,鄂立柱,武跃廷,等. 1993.化学杂交剂SC2053诱导小麦雄性不育的研究[A].全国作物育种学术讨论会文集[C].北京:农业出版社,2(3)16-17
    张蓓. 2003.实时荧光定量PCR的研究进展及其应用.国外医学临床生物化学与检验学分册.24(6):327-329.
    张改生,杨天章. 1989.偏型和易型小麦雄性不育系的初步研究[J].作物学报, 15(1):1-10.
    张改生,杨天章. 1987.山羊草细胞质的1B/1R小麦一黑麦型雄性不育学研究初报[J] .陕西农业科学, (5):l-5.
    张改生等. 1992.单型小麦雄性不育系的研究(英文) [J].西北植物学报, (01)
    张龙雨. 2009.黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析(学位论文).西北农林科技大学.
    张天真. 2003.作物育种学总论[M].北京:中国农业出版社.
    赵昌平,王新,张风廷,等. 1999.杂种小麦的研究现状与光温敏二系法[J].北京农业科学, 17(2): 3-
    赵焕英,包金风,等.实时荧光定量PCR技术的原理及其应用研究进展.中国组织化学与细胞化学杂志.2007.16(4):492-497.
    周成江,周立社,吴刚,邵国,苏燕等. 2007.实时荧光定量PCR的研究进展及其应用.包头医学院学报. 23(2):204-207.
    周晓丽,朱国坡,李雪华,王艳玲,刘兴友,等. 2010.实时荧光定量PCR技术原理与应用.中国畜牧兽医. 37(2):87-89.
    朱宏,王继华,王同昌. 2004.小麦T型细胞质雄性不育系与可育系叶片蛋白质双向电泳分析[J].植物研究, 24(3):98-101.
    Attaix D, Combaret L, Pouch M N, etal. 2002. Cellular control of ubiquitin-proteasome -dependent proteolysis. J Anim Sci, 80 (2):E56-E63.
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein ut ilizing the principle of protein dyebinding[J] . Anal Biochem, 72(7): 248-254
    Bryan T, Leron K,MaeliM, etal. 2007. JAZ rep ressor proteins are targets of the SCFCO I1 complex during jasmonate signaling.Nature, 448:661-665
    Budar F, Touzet P, De Paepe R. 2003. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica, 117: 3-16.
    Budar F,Pelletier G.2001.Male sterility in plants: occurrence, determinism, significance and use. Life Sciences, 324:543-550.
    Cardozo T, PaganoM. 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nat RevMol Cell Biol, 5: 739-751.
    Chini A, Fonseca S, Fernandez G, et al. 2007. The JAZ family of repressors is the missing link in jasmonate signaling. Nature, 448: 666-671
    Ciechanover A. 1998. The ubiquitin-proteasome pathway: on protein death and cell life. Embo J, 17 (24) : 7151-7160
    Clegg 1995. RM1 Fluorescence resonance energy transfer Curropin Biotechnol, 6 (1):103-110
    Cross J W,Ladyman JAB. 1991. Chemical Agents That Inhibit Pollen Development:Tools for Research[J].sex plant Reprod, (4):235-243.
    Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin recep tor. Nature, 435:441-445
    Dye B T, Schulman B A. 2007. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev BiophysBiomol Struct, 36: 131-150.
    Fan Z and Stefansson BR. 1986. Maintainers and restores for three male sterility inducing cytoplasm in rape (Bras.sica napusl.)[J].Can. J. Plant. Sci, 66(2):221-227
    Galau GA, TA Wilikins. 1989. Alloplasmic male sterility in AD alloteraploid Gossypium hirsutum upon replacement of its residents, A cytoplasm with that of D Species G.harknessii[J].Theor Appl Genet, 78:23-30
    Ghiasi H,Luchen K A. 1982. Agronomic and male fertility restoration characteristics of wheat restorer lines with Aegilops speltoides and Triticum timopheevi.Cytop Sci. 22: 527-530.
    Glickmanm H, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction.Physiol Rev, 82: 373~428.
    Gomi K, Sasaki A, Itoh H, et al. 2004. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 p rotein and regulates the gibberellin-Dependent degradation of SLR1 in rice. Plant J, 37 626~634
    Gorg A, Obermaier C, Boguth G, etal 1999. Recent development s in two-dimensional gel electrophoresis with immobilized pH gradients:wide pH gradients up pH12, longer separation distances and simplified procedures[J]Electrophoresis, 20(4-5):12-717
    Gray W M, Kep inski S, Rouse D, et al. 2001. Auxin regulates SCF TIR1-dependent degradation of AUX/IAA proteins.Nature, 414:271-276
    GrayW M, del Pozo J C, Walker L, et al. 1999. Identification of an SCF ubiquitin-ligase comp lex required for auxin response in Arabidopsis thaliana. GenesDev, 13: 1678~1691
    Hardtke C S, Gohda K, Osterlund M T, etal. 2000. HY5 stability and activity in Arabidopsis is regulated by phosphorylationin its COP1 binding domain. EMBO J, 19: 4997~5006
    Hatfield P M, Gosink M M, Carpenter T B, etal. 1997. The ubiquitin activating enzyme (E1) gene family in A rabidopsis thaliana. Plant J, 11:213~226
    Hershko A,Ciechanover A,Varshavsky A. 2000. The ubiquitin system.Nature Med, 6(10):1073- 1081
    HolmM, Ma L G, Qu L J, et al. 2002. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev, 16:1247-1259
    Hwa HL, Ko TM, YenML, etal. 2004. Fetal gender determination using real-time quantitative polymerase chain reaction analysis of maternal plasma.J Formos Med As-soc, 103(5):364-368
    Imin N, Kerim T , Rolfe B G, Weinman J. 2004. Effect of early cold stress on the maturation of rice anthers [J] .Proteomics, 4: 1873-1882.
    Kep inski S,LeyserO. 2005. The A rabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435:446-451
    Koller A., Washburn M.P., Lange B.M., Andon N.L., Deciu C.,Haynes P.A., Hays L., Schieltz D., Ulaszek R., Wei J.,Wolters D., and Yates J.R., 2002, From the cover: proteomic survey of metabolic pathways in rice, Proc. Natl. Acad.Sci., 99:11969-11974
    Liew M, Pryor R, Palais R, etal. 2004. Genotyping of single nucleotide polymorphisms by high-resolution melting of small amplicons1 Clin Chem, 50 (7) :1156-1164
    Mackay IM , Arden KE , Nitsche A. 2002. Real-time PCR invirology[J]. Nucleic Acids Res, 30 (6) :1292-1305.
    Marrocco K, Zhou Y, Bury E, et al. 2006. Functional analysis of EID1, an F-box protein involved in phytochrome A2 dependent light signal transduction. Plant J,45(3):423-438
    Mikael KA, JoseMA, Martin B, et al. 2006. The real-time polymerase chain reaction .Molecular Aspects of Medicine, 27:95-125
    Moore R H. 1950. Several Effects of Maleic hydrazide on Plants [J].Science,112(2898):52-53
    Mura iK. 1997. Genetic analysis of fertility restoration against photo-period-sensitive cy toplasmic male sterility in Triticum aestivum cv. Norin61. Plant Breding, 116:592- 594.
    Nathalie D, Axelle D, Véronique S , et al. 2001. Quantification of Human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR assay.J Clin Microbiol, 39: 1303-1310
    Naylor A W. 1950. Observations on the Effects of Maleic hydrazide on the Flowering of Tobacco,Maize and Cocklebur [J].Proc Nat Acad Sci, (35):230-232
    Nieuwenhuis E J, Jaspars L H , Castelijns J A , et al. 2003. Quantitative molecular detection of minimal residual head and neck cancer in lymph node aspirates.Clin Cancer Res, 9 (2):755-761
    Osterlund M T, Hardtke C S, Wei N, et al. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 405:462-466
    Panayoto v.I. 1980. New cytoplasmic male steritity sources in Conmon wheat.Their genetical and breeding consideration. Thoar.Appl.Genet 56:153-160.
    Pickart CM. 2001. Mechanisms underlying ubiquitination. Annu Rev Biochem, 70: 503-533
    Rehm S. 1952. Male Sterile Plants by Chemical Treatment [J].nature, 170(4314): 38-39
    Ren H, Santner A, Del Pozo J C, et al. 2008. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J, 53 (5): 705-716
    Ron Porat, Pengzhe Lu, Sharman D. et al. 1998. Arabidopsis SKP1, a homologue of a cell cycle regulator gene,is predominantly expressed in meristematic cells[J] .Planta 204: 345-351
    Saskuma T, Ohtsuka L. 1979. Cytoplasmic effects of Aegilops species having D genome in wheat I. Cytoplasmic differentiation among five species regarding pistillody induction [J]. Seiken Ziho, 27-28: 59-65.
    Schnable PS,Wise RP. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trend Plant Sci.3: 175-180.
    Seo H S, Yang J Y, Ishikawa M, et al. 2003. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 424:995-999
    Shah SA ,PotterM W ,Callery M P. 2001. Ubiquitin proteasom epathway:implications and advances in cancer therapy [J].Surg O ncol, 10(1-2):43-52
    Tsugita A., Kawakami T., Uchiyama Y., Kamo M., Miyatake N.,and Nozu Y., 1994, Separation and characterization of rice proteins, Electrophoresis, 15:708-720
    Turner J G, Ellis C, Devoto A. 2002. The jasmonate signal pathway.Plant Cell, 14: 153~164
    Ueguchi-Tanaka M, Ashikari M, Nakajima M, etal. 2005. GIBB ERELL IN INSENS ITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 437: 693~698
    Ueno H , Yoshida K , Hirai T. 2003. Quantitative detection of carcinoembryonic antigen messenger RNA in the peritoneal cavity of gastric cancer patients by real-time quantitative reverse transcription polymerase chain reaction.Anticancer Res, 23(2C) : 1701-1708
    Unlu M., Morgan M.E., and Minden J.S., 1997, Difference gel electrophoresis: a single gel method of detecting changes in protein extracts, Electrophoresis, 18(11):2071-2077
    van Wijk K.J., 2000, Proteomics of the chloroplast: experimentation and prediction, Trends Plant Sci.,5: 420-425
    Vensel W.H., Tanaka C.K., Cai N., Wong J.H., Buchanan B.B.,and Hurkman W.J., 2005, Developmentalchanges in the metabolic protein profiles of wheat endosperm, Proteomics,5: 1594-1611
    VIERSTRA R D. 2003. The ubiquitin/26S proteasome pathway,the complex last chapter in the life of many plant proteins.
    Vierstra R D. 1996. Proteolysis in plants: mechanisms and functions.PlantMol Biol, 32: 275-302.
    Von Wiren N., Peltier J.B., Rouquie D., Rossignol M., and Briat J.F.,1997, Four root plasmalemma polypeptides under-represented in the maize mutant ys1 accumulate in a Fe-efficient genotype in response to iron-deficiency, Plant Physiol.Biochem., 35: 945-950
    Welchman R L, Cordon C,Mayer R J. 2005. Ubiquitin and ubiquitin-like proterins as multifunctional signals. Nat Rev Mol Cell Biol, 6: 599-609.
    Wen L., Liu G., Zhang Z.J., Tao J., Wan C.X., Li S.Q., and Zhu Y.G., 2006, Preliminary proteomics analysis of the total proteins of HL type cytoplasmic male sterility rice anther,Yichuan (Hereditas), 28(3):311-316
    Wing S. 2003. Deubiquitinating enzymes-the importance of driving in reverse along the ubiquitin proteasome pathway. Int J Biochem Cell Biol, 35: 590~605
    XingQH, Ru ZG, Li J, et a1. 2005. Cloning a second form of adenine phosphoribosyl transfe race gene (TaAPT 2) from wheat and analysis of its association with therm o-sensitive genic male sterility(TGMS). Plant Science, 169:37-45
    Y. F. L,i C. P. Zhao, F. T. Zhang, et al 2006. The Fertility A lteration of Photo-Thermo Sensitive Genic Male Sterile Line BS20 in Wheat (Tritieum aestivum L.)[J]. Euphytica, 151:207-213.
    Zuo S S, Lundahl P. A 2000. micro-Bradford membrane protein assay[ J] .Anal Biochem, 284(1) : 162-l64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700