家蚕黄茧限性品种雌雄SAGE文库的构建及其差异表达基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori)作为生产用经济昆虫,雄性在体质、丝蛋白质合成效率和蚕丝品质等方面都优于雌性,其调控机理目前还了解很少。限性遗传是家蚕的一种应用广泛的遗传方式,其中茧色限性遗传方式,与斑纹限性一样广泛用于蚕种生产过程的雌雄分离制种。家蚕天然有色茧是具有重大应用前景的遗传资源,有色茧的茧丝颜色种类、色度、色牢度、色匀度等茧色相关遗传控制,不仅仅受数十个(推测)色素结合与转运主基因控制,还受到更加复杂的基因网络影响,分子遗传研究表明相关基因未完全确认。家蚕黄茧限性品种(雌为黄茧,雄为白茧),为研究黄、白茧之间差异表达基因提供了非常好的材料。本文使用该系统Ysh蚕品种,构建了不同性别的LongSAGE表达谱文库,筛选了差异表达基因。通过构建的apEST电子表达谱、在线芯片表达谱平台(BmMDB)的查询以及RT-PCR、Real-Time PCR、免疫组化和Western blotting等实验技术,调查了雌雄差异表达基因在Ysh及其它几个品种中的时空表达谱、激素处理和限食处理后的基因调控变化,测定了相关品种组织中的总蛋白酶和胰蛋白酶活性,并对丝氨酸蛋白酶前体(SPP)和丝氨酸蛋白酶抑制剂1(SPI1)进行了蛋白水平上的调查,获得的主要结果如下。
     1 apEST提供了电子表达谱的查询与分析平台
     构建了基于家蚕dbEST为数据源(截止2011年3月20有316,223条EST)的基因电子表达谱分析平台(apEST)(http://jysw.suda.edu.cn/bombyx/Download.html)。通过和其它基因表达谱分析平台的比较,明确了其可靠性和可行性。该平台能为挖掘特异性基因提供有利参考,在本实验室已进行了广泛的应用。
     2构建了黄茧限性系统雌雄的Long SAGE文库
     根据家蚕幼虫色素快速积累时期和组织特异性,构建了以整个5龄幼虫期中肠和丝腺为材料的的Ysh蚕品种雌雄Long SAGE文库,总共获得了32,099个标签,筛选出202个差异标签(Tag),其中108个Tag在雌性中上调表达,94个Tag在雄性中上调表达。借助家蚕全基因组公共数据库,通过参考文库和改进的GLGI方法,对其中76个Tag进行了注释,为茧色相关基因发掘,特别是色素结合与转运主基因以外的新基因发掘创造了平台。SAGE文库提供的大量性别差异标签,得到其全长并进行功能研究对于阐明限性黄茧品种雌雄差异性状机理是有价值的。
     3丝氨酸蛋白酶(SPs)和丝氨酸蛋白酶抑制剂(Serpins)是互作关系的酶类
     在家蚕Ysh品种5龄前中期,幼虫中肠特异表达的SPs基因的mRNA表达量,以及胰蛋白酶活性都高于5龄末期,也高于眠期,同时眠期检测不到SPP蛋白的表达。Spp基因受饥饿处理的瞬时调控,推测食物进入中肠后诱导了参与中肠食物蛋白质消化与吸收的SPs分泌,后者又启动了SPs基因的表达,而停止喂食,蛋白酶分泌也停止。SPs的表达特征提供了SPs参与中肠食物蛋白的分子证据。SPs基因在5龄后期雌蚕的中肠表达量高于雄性,推测与雌性造卵需要更多的蛋白质营养有关。
     5龄中后期出现的丝腺特异表达的Serpins基因表达活性,在分子水平上印证了家蚕吐丝前需要Serpins保护丝腺中大量积累的丝物质不被蛋白酶降解的生理现象,不同时期和组织间(MSG和PSG)所需Serpins种类差异,体现了家蚕复杂的丝物质合成与储藏调控网络。而Spi1基因在雄性丝腺中表达和蛋白质翻译的持续时间比雌性中长,推测与雄性丝物质质量和数量比雌性有优势有关。外源性的蜕皮激素(MH)处理5龄3日家蚕幼虫,SPs和Serpins基因呈现不同的调控机制,保幼激素类似物(JHA)对这2个基因的表达具有类似的正调控作用。激素对基因的调控主要与发育时期及激素剂量有关。Spi1基因在幼虫饥饿处理后出现下调比Spp晚,暗示Serpins受取食的直接影响比SPs慢,也说明了食物供需对丝腺的反应迟于对中肠的影响。SPs和Serpins基因的这种组织表达特异性,为它们参与相应组织中的特异性转录调控提供了佐证,而发育时期表达差异和激素处理后调控变化体现了基因执行功能上的时序性和特殊性。Serpins中的许多成员通过抑制SPs的同功酶来参与SPs的活性调控,保持体内环境的平衡。
     4推测表皮蛋白基因CPH45克隆与功能研究
     根据SAGE文库中标签GCTTCCGCCGTGCCTGC(Tag.1161),克隆到了一个长度为676 bp的全长cDNA序列,序列分析只有1个外显子,没有内含子,推导的编码蛋白序列长度为165AA,位于家蚕第19号染色体的nscaf 2 767上。该基因在中肠特异表达,与家蚕CPH家族的4条蛋白序列同源性在42%以上,根据已有的家蚕CPH基因名称顺序,新基因命名为中肠特异表达的CPH基因(CPH45)。CPH45表达量在Ysh品种雄性显著高于雌性,受到5龄中期外源性MH的负调控和JHA的正调控,雄性对外源昆虫激素的感受更敏感。食物的供缺对CPH45基因的表达水平没有显著影响,推测其不直接参与食物的消化。功能研究表明CPH45在维持家蚕中肠形态中发挥作用。CPH45基因在蚕品种之间的表达差异显示,它在不同的品种中参与路径的位点不同,作用可能存在差异。
     5保幼激素甲基转移酶基因JHAMT2克隆与分析
     根据SAGE文库中标签序列GAAACAGCACGCACGCT(Tag.1221),克隆到了一个长度为1 007 bp的全长cDNA序列,序列分析有4个外显子,定位于家蚕第12号染色体的nscaf 2 993上。推导的编码蛋白序列长度为266AA,有一个甲基转移酶超家族功能位点,与烟草天蛾(Manduca sexta)JHAMT同源性达到38%,因此克隆基因命名为家蚕保幼激素甲基转移酶基因(JHAMT2)。JHAMT2基因在丝腺、特别是中部丝腺组织特异表达,发育时期表现为4龄期有比较高的表达量,5龄期只在5龄第3日有表达,性别差异表现为雄性体内持续表达时间比雌性中长。JHAMT2基因时期表达特征在分子水平上印证了家蚕JH的合成在4龄期比较旺盛,在5龄第3日后受到抑制,对位于其合成上游的JHAMT需要量也相应的降低。
The domesticated silkworm, Bombyx mori, serves as an importantly economic insect. As is known to all, male silkworms are better than females in respect of physical qualities, synthetic efficiency of silk proteins and silk qualities. At present, the regulatory mechanisms are not thoroughly clear. The sex-limited heredity is widely obtained in Bombyx mori, in which, the cocoon and color sex-limited inherited method, like the stripe sex-limited, is applied to separate males and females in silkworm breeding. Natural colored-cocoons are genetic resources with a promising and significant application future. Genetic controls related to silk color kinds, chroma, color fastness, color well degrees are influenced not only by tens main genes (predicted) of pigment combination and transportation, but more complicated gene nets. Molecular genetics suggests that it hasn’t been confirmed of the related genes yet. The yellow cocoon sex-limited strain (female cocoons are yellow while male cocoons are white) provides excellent materials to research differently expressed genes between yellow and white cocoons.
     This study constructed LongSAGE libraries of Ysh strain and screened differently expressed genes. In this study, the spatio-temporal expression patterns and gene regulation changes after the treatment with hormone and food limitation were investigated, meanwhile, the activities of total proteinase and trypsin were measured with two representative genes researched at the level of proteins by constructing apEST electronic expression profile, querying online BmMDB and some experimental technologies, such as RT-PCR, Real-Time PCR, immunohistochemistry and Western blotting. The main results are as follows:
     1 apEST provides the platform to obtain and analyze electronic expression profiles
     Gene electronic expression profile analysis platform(apEST)was constructed based on the data resources of Bombyx mori dbEST( http://jysw.suda.edu.cn/bombyx/Download.html). (316,223 ESTs by Mar. 20, 2011). Compared with other platforms providing gene electronic expression profile analysis, the reliability and feasibility of ours have been ensured. This platform can provide advantageous references to unearth special genes, which has been widely used in our laboratory.
     2 The construction of Long SAGE libraries between the males and females of the yellow cocoon sex-limited strain, Ysh
     According to the tissue specificity and the stage when pigment is rapidly accumulated in larvae, the Long SAGE libraries between the males and females were constructed based on the materials of the midgut and silkgland of the fifth instar larvae. A total number of 32,099 tags were obtained, of which 202 differently expressed tags were singled out. Among these tags, 108 were up-regulated in females while 94 were up-regulated in males. And 76 of these tags were annotated with the help of reference libraries and the improved GLGI methods, which created a platform for cocoon color-related genes exploration, especially for new ones besides main genes involved in the pigment combination and transportation. Since a large quantity of sexual different tags are provided by SAGE libraries, it is valuable to clone the full length of these tags and research the functions of them which will definitely contribute to characterize the mechanisms of the character difference between males and females of the yellow cocoon sex-limited strain, Ysh.
     3 Serine protease (SPs) and Serine protease inhibitor (Serpins) belong to interactional enzymes
     During early and medium stages of 5th instar lavae of Ysh,the especially expressed mRNA levels of SPs precursor gene (Spp) in the midgut was higher than the last stages of the fifth instar larvae as well as the molting stages which was the same of the activity of trypsin. Meanwhile, proteins could not be detected in the molting stages. Spp is transiently regulated by the hunger treatment suggesting that the food induced the secretion of SPs, which participated in protein digestion and absorption, thereby started the expression of SPs genes. When feeding stopped, the secretion of proteinases stopped, either. Thus, the expression character of SPs provided molecular evidence that SPs participated in food protein digestion. The SPs gene expression level in female is higher than that of male in the midgut of the last stages of the fifth instar larvae, suggesting that the females need more protein nutrition during oviposition.
     The specifically expressed activity of Serpins showed in the silkgland of the middle and late stage of the fifth instar, confirming the physiological phenomenon that a large number of Serpins was needed to protect mass of accumulated silk materials in the silkgland from the degradation by proteinase bofore spinning. The differences between Serpins types needed in different periods and tissues (MSG and PSG) reflected the complicated synthesizing and storing regulation nets of silk materials in Bombyx mori. However, the expression and translation time of the serine protease inhibitor 1 gene (Spi1) lasted longer in the male silkgland than that in female, suggesting that this phenomenon might to be related to the advantage of males on both quality and quantity of silk materials compared with females.
     The fifth larvae on day 3 were treated by the exogenous molting hormone (MH), and SPs and Serpins presented different regulation mechanisms. Juvenile hormone analogue (JHA) had a similar positive regulation effect on expression of these two genes.The effect of hormones on gene expression is mainly related to the development stages and hormone doses.
     The down-regulation of Spi1 gene occurred later than Spp gene after hunger treatment on the larvae, suggesting that the direct influence by food on Serpins was slower than SPs, and also showing that the reaction of food supply and demand to the silkgland was later than the influence on the midgut. The tissue expression specificity of SPs and Serpins genes provided a proof that they were involved in transcription regulation of the corresponding tissues. Moreover, both of the expression differences during the developmental period and regulation changes after the hormone treatment reflected the time sequence and particularity of these gene functions. Many members in Serpins participated in the activity regulation of SPs via inhibiting SPs isoenzymes to keep balance of homeostasis.
     4 Cloning and functional research on putative cuticle protein gene, CPH45
     A cDNA sequence of 676 bp was cloned according to the tag‘GCTTCCGCCGTGCCTGC’(Tag.1161)in SAGE libraries containing only one exon with no intron. The length of deduced protein was 165aa, located on the nscaf 2767 of the 19th chromosome of Bombyx mori. This gene specifically expressed in the midgut and owning more than 42% homology with 4 protein sequences of CPH family of Bombyx mori. According to the existing gene name order of CPH gene in Bombyx mori, the novel gene was named putative cuticle protein gene 45, CPH45. The expression level of CPH45 in males was apparently higher than that in females of Ysh, which was negatively regulated by exogenous MH and positively regulated by JHA during the middle stage of the 5th instar. Males were more sensitive to exogenous insect hormones. The expression level of CPH45 appear to be an obvious effect on suggesting that it did not directly participate in food digestion. Functional research showed that CPH45 had an influence on maintaining shape of the midgut of Bombyx mori. The expression differences of CPH45 in different silkworm strains showed that this gene might be implicated in different pathways.
     5 Cloning and characterization of juvenile hormone methyltransgerase gene, JHAMT2
     A cDNA sequence, 1007 bp, was cloned according to the tag‘GAAACAGCACGCACGCT’(Tag.1221)in SAGE libraries. This gene contains four exons, located on the nscaf 2 993 of the 12th chromosome of Bombyx mori. The deduced protein sequence is 266aa with a functional locus of methyltransgerase super family. It owns 38% homology with JHAMT in Manduca sexta and therefore the cloning gene was named as juvenile hormone methyltransgerase gene JHAMT of Bombyx mori, JHAMT2. The JHAMT2 specially expressed in the midgut, especially in the middle midgut. During different developmental stages, it had a relatively higher expression level in the 4th instar larvas, while it only expressed on day 3 during the whole fifth larvae. The sexual differences were reflected by a longer continuous expression time in males than that in females. In molecular level, the period expression features of JHAMT2 verified that the synthesis of JH was relatively exuberant in the 4th instar larvae while inhibited after day 3 of the fifth instar larvae. Meanwhile, the requirement of JHAMT, catalyzing the synthesis of JH, reduced somewhat.
引文
1.程道军家蚕激素信号通路及其对变态发育期基因表达的调控研究[D]西南大学,2008
    2.崔为正,张国基.外源保幼激素和蜕皮激素对家蚕的生理效应及其在蚕业上的应用[J].山东农业大学学报. 1993, 24 (3) : 354-358
    3.崔为正,张友英,刘发余,等.保幼激素和蜕皮激素的不同剂量与在家蚕不同发育时期处理的生物效应[J].江苏蚕业1992(3):5-9
    4.崔为正,吴载德.保幼激素和蜕皮激素对桑蚕后部丝腺核酸合成的影响蚕桑通报[J]. 1992,23(1):8-11
    5.戴祝英,庄大桓,项美华,等.β蜕皮素对家蚕丝腺成长及合成甘氨酸、丙氨酸有关酶系的调节控制[J]. 1982, 25(2): 121-127.
    6.戴玉锦,李瑞,张裕清.蜕皮激素与丝蛋白合成:植源性蜕皮激素对家蚕后部丝腺核酸代谢的影响[J].昆虫学报, 1985, 28 (01): 8-14
    7.戴玉锦,姚祥,夏红珍.蜕皮激素与丝蛋白合成:植源性蜕皮激素对家蚕丝腺蛋白质合成中3H标记甘氨酸参入活性的影响[J].昆虫学报, 1987,30 (03) :233-238
    8.杜周和,刘俊凤,胡祚忠,等.家蚕限性品种雌雄茧茧丝质性状差异研究[J].丝绸,2007(08):28-29.
    9.甘丽萍,席建,徐丽.家蚕LongSAGE文库鉴定及延长标签的改进GLGI方法[J].中国生物工程杂志,2010.30(7):68-74
    10.黄健华.基于SAGE技术的家蚕基因表达谱研究[D].中国科学院研究生院(上海生命科学研究院):上海, 2007.
    11.孔令斐.家蚕几丁质酶与几丁质合成酶的基因表达与功能研究[D].苏州大学, 2010.
    12.孔庆明.家蚕有色茧色素物质的形成与表达差异研究[D].华南农业大学2007
    13.梁海丽,葛君.家蚕天然彩色茧丝的色素特性研究[J].丝绸, 2005, (6): 20-22
    14.刘春.家蚕丝腺表达谱及丝素结构基因转录调控研究[D].西南大学, 2006.
    15.刘清明,苑园园,林健荣,等.昆虫表皮蛋白及其基因表达调控机理的研究进展[J].昆虫知识, 2010, 47(2): 247~255.
    16.吕鸿声.中国养蚕学[M].上海:上海科学技术出版社, 1990, 229-245.
    17.牛宝龙,吕顺霖,翁宏飚,等.家蚕BmTpi基因Z染色体定位[J].昆虫学报, 2005, 48(4): 622-626.
    18.牛虹.蚕桑生产新技术:专养雄蚕[J].农村新技术, 2006, 1: 16.
    19.牛艳山.家蚕天然彩色茧品种CBP基因的结构和表达分析及类胡萝卜素差异[D].苏州大学, 2010.
    20.苏建亚,余杰,韦宏伟,等.棉铃虫和甜菜夜蛾中肠丝氨酸蛋白酶活性测定以及活化、降解Cry1Ac毒素分析[J]. 2009, 46(2): 260-266
    21.项美华,庄大桓,何家禄,等.雌雄蚕若干生理特性的研究[J].蚕业科学, 1982, 8(1): 20-25.
    22.向仲怀.家蚕遗传育种学[M].北京:农业出版社, 1994, 24-35.
    23.王凌燕.家蚕丝腺特异高量表达丝氨酸蛋白酶抑制剂的研究[D].西南大学, 2009
    24.王彦文,崔为正,牟志美,等.外源激素对天蚕幼虫龄期经过的影响[J].蚕桑通报1999, 30(3):18-20
    25.查幸福.家蚕(Bombyx mori)性别决定网络及其关键基因BmSxl cDNA克隆和功能研究[D].西南大学, 2006.
    26. ABE H, FUJII T, TANAKA N, et al. Identification of the female-determining region of the W chromosome in Bombyx mori [J]. Genetica, 2008, 133(3): 269-282.
    27. ABE H, MITA K, YASUKOCHI Y, et al. Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori [J]. Cytogenet Genome Res, 2005, 110(1): 144-151.
    28. ABE H, OHBAYASHI F, SHIMADA T, et al. A complete full-length non-LTR retrotransposon, BMC1, on the W chromosome of the silkworm, Bombyx mori [J]. Genes Genet Syst, 1998, 73(6): 353-358.
    29. ABE H, SEKI M, OHBAYASHI F. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori [J]. Insect Molecular Biology, 2005, 14(4): 339-352.
    30. ABRAMS EW, MIHOULIDES WK, ANDREW DJ. Fork head and Sage maintain a uniform and Patent salivary gland lumen through regulation of two downstream target genes, PH4alPhaSGI and PH4alPhaSGZ [J]. Development. 2006, 133 (18): 3517-3527.
    31. ADAMS MD, KELLEY JM, GOCAYNE JD, et al. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science. 1991, 252: 1651-1656.
    32. ALJAMALI MN, BIOR AD, SAUER JR, et al. RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect Mol. Biol, 2003, 12: 299-305.
    33. ARNOLD K, BORDOLI L, KOPP J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195-201.
    34. ARUNKUMAR K P, MITA K, NAGARAJU J. The silkworm Z chromosome is enriched in testis-specific genes [J]. Genetics, 2009, 182(2): 493-501.
    35. BALA P, GEORGANTAS RW, SUDHIR D. TAG mapper: a web-based tool for mapping SAGE tags [J]. Gene, 2005, 364:123-129.
    36. BERG A, LEIJ J, POPPEMA. Serial analysis of gene expression: rapid RT-PCR analysis ofunknown SAGE tags [J]. Nucleic Acids Res, 1999, 27: e17
    37. BERNSTEIN E, CAUDY AA, HAMMOND SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409: 363-366.
    38. BITRA K, PALLI S R. Interaction of proteins involved in ecdysone and juvenile hormone signal transduction. Arch. Insect Biochem, 2009, 70(2): 90~105.
    39. BOON K, ELISSON C, SUSAN F, et al. An anatomy of normal and malignant gene expression [J]. PNAS, 2002, 99 (17): 11287-11292.
    40. BROEHAN G, KEMPER M, DRIEMEIER D, et al. Cloning and expression analysis of midgut chymotrypsin-like proteinases in the tobacco hornworm. [J] Insect Physiol. 2008, 54(8): 1243-52.
    41. CHEN J J,ROWLEY J D, WANG S M, et al. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification [J]. PNAS, 2000, 97: 349-353
    42. CHEN J, LEE S, ZHOU G. High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3' complementary DNAs [J]. Genes Chromosomes Cancer, 2002, 33(3): 252-261.
    43. Cino, H. Comprehensive Insect Physiology, Biochemistry, and Pharmacology (Kerkut, G.A. and Gilbert, L.I., Eds.), 1985(10):115–134
    44. CROOKS GE, HON G, CHANDONIA JM et al. WebLogo: A Sequence Logo Generator. Genome Research, 2004, 14: 1188–1190.
    45. DATSON N A, JONG J, BENG M P, et al. Microsage: a modified procedure for serial analysis of gene expression [J]. Nucleic Acids Res, 1999, 27: 1300-1307.
    46. DIATCHENKO L, LAU YF, CAMPBELL AP, et al. Supression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA and libraries [J]. PNAS, 1996, 93: 6025-6030.
    47. DIMOPOULOS G, RICHMAN A, MULLER HM, et al.Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA. 1997, 94(21): 11508-11513.7.
    48. DUAN J, LI R, CHENG D, et al. Silk DB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res, 2010, 38: D453-456.
    49. ENGLES L. Review and applieation of serine protease inhibition in coronary artery bypass graft surgery. Am J Health Syst Pharm. 2005, 62(18supp14): s9-14.
    50. EWING RM, KAHLAAB, POITOT O et al. Large-scale statistical analysis of rice ESTs reveal correlated patterns of gene expression. Genome Research. 1999, 9: 950-959.
    51. FIRE A, XU SQ, MONTGOMERY MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811.
    52. FRETTER V, GRAHAM A. A Functional Anatomy of Invertebrates Academic Press, London, New-York, San Francisco 1976.
    53. FUJII T, SHIMADA T. Sex determination in the silkworm Bombyx mori: A female determinant on the W chromosome and the sex-determining gene cascade [J]. Seminars in Cell & Developmental Biology, 2007, 18(3): 379-388.
    54. FUNAGUMA S, HASHIMOTO S, SUZUKI Y. SAGE analysis of early oogenesis in the silkworm, Bombyx mori [J]. Insect Biochem Mol Biol, 2007, 37(2): 147-154.
    55. GALANTE PA, TRIMARCHI J, CEPKO CL. Automatic correspondence of tags and genes (ACTG): a tool for the analysis of SAGE, MPSS and SBS data [J]. Bioinformatics, 2007, 23(7): 903-905.
    56. GAN L, LIU X, XIANG Z, et al.Microarray-based gene expression profiles of silkworm brains. BMC Neurosci, 2011, 12(1):8.
    57. GASTEIGER E, GATTIKER A, HOOGLAND C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 2003, 31(13): 3784–3788.
    58. GETTINGS PG. Serpin structure, mechanism, and function. Chem Rev. 2002, 102: 4751–4804.
    59. GUARENTE L. Calorie restriction and SIR2 genes: towards a mechanism. Mech Ageing Dev. 2005, 126(9): 923-8.
    60. GUO AY, ZhU QH, ChEN X, et al. GSDS: a gene structure display server. Yi Chuan, 2007, 29(8): 1023-6.
    61. GUTMANN DH,HEDRICK NM,LI J,et al. Comparative gene expression profile analysis of neurofibromatosis 1-associated and sporadic pilocytic astrocytomas. Cancer Research 2002,62: 2085-2091.
    62. HASIMOTO H. The role of the W chromosome in the sex determination of Bombyx mori [J]. Jpn J Genetics, 1933, 8: 245-247.
    63. HUANG J, MIAO X, JIN W. Radiation-induced changes in gene expression in the silkworm revealed by serial analysis of gene expression (SAGE) [J]. Insect Mol Biol, 2005, 14(6): 665-674.
    64. IRVING JA, PIKE RN, LESK AM, et al. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 2000, 10: 1845–1864.
    65. JAGADEESWARAN G, ZHENG Y, SUMATHIPALA N, et al. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel micro RNAs and micro RNA-stars during silkworm development. BMC Genomics, 2010, 11: 52.
    66. JIANG H, KANOST MR. The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol. 2000, 30: 95–105.
    67. JIANHUA HUANG, XUEXIA MIAO, WEIRONG JIN. Serial analysis of gene expression in the silkworm, Bombyx mori [J]. Genomics, 2005, 86: 233-241.
    68. JIANGHUA HUANG, YONG ZHANG, MINGHUI LI, et al.RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion. FEBS Letters, 2007, 581:697–701.
    69. JI MM, LU YJ,GAN LP,et al. Molecular cloning and research of Type IV Collagenα1 gene on the basis of web-database in silkworm, Bombyx mori. Journal of Applied Entomology, 2009, 133 (9): 751-760.
    70. JIN YX, CHEN YY, XU MK, et al.Studies on middle silkgland proteins of cocoon colour sex-limited silkworm (Bombyx mori L.) using two-dimensional polyacrylamide gel electrophoresis. J Biosci, 2004, 29 (1): 45-49.
    71. KERKUT G A, GILBERT L I. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 8. Pergamon Press, New York, 1985, 37-84.
    72. KENT W J. Blat-Blast like alignment tool. Genome Res, 2002, 12(4): 656-664.
    73. KHAN J, BITTNER M L, CHEN Y, et al. DNA microarray technology: the anticipated impact on the study of human disease [J]. Biochim Biophys Acta, 1999, 1432: 17-28
    74. KIM MS, BAEK MJ, LEE MH, et al. A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in Holotrichia diomphalia larvae. J Biol Chem. 2002, 277(42):39999-40004.
    75. KIM SR, YOON HJ, LEE KS, et al. Molecular cloning of three cDNAs encoding putative larval cuticle protein expressed differentially after larval ecdysis from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol, 2003, 136(4): 803-11.
    76. KING RD, STERNBERG MJ. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci, 1996, 5(11): 2298-2310.
    77. KOIKE Y, MITA K, SUZUKI M G, et al. Genomic sequence of a 320 kb segment of the Z chromosome of Bombyx mori containing a ketin ortholog [J]. Mol Genet Genomics, 2003, 269: 137-149.
    78. KOTANI E, NIWA T, TOKIZANE M, et al. Cloning and sequence of a cDNA for a highly basic protease from the digestive juice of the silkworm, Bombyx mori. Insect Mol Biol. 1999, 8(2): 299-304.
    79. KOZO TSUCHIDA, MIEKO ARAI, YOSHIRO TANAKA, et al. Lipid transfer particle catalyzes transfer of carotenoids between lipophorins of Bombyx mori. Insect Biochemistry and Molecular Biology1998, (28) 927–934
    80. KREM MM, DI CERA E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci. 2002, 27: 67–74.
    81. KURIOKA A, YAMAZAKI M, HIRANO H. Primary structure and possible functions of a trypsin inhibitor of Bombyx mori. Eur J Biochem. 1999, 259(1-2): 120-6.
    82. KURIORA A, YAMAXKI M, HIRANO H. TryPsin inhibitor Polymorphism in the cocoon of the silkworm [J]. J Seric scijpn. 1999, 68(5): 397-403.
    83. LASH AE, TOLSTOSHEV CM, WAGNER L. SAGE map: a public gene expression resource [J]. Genome Res, 2000, 10(7): 1051-1060.
    84. LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense com-plementarity to lin-14. Cell, 1993, 75: 843–854.
    85. LETUNIC I, DOERKS T, BORK P. SMART 6: recent updates and new developments. Nucleic Acids Res, 2008, doi:10.1093/nar/gkn808.
    86. LIANG J, ZHANG L, XIANG Z, et al. Expression profile of cuticular genes of silkworm, Bombyx mori. BMC Genomics, 2010, 11: 173.
    87. LIANG P, PARDEE A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science, 1992, 257(5 072): 967-971.
    88. LI H., OPPERT B, HIGGINS RA, et al. Comparative analysis of proteinase activities of Bacillus thurin giensis-resistant and susceptible Ostrinia nubilalis. Insect Biochem. Mol. Biol. 2004, 34(8): 753~762.
    89. LIU S, LI D, LI Q, et al. MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics, 2010, 11: 148.
    90. LIU S, ZHANG L, LI Q, et al. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori). BMC Genomics, 2009, 10: 455.
    91. LI X, RAO S, WANG Y, et al. Gene mining: A novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Research 2004, 32: 2685-2694.
    92. LI Y, CHEN K, YAO Q, et al. The effect of calorie restriction on growth and development in silkworm, Bombyx mori. Arch Insect Biochem Physiol. 2009, 71(3): 159-172.
    93. MAHENDRAN B, GHOSH SK, KUNDU SC. Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes.J Genet. 2006 Apr; 85(1):31-8.
    94. MATSUMURA H, REUTER M, KRüGER DH. Super SAGE Methods [J]. Mol Biol, 2008, 387: 55-70.
    95. MEGLITSCH PA, SCHRAM FR. Invertebrate Zoology New York: Oxford University Press 1991.
    96. MITA K, KASAHARA M, SASAKI S, et al. The genome sequence of silkworm, Bombyx mori. DNA Res, 2004, 11: 27-35.
    97. MIAO XUE-XIA, LI WEI-HUA, LI MU-WANG, et al. Inheritance and linkage analysis of co-dominant SSR markers on the Z chromosome of the silkworm(Bombyx mori L)[J]. Genet Res, 2008, 90(2): 151-156.
    98. MITA K, MORIMYO M, OKANO K, et al. The construction of an EST database for Bombyx mori and its application. Proceedings of the National Academy of Science USA, 2003, 100: 14121-14126.
    99. MUNOZ ET, BOGARAD LD, DEEM MW. Microarray and EST database estimates of mRNA expression levels differ: The protein length versus expression curve for C. elegans. BMCGenomics 2004.5(1): 30.
    100. NAGARAJA G M, MAHESH G, SATISH V, et al. Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori [J]. Heredity, 2005, 95(2): 148-157.
    101. NAGARAJU J, KLIMENKO V, COUBLE P. The silkworm Bombyx mori, a model genetic system. In: Encyclopedia of Genetics (ed Reeves, E) (Fitzroy Dearborn, London, UK) P 219-239.
    102. NAGARAJU J. Recent advances in molecular genetics of the silk moth, Bombyx mori. Curr. Sci. 2000, 78(2): 151–161.
    103. NARASIMHAN S, MONTGOMERY RR, DEPONTE K, et al. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc Natl Acad Sci U S A, 2004, 101: 1141-1146.
    104. NG P, WEI CL, SUNG WK, et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation [J]. Nat Methods, 2005, 2: 105–111.
    105. NIRMALA X, MITA K, VANISREE V, et al. Identification of four small molecular mass proteins in the silk of Bombyx mori. Insect Mol Biol. 2001, 10(5): 437-45.
    106. OH JH, JEON YJ, JEONG SY. Gene expression profiling between embryonic and larval stages of the silkworm, Bombyx mori [J]. Biochem Biophys Res Commun, 2006, 343(3): 864-872.
    107. OPPERT B. Protease interactions with bacillus thuringiensis insecticidal toxins. Arch Insect Biochem Physiol. 1999, 42(1):1-12.
    108. OTE M, MITA K, KAWASAKI H, et al. Microarray analysis of gene expression profiles in wing discs of Bombyx mori during pupal ecdysis. Insect Biochem Mol Biol, 2004, 34(8): 775-84.
    109. PETERS D G, KASSAM A B, YONAS H, et al. Comprehensive transcript analysis in small quantities of mRNA by SAGE-Lite [J]. Nucleic Acids Res, 1999, 27: e39
    110. PONTIUS JU, WAGNER L, SCHULER GD. UniGene: A unified view of the transcriptome. In: The NCBI Handbook. National Center for Biotechnology Information. 2003.
    111. POOLE RL, BARKER GL, WERNER K, et al. Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription BMC Genomics. 2008, 9:475.
    112. RIVALS E, BOUREUX A, LEJEUNE M. Transcriptome annotation using tandem SAGE tags [J]. Nucleic Acids Res, 2007, 35 (17): e108.
    113. ROYER C, BRIOLAY J, GAREL A, et al. Novel genes differentially expressed between posterior and median silk gland identified by SAGE-aided transcriptome analysis. Insect Biochem Mol Biol, 2011, 41(2): 118-124.
    114. SAHARA K, YOSHIDO A, KAWAMURA N. W-derived BACprobes as a new tool for identification of the W chromosome andits aberrations in Bombyx mori [J]. Chromosoma, 2003, 112(1): 48-55.
    115. SAKUDOH T, IIZUKA T, NARUKAWA J, et al. A CD36-related transmembrane protein iscoordinated with an intracellular lipid-binding protein in selective carotenoid transport for cocoon coloration [J]. Biol Chem, 285(10): 7739-7751.
    116. SAKUDOH T, SEZUTSU H, NAKASHIMA T, et al. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. 2007 Proc Natl Acad Sci. USA 104(21):8941–8946
    117. SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425.
    118. SASAKI T, KOBAYASHI K. Isolation of two novel proteinase inhibitors from hemolymph of silkworm larva, Bombyx mori. J Biochem. 1984, 95:1009–1117.
    119. SASAKI T. Patchwork-structure serpins from silkworm (Bombyx mori) larval hemolymph. Eur J Biochem. 1991, 202: 255–261.
    120. SCHENA M, SHALON D, DAVIS RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science, 1995, 270(5 235): 467- 470.
    121. SCHUTT C and NOTHIGER R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127(4): 667-677
    122. SHIRAKI T, KONDO S, KATAYAMA S, et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage [J]. PNAS, 2003, 100: 15776–15781.
    123. SHOFUDA K, TOGAWA T, NAKATO H, et al. Molecular cloning and characterization of a cDNA encoding a larval cuticle protein of Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol, 1999, 122(1): 105-9.
    124. STURTEVANT A H. No crossing over in the female of the silkworm moth [J]. Am Naturalist, 1915, 49: 42-44.
    125. SU Y, MURALI TM, PAVLOVIC V, et al. RankGene: Identification of diagnostic genes based on expression data. Bioinformatics, 2003, 19: 1578-1579.
    126. SUZUKI M G, SHIMADA T, KOBAYASHI M. Absence of dosage compensation at the transcription level of a sex-linked gene in a female heterogametic insect, Bombyx mori [J]. Heredity, 1998, 81(3): 275-283.
    127. SUZUKI M G, SHIMADA T,KOBAYASHI M. Bm kettin, homologue of the Drosophila kettin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated[J]. Heredity, 1999, 82(2): 170-179.
    128. TABUNOKI H, HIGURASHI S, NINAGI O, et al. (2004) A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett 567(2-3): 175-178.
    129. TANAKA Y. Genetic studies on the silkworm [J]. J Coll Agric Sapporo, 1916, 7: 129-255.
    130. TAZIMA Y. The Genetics of the Silkworm. Logos Press, London and Englewood Cliffs, N.J., 1964.
    131. TAMURA K, DUDLEY J, NEI M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599.
    132. THOMPSON JD, HIGGINS DG, GIBSON TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673–4680.
    133. VANDER Horst, D.J. Biochim. Biophys. Acta, 1990, 1047: 195–211.
    134. VELCULESCU V E, ZHANG L, VOGELSTEIN B, et al. Serial analysis of gene expression [J]. Science, 1995, 270 (5 235): 484 -487.
    135. WANG Z, ZHA X, HE N, et al. Molecular cloning and expression analysis of Bmrbp1, the Bombyx mori homologue of the Drosophila gene rbp1. Mol Biol Rep, 2009, 37: 2525–2531.
    136. XIA Q Y, GUO Y R, ZHANG Z, et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 2009, 326(5951): 433-436.
    137. XIA Q Y, ZHOU Z Y, LU C, et al. A draftsequence for the genome of the domesticated silkworm (Bombyx mori) [J]. Science, 2004, 306: 1937-1940.
    138. XIA Q, CHENG D, DUAN J, et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology, 2007, 8: R162
    139. XIA Q Y, ZHOU Z Y, LU C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori) [J]. Science, 2004, 306(5703): 1937-1940.
    140. YAMAMOTO K, BANNO Y, GUJII H, et al. Catalase from the silkworm, Bombyx mori: Gene sequence, distribution, and overexpression. Insect Biochemistry and Moleular Biology, 2005, 35: 277-283.
    141. YE S Q, ZHANG L Q, ZHENG F, et al. Minisage: gene expression profiling using serial analysis of gene expression form 1ug total RNA [J]. Anal Biochem, 2000, 287: 144-152.
    142. YU X, ZHOU Q, LI S C, et al. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One, 2008, 3(8): e2997.
    143. ZAMORE PD, TUSCHL T, SHARP PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21-23 nucleotide intervals. Cell, 2000, 101: 25-33.
    144. ZHA X, XIA Q, DUAN J et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori. Insect Biochem Mol Biol 2009, 39(5-6): 315-321.
    145. ZHANG Y, HUANG J, JIA S. SAGE tag based cDNA microarray analysis during larval to pupal development and isolation of novel cDNAs in Bombyx mori [J]. Genomics, 2007, 90(3): 372-379.
    146. ZHANG C, ZHOU D, ZHENG S, et al. A chymotrypsin-like serine protease cDNA involved in food protein digestion in the common cutworm, Spodoptera litura: Cloning, characterization, developmental and induced expression patterns, and localization. J Insect Physiol. 2010, 56 (7): 788-799.
    147. ZHAO P, WANG GH, DONG ZM, et al. Genome-wide identification and expression analysisof serine proteases and homologs in the silkworm Bombyx mori. BMC Genomics. 2010, 11:405.
    148. ZOU Z, PICHENG Z, WENG H, et al. A comparative analysis of serpin genes in the silkworm genome. Genomics. 2009, 93(4): 367-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700