泛素连接酶Hrd1介导的tau蛋白降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经细胞中的tau蛋白异常聚集是许多神经退行性疾病共有的病理特征,例如在阿尔茨海默病(Alzheimer’s disease, AD),进行性核上瘫(progressive supranuclear palsy)及第17号染色体异常导致的额颞叶型痴呆伴巴金森症(frontotemporal dementia with Parkinsonism linked to chromosome 17, FTDP-17),这些疾病统称为tau蛋白病(tauopathy)。我们的前期研究发现,人类的泛素连接酶Hrd1和tau在AD病人的皮质和海马神经元内有共定位。且Hrd1的表达和异常磷酸化tau的聚集存在负相关。我们在细胞模型上观察到Hrd1的表达可以减少tau的毒性,并发现该作用与Hrd1能降低tau蛋白总体水平有关。在上述研究的基础上,本文进一步探讨了Hrd1减少细胞内tau蛋白水平的相关机制。这不仅有助于进一步认识Hrd1的功能和tau蛋白病的病理机制,也为以Hrd1为靶点的药物设计和筛选提供技术平台。
     目的:
     观察Hrd1能减少细胞内tau蛋白水平是否与其介导tau降解有关及其降解机制。
     方法:
     将pEGFP-C1-tau真核细胞表达质粒与野生型Hrd1或酶失活型Hrd1C1A转染293T细胞,然后用Western blot方法检测细胞内相关蛋白的水平;同时用GSK-3β诱导tau过度磷酸化,观察Hrd1过度磷酸化的tau降解的影响。用CHX示踪法观察蛋白质的降解;用免疫荧光双标及免疫沉淀法观察Hrd1和tau的相互作用。
     结果:
     1.Hrd1降低细胞内磷酸化及非磷酸化tau的水平
     采用非神经来源的293T细胞株,转染GFP-tau、wtHrd1和Hrd1C1A质粒,并用GSK-3β共转染细胞以诱导tau蛋白磷酸化。结果显示,转染后16-24 h,共转染Hrd1的细胞荧光减弱。Western blot结果显示:与单独转染tau质粒的细胞相比,共转染Hrd1的细胞内磷酸化及非磷酸化tau的水平都明显减少,而共转染Hrd1C1A则对细胞内tau的水平没有明显影响。提示,Hrd1能降低细胞内磷酸化及非磷酸化tau的总体水平,这可能是Hrd1减少tau毒性的原因。
     2.Hrd1促进tau蛋白的降解
     为了进一步观察tau蛋白的减少是否由于tau降解增加所致,我们在转染后24 h,在细胞的培养上清液中加入放线菌酮(CHX)以阻断tau的蛋白合成,并于加入CHX后4 h,8 h,16 h分别收取细胞,用免疫印记分析tau的水平。结果显示共转染Hrd1的细胞,tau蛋白的清除加快。表明Hrd1可以促进tau的降解。
     3.Hrd1促进磷酸化tau蛋白的降解
     年龄相关的NFTs的形成具有神经毒性,高度磷酸化的tau在这个过程中具有重要作用。以前的研究表明泛素连接酶CHIP可以识别磷酸化的tau蛋白,并且在tau蛋白上加上泛素。我们在293T细胞中共转染编码tau和GSK-3β的质粒来诱导tau的磷酸化。结果发现GSK-3β磷酸化后tau蛋白的总体水平提高。这个可能由于tau磷酸化后稳定性提高的缘故。当共转染Hrd1时,Hrd1降低了GSK-3β诱导的磷酸化tau的总量。CHX实验表明wtHrd1可以促进磷酸化tau蛋白的降解。这些结果表明Hrd1可以促进磷酸化tau蛋白的降解。
     4.蛋白酶体参与Hrd1介导的tau降解
     有报道显示,蛋白酶体可以降解tau蛋白。为了观察蛋白酶体是否参与了Hrd1介导的tau蛋白降解,我们在293T细胞内转染tau或共转染tau和Hrd1,在收取细胞前4 h,培养液内加入蛋白酶体抑制剂MG132或溶酶体抑制剂氯化铵。结果表明,蛋白酶体抑制剂MG132可以稳定tau蛋白的表达,而氯化铵不能稳定tau的表达。当用N-乙基顺丁烯二酰亚胺(NEM)抑制去泛素化后,我们可以观察到高分子量tau的聚集,这些结果表明蛋白酶体参与了Hrd1介导的tau蛋白的降解。
     5.Hrd1与tau蛋白的相互作用
     我们以前的研究发现,Hrd1可加强胞质蛋白带有扩展型多聚谷氨酰胺Huntingtin的降解。Hrd1是否也可以与胞质蛋白tau相互作用呢?为了回答这个问题,我们首先进行了免疫共沉淀(IP)实验。在293T细胞内共转染tau和Hrd1的质粒,24h后收集细胞并裂解,然后用单克隆抗体tau-5进行免疫沉淀细胞裂解液中的tau蛋白,再用免疫印迹(IB)法检测Hrd1是否可以被tau共沉淀下来。结果发现,在IP tau时,同时把Hrd1共沉淀下来,而且这种作用是不依赖于Hrd1的E3活性的。同时,我们使用免疫荧光双标时发现,Hrd1与tau在细胞内有共定位。提示Hrd1与tau蛋白存在相互作用。
     6.Hrd1增强tau的泛素
     为了更进一步确定Hrd1可以泛素化tau蛋白,我们在293T细胞内共转染编码Hrd1,His-tau,ubiquitin蛋白的质粒。蛋白酶体抑制剂MG132用来抑制泛素化tau的降解。我们发现Hrd1的过表达可以增加高分子量的tau,当用GFP-tau质粒转染细胞时,也得到了同样的结果。在免疫沉淀实验中,抑制蛋白酶体活性后,转染Hrd1质粒的细胞tau的泛素化明显增强。这些高分子量tau的形成与tau的泛素化有关。为了了解tau磷酸化对Hrd1介导的tau泛素化的影响,我们在293T细胞内共转染编码GSK-3β的质粒。结果发现,在共转染GSK-3β的细胞内,高分子量tau蛋白的量显著增加,提示GSK-3β诱导的磷酸化可以稳定泛素化的tau蛋白。
     结论:
     以上研究结果表明,Hrd1可以促进细胞内过度表达的磷酸化和非磷酸化tau的降解,这种作用依赖其E3活性;泛素-蛋白酶体通路参与了Hrd1介导的tau蛋白降解,这可能是Hrd1减轻tau毒性,保护细胞的原因之一。
Aberrant aggregates of tau have been documented a common feature of many neurodegenerative diseases, collectively called tauopathy, including Alzheimer’s disease, progressive supranuclear palsy and frontotemporal dementia with Parkinsonism linked to chromosome 17. Our previous studies found that Hrd1 and tau co-localized in cortex and hippocampal neurons of AD. There is an inverse relationship between Hrd1 and aggregated tau. We found that the expression of Hrd1 can decrease the total level of tau in cell models. On the basic of these studies, we investigated the mechanism of Hrd1 decreased the level of tau. Thus it would be helpful not only to further elucidate the pathological mechanism of tau, but also to offer theoretic basis for drug screening and therapy for patients with tauopathies based on Hrd1 target.
     OBJECTIVE:
     The purposes of this study were to investigate whether Hrd1 can enhance tau degradation through ubiquitin-proteasome pathway.
     METHODS:
     The plasmid encoding human tau was constructed and transfected to 293T cells along with wt-Hrd1 or Hrd1C1A (a mutant of Hrd1 with loss of E3 activity) using Lipofactamine 2000. The plasmid encoding GSK-3βwas transfected to cells to induce tau phosphorylation. Fluorescent microscopy and cofocal microscopy were used to observe cell morphology; Western blotting was used to determine the levels of proteins; Immunoprecipatation and immunofluorescent staining were used to observe the interaction and coexpression of tau and Hrd1.
     RESULTS:
     1. Hrd1 decreases the total level of tau in 293T cells
     To test whether Hrd1 can decrease the level of tau, we transfected tau or tau plus Hrd1 to 293T cells. It was found that the fluorescent intensity of GFP-tau in the cells was attenuated when co-transfected with Hrd1, compared with that transfected with tau alone. As the control, Hrd1 did not affect the fluorescent intensity of GFP vector. Meanwhile, Western blotting showed that cellular level of tau was decreased by cotransfected with wild type Hrd1, but not Hrd1C1A, a type Hrd1 with the loss of E3 activity. This indicates that Hrd1 decreased the total level of tau.
     2. Hrd1 facilitates tau degradation
     To address whether the suppression on the total level of tau is correlated with the degradation of tau, cycloheximide (CHX) chase analysis was used to examine its rate of disappearance after protein synthesis was blocked. We chose CHX chase analysis since it has been widely used in determining ER-anchored E3s-mediated degradation of proteins in both yeast and mammalian cells. Cells were transfected either with tau alone or with tau plus Hrd1. 24 h after transfection, cells were treated with CHX and were chased for 4, 8, and 16 h. Levels of tau were determined by IB. The results showed that Hrd1 promoted tau elimination. These data indicate that Hrd1 removes tau by facilitating its degradation.
     3. Hrd1 facilitates phosphorylated tau degradation
     Hyperphosphorylation of tau is crucial in the age-related formation of NFTs which is correlated well with neurotoxicity. The previous studies demonstrated that tau phosphorylation is a recognition requirement for the addition of ubiquitin by the ubiquitin ligase CHIP. We wondered whether ubiquitin ligase Hrd1 targets phosphorylated tau for proteasomal degradation. To verify this question, we cotransfected the plasmids encoding tau and GSK-3βto 293T cells to induce tau phosphorylation, based on the report that GSK-3β-induced hyperphosphorylation leads to the formation of paired helical filament (PHF)-like tau. We found that the total level of tau elevated after phosphorylation. This may be due to the increase of tau stability after phosphorylation. Hrd1 reduced the total amount of GSK-3β-induced phosphorylation of tau when it was cotransfected. This suggests that Hrd1 facilitated the degradation of phosphorylated tau.
     4. Proteasome is involved in Hrd1-mediated tau degradation
     Tau can be degraded by proteasome. Hrd1 should target tau for proteasomal degradation in terms of the requirement of an intact RING finger of Hrd1 in tau degradation. To address this issue, we determined the levels of tau in 293T cells cotransfected with tau plus Hrd1 after treatment with the proteasome inhibitor MG132 and lysosome inhibitor ammonium chloride. The result shows that inhibition of proteasome activity by MG132 stabilized tau in the lysate either expressing Hrd1 or not, while ammonium chloride did not stabilize the levels of tau. When deubiquitination was inhibited by 5mM N-ethylmaleimide (NEM, Sigma), we observed high molecular weight tau accumulation stained with tau-5 antibody, suggesting proteasome involves in Hrd1-mediated tau degradation.
     5. Hrd1 interacts with tau and enhances tau ubiquitination
     In our previous report, we found the cytosolic protein polyglutamine-containing huntingtin is a substrate for Hrd1. We wondered whether Hrd1 was able to interact with and ubiquitinate tau, although Hrd1 is an ER membrane protein and tau is the cytosolic protein. To test this, we first conducted co-immunoprecipitation experiments. Myc-tagged Hrd1 was cotransfected into 293T cells with tau and then immunoprecipitation was performed with the monoclonal tau-5 antibody. Detection of co-immunoprecipitating Hrd1 was performed by western blotting with monoclonal anti-myc antibody. Hrd1 was found to co-immunoprecipitate with tau, which did not depend on its E3 activity.
     To further ascertain whether Hrd1 ubiquitinates tau, 293T cells were cotransfected with myc-tagged Hrd1, His-tagged tau, and myc-tagged ubiquitin. High molecular weight tau was used as a potential indicator of ubiquitination. Proteasome inhibitor MG132 was used to block possibly ubiquitinated tau degradation. We found that Hrd1 overexpression increased high molecular weight forms of tau. We obtained the same result when His-tau was replaced with GFP-tau. Immunoprecipitated tau showed prominent anti-ubiquitin immunoreactivity in Hrd1-expressing cells. This suggests that the formation of high molecular weight forms of tau correlates with the increased ubiquitination. To characterize the effect of phosphorylation on Hrd1-mediated tau ubiquitination, the plasmid encoding GSK-3βwas cotransfected into the cells. the amount of high molecular weight tau increased dramatically in the cells expressing GSK-3β, suggesting that GSK-3β-induced phosphorylation can stabilize ubiquitinated tau, which may have potential functional implications for the role of ubiquitination in tau biology.
     CONCLUSIONS:
     These results suggest that Hrd1 facilitates tau degradation, which may be at least partially associated with ubiquitin-proteosome pathway.
引文
1. Robert M, Mathuranath PS. Tau and Tauopathies. Neurol India 2007,55(1):11-16
    2. Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem. 2005,280(5):3963-73.
    3. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005, 309(5733):476-81
    4. Gomez-Ramos A, Diaz-Hernandez M, Cuadros R, Hernandez F, Avila J.Extracellular tau is toxic to neuronal cells. FEBS Lett, 2006, 580(20): 4842-50
    5.李琪,冯利杰,王海评,梁燕,沈玉先。Tau蛋白的过度表达对非神经源细胞生长与分化的影响。中国药理学通报,2008,24(3):365-69.
    6. Lennox G, Lowe J, Morrell K, Landon M, Mayer RJ. Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci Lett, 1988, 94 (1-2) : 211-7.
    7. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG. Proteasomal degradation of tau protein. J Neurochem, 2002, 83(1) : 176-85.
    8. Richter-Landsberq C , Bauer NG. Tau-inclusion body formation inoligodendroglia: the role of stress proteins and proteasome inhibition. Int J Dev Neurosci, 2004, 22(7) : 443-51.
    9. de Vrij FM, Fischer DF, Van Leeuwen FW, Hol EM. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system. Prog Neurobiol, 2004, 74(5) : 249-70.
    10. Sanchez MP, Gonazalo I,Avila J, De Yebenes JG. Progressive supranuclear palsy and tau hyperphosphorylation in a patient with a C212Y parkin mutation. J Alzheimers Dis, 2002, 4(5) :399-404.
    11. Shimura H, Schwartz D, Gygi SP, Kosik KS. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem, 2004, 279(6): 4869-76.
    12. Hatakeyama S, Matsumoto M, Kamura T, Murayama M, Chui DH, Planel E, Takahashi R, Nakayama KI, Takashima A.. U-box protein carboxyl terminus of Hsc70-interacting protein (CHIP) mediates poly-ubiquitylation preferentially on four-repeat Tau and is involved in neurodegeneration of tauopathy. J Neurochem, 2004 , 91(2): 299-307.
    13. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE,Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet, 2004, 13(7): 703-14.
    14. Babu JR, Geetha T, Wooten MW. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem, 2005, 94(1): 192-203.
    15. Shen Y, Ballar P, Apostolou A, Doong H, Fang S. ER stress differentially regulates the stabilities of ERAD ubiquitin ligases and their substrates. Biochem Biophys Res Commun, 2007, 352(4): 919-24.
    16. Schuberth C, Buchberger A. Membrane-brand Ubx-2 recuits Cdc-48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation.Nat Cell Biol, 2005, 7(10): 999-1006.
    17. Neuber O, Jarosch E, Volkwein C,Walter J, Sommer T. Ubx-2 links the Cdc-48 complex to ER-associated protein degradation. Nat Cell Biol, 2005, 7(10): 993-8.
    18. Gauss R, Sommer T, Jarosch E. The Hrd1p ligase complexe forms a linchpin between ER-lumenal substrate selection and Cdc-48p recruitment. EMBO J, 2006, 25(9): 1827-35.
    19. Denic V, Quan EM, Weissman JS. A luminal surveillance complexe that selects misfolded glycoproteins for ER-associated degradation. Cell, 2006, 126(2):349-59.
    20. Carvalho P, Goder V, Rapoport TA. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell, 2006, 126(2): 361-73.
    21. Yang H, Zhong X, Ballar P, Luo S, Shen Y, Rubinsztein DC, Monteiro MJ, Fang S. Ubiquitin ligase Hrd1 enhances the degradation and suppresses the toxicity of polyglutamine-expanded huntingtin. Exp Cell Res, 2007, 313(3): 538-50.
    22. Hou HL, Shen YX, Zhu HY, Sun H, Yan XB, Fang H,Zhou JN. Alterations of hHrd1 expression are related to hyperphosphorylated tau in the hippocampus in Alzheimers disease. J Neurosci Res, 2006, 84(8): 1862-70.
    23. Omura T, Kaneko M, Onoguchi M, Koizumi S, Itami M, Ueyama M, Okuma Y, Nomura Y.Novel functions of ubiquitin ligase HRD1 with transmembrane and proline-rich domains.J Pharmacol Sci, 2008, 106(3):512-9.
    24. Omura T, Kaneko M, Tabei N, Okuma Y, Nomura Y.Immunohistochemical localization of a ubiquitin ligase HRD1 in murine brain. J Neurosci Res, 2008 , 86(7):1577-87.
    25.冯利杰大论文。Tau蛋白介导的细胞毒性及泛素连接酶Hrd1的保护作用。
    26. Boekhoorn K, Terwel D, Biemans B, Borghgraef P, Wiegert O, Ramakers GJ, de Vos K, Krugers H, Tomiyama T, Mori H, Joels M, van Leuven F, Lucassen PJ. Improved long-term potentiation and memory in young tau-P301L transgenicmice before onset of hyperphosphorylation and tauopathy. J. Neurosci, (2006), 26(13):3514-23.
    27. Wang JZ, Grundke-Iqbal I, Iqbal K . Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci, 2007, 25(1): 59-68.
    28. Sengupta A, Grundke-Iqbal I, Iqbal K. Regulation of phosphorylation of tau by protein kinases in rat brain. Neurochem Res, 2006, 31(12): 1473-80.
    29. Bonfils C, Bec N, Lacroix B, Harricane MC, Larroque C.Kinetic analysis of tubulin assembly in the presence of the microtubule-associated protein TOGp. J Biol Chem, 2007, 282(8): 5570-81.
    30. Berger Z, Roder H, Hanna A, Carlson A. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci, 2007, 27 (14): 3650-62.
    31. Bandyopadhyay B, Li G, Yin H, Kuret J. Tau aggregation and toxicity in a cell culture model of tauopathy. J Biol Chem, 2007,282(22):16454-64.
    32. Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice J Biol Chem., 2005, 280(5): 3963-73.
    33. Park SY, Ferreira A.The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J Neurosci., 2005, 25(22): 5365-75.
    34. Pei JJ, Gong CX, An WL. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am J Pathol, 2003, 163(3): 845-58.
    35. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr,Hutton M, Burrows F, Petrucelli L.The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest, (2007), 117(3):648-58.
    36. Babak Esmaeli-Azad, Joseph H, McCarty , Stuart C. Feinstein. Sense and anti- sense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability . Journal of Cell Science, 1994, 107 (4): 869-79.
    37. Hershko A, Ciechanover A, Varshavsky A. The ubiquitin system. Nature , 2000, 6(10): 1073-81.
    38. Doherty FJ, Dawson S, Mayer RJ. The ubiquitin-proteasome pathyway of intracelluar proteolysis. Essays Biochem, 2002, 38: 51-63.
    39. WeekesJ, MorrisonK, MullenA. Hyperuibiquitination of protein sindilated cardiomyopathy .Proteomics,2003,3(2):208-16.
    40. Pickart CM. Ubiquitin in chains. Trends Biochem Sci, 2000, 25(11): 544-8.
    41. Canu N, Barbato C, Ciotti MT, Serafino A, Dus L, Calissano P. Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurons undergoing apoptosis. J Neurosci, 2000, 20(2): 589-99.
    42. FANG Zheng-Yu, LIU Shi-Jie, WANG Xiao-Chuan, LIU Rong, WANG Qun,CHEN Zheng-Yue, WANG Jian-Zhi. Effect of Calpain on The Degradation of tau in Rat Brain Cortex Extracts. Prog Biochem Biophys, 2003, 30(6) : 884-9.
    43. Johnson GV, Jope RS, Binder LI. Proteolysis of tau by calpain.Biochem Biophys Res Commun, 1989, 163(3): 1505-11.
    44. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ. Alzheimer disease- specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem, 2006 , 281(16): 10825-38.
    45. Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimers disease. J Neurochem, 2003,85(1): 115-22.
    46. Swanson R, Locher M, Hochstrasser M.A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev. ,2001, 15(20): 2660-74.
    47. Ravid T, Kreft SG, Hochstrasser M. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways.EMBO J., 2006,25(3): 533-43.
    1. Oddo S. The ubiquitin-proteasome system in Alzheimer's disease. J Cell Mol Med, 2008 , 12(2):363-73.
    2. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci. 2007, 8(7): 499-509.
    3. Agca C, Fritz JJ, Walker LC, Levey AI, Chan AW, Lah JJ, Agca Y. Development of transgenic rats producing human beta-amyloid precursor protein as a model for Alzheimer's disease: transgene and endogenous APP genes are regulated tissue-specifically. BMC Neurosci, 2008, 26, 9:28.
    4. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci, 2005, 8(1): 79-84.
    5. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006, 440(7082):352-7.
    6. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416(6880): 535-9.
    7. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Post-translational modifications of tauprotein in Alzheimer's disease. J Neural Transm, 2005, 112(6): 813-38.
    8. Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q. Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech, 2005, 67(3-4): 141-55.
    9. Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov, 2007, 6(6): 464-79.
    10. Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta, 2005, 1739(2-3): 198-210.
    11. Stoothoff WH, Johnson GV. Tau phosphorylation: physiological and pathologicalconsequences. Biochim Biophys Acta, 2005, 1739(2-3): 280-97.
    12. Hasegawa M. Biochemistry and molecular biology of tauopathies. Neuropathology, 2006, 26(5): 484-90.
    13. Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM.Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem, 2006, 281(51): 39413-23.
    14. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH. Tau suppression in a neurodegenerative mouse model improves memory function. Science, 2005, 309(5733): 476-81.
    15. Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging, 2003, 24(8): 1079-85.
    16. Nixon RA, Cataldo AM. Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. J Alzheimers Dis, 2006, 9(3): 277-89.
    17. Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003, 40(2): 427-46.
    18. F.M. de Vrij et al. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system.Prog Neurobiol, 2004, 74(5):249-70
    19. S.C.Upadhya and A.N. Hegde. Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies.Curr Pharm Des, 2005, 11(29):3807-28.
    20. D.C. Rubinsztein, The roles of intracellular protein-degradation pathways in neurodegeneration, Nature, 2006, 443(7113):780-6
    21. K.S. McNaught et al. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease, Ann Neurol, 2004, 56(1):149-62.
    22. van Tijn P, de Vrij FM, Schuurman KG, Dantuma NP, Fischer DF, van Leeuwen FW, Hol EM. Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease. J Cell Sci, 2007, 120(9):1615-23.
    23. Hegde AN, Upadhya SC. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci, 2007, 30(11):587-95.
    24. Zhu X, Su B, Wang X, Smith MA, Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci, 2007, 64(17): 2202-10.
    25. Cecarini V, Bonfili L, Amici M, Angeletti M, Keller JN, Eleuteri AM.Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes.Brain Res, 2008 Mar 18; [Epub ahead of print]
    26. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM,Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med, 2002, 33(4): 562-71.
    27. Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, Spazzafumo L, Chiappelli M, Licastro F, Sorbi S, Pession A, Ohm T, Grune T, Franceschi C. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiol Aging, 2006, 27(1): 54-66.
    28. Lopez Salon M, Pasquini L, Besio Moreno M, Pasquini JM, Soto E. Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp Neurol, 2003, 180(2): 131-43.
    29. Oh S, Hong HS, Hwang E, Sim HJ, Lee W, Shin SJ, Mook-Jung I. Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev, 2005, 126(12):1292-9.
    30. Tseng BP, Green KN, Chan JL, Blurton-Jones M, Laferla FM. Abeta inhibits theproteasome and enhances amyloid and tau accumulation. Neurobiol Aging, 2007 May 31 [Epub ahead of print].
    31. Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, Moolman D, Zhang H,Shelanski M, Arancio O. Ubiquitin hydrolase Uch-L1 rescues beta-amyloidinduced decreases in synaptic function and contextual memory. Cell,2006, 126(4): 775-88.
    32. Almeida CG, Takahashi RH, Gouras GK. Beta-amyloid accumulation impairsmultivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci, 2006, 26(16): 4277-88.
    33. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R,Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003, 39(3):409-21.
    34. Oddo S, Caccamo A, Smith IF, Green KN, LaFerla FM. A dynamic relationship between intracellular and extracellular pools of Abeta. Am J Pathol, 2006, 168(1): 184-94.
    35. Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM. Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem, 2006, 281(3): 1599-604.
    36. Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament tau in brains of patients with Alzheimer's disease. J Neurochem, 2003, 85(1): 115-22.
    37. Olaf Goldbaum, Malte Oppermann, Melanie Handschuh, Deepa Dabir, Bin Zhang, Mark S. Forman, John Q. Trojanowski, Virginia M.-Y. Lee. Proteasome Inhibition Stabilizes Tau Inclusions in Oligodendroglial Cells that Occur after Treatment with Okadaic Acid. J Neurosci, 2003, 23(26):8872-80.
    38. Poppek D, Keck S, Ermak G, Jung T, Stolzing A, Ullrich O, Davies KJ, Grune T. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J, 2006, 400(3):511-20.
    39. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M. CHIP andHsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet, 2004, 13(7): 703-14.
    40. Shimura H, Schwartz D, Gygi SP, Kosik KS. CHIP-Hsc70 complex ubiquitinate phosphorylated tau and enhances cell survival. J Biol Chem, 2004, 279(6): 4869-76.
    41. Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AM, Caldwell GA, Caldwell KA, Eckman C, Patterson C, Hutton M, Petrucelli L. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci, 2006, 26(26): 6985-96.
    42. Hideki Shimura, Yuko Miura-Shimura, and Kenneth S. Kosik. Binding of Tau to Heat Shock Protein 27 Leads to Decreased Concentration of Hyperphosphorylated Tau and Enhanced Cell Survival. J Biol Chem, 2004, 279(17):17957-62.
    43. de Vrij FM, Fischer DF, Van Leeuwen FW, Hol EM. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system. Prog Neurobiol, 2004, 74(5) : 249-70
    44. Dickey CA, Koren J, Zhang YJ, Xu YF, Jinwal UK, Birnbaum MJ, Monks B, Sun M,Cheng JQ, Patterson C, Bailey RM, Dunmore J, Soresh S, Leon C, Morgan D,Petrucelli L.Akt and CHIP coregulate tau degradation through coordinated interactions.Proc Natl Acad Sci U S A, 2008,105(9):3622-7.
    45. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 2004, 43(3): 321-32.
    46. Klimaschewski L.Ubiquitin-dependent ptoteolysis in neurons . J News PhysiolSci, 2003, 18(1):29-33.
    47. Prager K, Wang-Eckhardt L, Fluhrer R, Killick R, Barth E, Hampel H, Haass C,Walter J. A structural switch of presenilin 1 by glycogen synthase kinase3beta-mediated phosphorylation regulates the interaction with beta-catenin and its nuclear signaling. J Biol Chem. 2007 May 11;282(19):14083-93.
    48. Upadhya SC, Hegde AN. Role of the ubiquitin proteasome system in Alzheimer's disease. BMC Biochem. 2007 Nov 22;8 Suppl 1:S12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700