苎麻抗虫基因遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Boehmeria nivea L. Gand)为荨麻科苎麻属的多年生宿根性草本植物,主要分布在热带和亚热带地区,为我国特产。苎麻纤维是优良的精纺纤维。由于苎麻为高度杂合体,其遗传背景十分复杂,有性杂交等常规方法育种存在周期长、工作量大和效率低等问题,难以取得育种上的突破性进展。利用外源基因进行苎麻定向遗传改良、培育新的种质资源或品种是解决问题的有效途径。苎麻转基因研究虽有报道,但这些研究大多以证明根癌农杆菌介导的苎麻遗传转化方法的可行性为目的,并没有优化转化条件。
     本研究从建立高频再生体系入手,建立了农杆菌介导、基因枪和农杆菌介导花粉侵入法等三种遗传转化方法,将双价抗虫基因导入到具有重要推广价值的栽培苎麻品种中。主要研究结果如下:
     (1)建立苎麻下胚轴和子叶高频再生体系
     在大量前期激素配比试验的基础上,研究了BA和TDZ激素配比对苎麻下胚轴直接再生的作用、TDZ与GA3和IAA配合使用对下胚轴愈伤组织诱导不定芽的影响和丛生芽再生所需的生长调节剂配比。基于以上研究,确立了TDZ的浓度为0.045μM、GA3为0.35μM和IAA为0.045μM作为农杆菌转化的再生体系激素组合。通过对中苎1号、中饲苎1号、NC01三个品种的下胚轴和子叶的再生试验,验证了该再生体系的适应性。
     (2)建立农杆菌介导苎麻下胚轴和子叶遗传转化体系
     在建立高频再生体系的基础上,对农杆菌介导苎麻下胚轴遗传转化的侵染时间、预培养时间、共培养时间、抗生素浓度、Kan筛选浓度再生和生根浓度等主要影响因素进行了系统研究,优化了转化流程中的各项参数,建立了农杆菌介导苎麻下胚轴遗传转化体系。对获得的抗性植株进行了PCR检测、RT-PCR、GUS组织染色和Southern杂交等检测。并通过三个基因型子叶和下胚轴转化试验,验证了该遗传转化体系的适应性。
     (3)建立苎麻基因枪遗传转化体系
     基于本实验室对茎尖再生体系的研究基础和第一章对子叶再生体系,对基因枪转化的轰击距离、不同金粉及DNA用量、轰击压力和轰击次数等主要影响因素进行了研究,确定了转化流程中的各项参数,对获得的抗性植株进行了PCR检测和GUS组织染色,建立了基因枪茎尖和子叶愈伤组织遗传转化体系。
     (4)建立农杆菌介导苎麻花粉侵入法遗传转化体系
     通过对表面活性剂浓度、侵染方式、侵染时间、侵染次数等主要影响因素进行了系统研究,确立了转化流程,建立了农杆菌介导苎麻花粉侵入法遗传转化体系。建立了T1代抗性种子的筛选体系,对获得的抗性植株进行了PCR检测、荧光定量PCR、GUS组织染色和Southern杂交等检测。
Ramie( Boehmeria nivea Gaud)is a perennial herbaceous plant of the Urticaceae family. Ramie bast fiber is a kind of fine plant texile materials. It is mainly planted in tropical and subtropical regions in China.It is difficult to achieve a breakthrough in breeding duo to its high heterozygotes, complex genetic background, long sexual hybridization breeding cycle. So development of a genetic transformation system to introduce desired genes into ramie could improve quality, develop new germplasm or cultivars. Several studies have successfully developed transgenic ramie by using A. tumefaciens-mediated transformation, but in most cases the transformation efficiency was low. All these studies emphasized on the feasibility of Agrobacterium-mediated transformation to generate transgenic ramie and the protocol has not been optimized.
     In this study, an efficient regeneration system for adventitious shoot induction was developed by using hypocotyls explants of ramie, either by shoot organogenes or multiple shoot formation from callus, and by direct regeneration of shoots without any intermediate callus phase. Transformation system of ramie was established via Agrobacterium tumefaciens-mediated method , particle bombardment and the floral dip method, transgenic plants integrated with an insect-resistance gene were produced.Main research results as follows:
     (1)The establishment of efficient protocols for plant regeneration from hypocotyls and cotyledon
     Based on pre-trial, we compared the responses of ramie hypocotyls segments on various TDZ concentrations in combination with different concentrations of BA to effect of direct shoot regeneration without an intermediate callus phase,a two-step procedure for efficient indirect regeneration by and multiple shoot formation. Based on the above study, two-step procedure for efficient indirect regeneration was chosen for the transformation system of ramie via Agrobacterium tumefaciens-mediated method due to its highest efficiency of shoot formation. Cotyledon and hypocotyl explants of var. Zhongzhu No.1 Zhongsizhu No.1 NC01was tested for feasibility of this regeneration protocol.
     (2)The establishment of Genetic transformation of ramie by Agrobacteriumtumefaciens-mediated method from hypocotyls and cotyledon
     Based on the above efficient protocols for plant regeneration, the effect of infection time, selection pressure , co-cultivation time, pre-cultivation time and concentration of cefotaxime on transient GUS expression and regeneration efficiency were evaluated and an efficient transformation system by Agrobacteriumtumefaciens-mediated was established. Cotyledon and hypocotyl explants of var. Zhongzhu No.1 Zhongsizhu No.1 NC01was tested for feasibility of this transformation protocol. GUS detection, PCR detection, RT-PCR and Southern blotting detection were used to detect putative transformed plants, while showed that foreign gene had been integrated into ramie genome.
     (3)The establishment of genetic transformation of ramie by particle bombardment
     Based on research shoot-tip regeneration by our lab and the above efficient protocols for cotyledon regeneration, the effect of helium pressure, the vaccum pressure, target distance and times of bombardment.on transient GUS expression and were evaluated and an efficient transformation system by particle bombardment was established. Putative transformed plants were detected by GUS and PCR.
     (4)The establishment of genetic transformation of ramie by floral dip method
     The effect of concentration of Silwet L-77, infection of time, times of infection, drop-by-drop inoculation and submersion on the efficiency transformation and were evaluated and an efficient transformation system by floral dip method was established. T1 transformed plants was determined experimentally, by planting wild type plants on MS medium supplemented with a range of concentrations of the kanamycin. GUS detection, PCR detection, fluorescence quantitative PCR and Southern blotting detection were used to detect putative transformed plants, while showed that foreign gene had been integrated into ramie genome.
引文
1.陈德富,陈喜文.苎麻体细胞胚胎发生研究初报.植物学通报,1998,15(3):65-68.
    2.陈德富,周朴华,李宗道等.苎麻悬浮细胞原生质体培养再生植株.作物学报,1996,22(1):113~116.
    3.陈建荣,郭清泉,张学文等.农杆菌介导苎麻叶片遗传转化体系的研究.中国农学通报,2005,21(6):63~66.
    4.陈建荣,张学文,郭清泉.分离克隆苎麻CCoAOMT基因部分序列.作物学报,2006,32(5):787~790.
    5.陈喜文,陈德富,周朴华等.苎麻原生质体培养及植株再生.植物学报,1996,38(2):118~122
    6.陈正华,乐锦华,朱新霞等.转R-1,3-葡聚糖酶基因和几丁质酶基因棉花.生物技术,2002,12(4):1~2.
    7.迟君道,崔艳莉,卢华.转基因作物种植及生产概况.黑龙江农业科学,2002,(2):30~31.
    8.邓晶,刘峰,郭清泉等.苎麻CCoAOMT基因干扰表达载体构建及对烟草的转化.湖南农业大学学报(自然科学版),2008,34(2):133~134.
    9.丁明忠,潘光堂,张中华.苎麻NAD7基因的克隆与分析.西南农业学报,2007,20(5):939~942.
    10.段继强,杜光辉,李建永等.苎麻atp6和atp9基因的克隆表达及与细胞质雄性不育的相关性.遗传,2008,30(11):1487~1498.
    11.郭清泉,陈建荣,杨瑞芳等.苎麻(Boehmeria nivea L)叶片愈伤组织诱导与植株再生的研究.中国麻作,1998,20(2):1~4.
    12.郭运玲,郭安平,刘恩平等.苎麻茎尖的组织培养及其诱导植株的再生.热带作物学报,2006,27(1):73~76.
    13.胡继金.苎麻试管苗未离体叶面生芽的细胞学观察.作物学报,1991,17(3):192-196.
    14.黄春琼,郭安平,章霄云等.苎麻COMT基因的克隆及序列分析.热带农业科学,2008,24(5):386~391.
    15.黄大昉,潘映红,张淑香等.从鹅掌半夏和半夏中发现对几种蚜虫有致死活性的蛋白.中国农业科学,1997,30(2):94~96.
    16.黄记生,莫荣达.苎麻(Boehmeria nivea(L.)Gaud)下胚轴组织培养的器官形成.分子细胞生物学报,1981,14(2):111~114.
    17.黄永芬,王清撤,付桂荣等.美洲拟蝶抗冻蛋白基因(afp)导人番茄的研究.生物化学杂志,1997,13(4):418~422.
    18.黄妤,刘峰,郭清泉等.苎麻生长素结合蛋白ABP1基因cDNA的克隆及表达.作物学报,2008,34(8):1358~1365.
    19.贾士荣,郭三堆,安道昌.转基因棉花.北京:科学出版社,2001,15.
    20.蒋红,朱玉贤,陈章良.导入蜘蛛杀虫肽基因的烟草具有抗虫性.植物学报,1996,38:95~99.
    21.李浚明.植物组织培养教程.北京:北京农业大学出版社,1992:95~267.
    22.李铁松.番茄高频再生系统的建立及果聚糖果糖基转移酶基因转化研究[博士学位论文].大连:辽宁师范大学,2001.
    23.刘国民,郑思乡,周朴华丽等.苎麻花药离体培养的研究: I雄核发育的细胞学观察.海南大学学报,1994b,12(2):121~158。
    24.刘国民,邓明其,郑思乡等.苎麻花药和未授粉子房离体培养的研究[J].作物研究,1994a,8(增刊):73-78.
    25.刘建新,喻春明,唐守伟等.苎麻果胶合成重要酶UGlcAE基因的克隆及组织表达.作物学报,2008,34(11):1938~1945.
    26.刘瑛,黄小英,赖小萍等.苎麻组织培养再生植株主要影响因素的研究.江西农业学报,2002,14(1):11~15.
    27.柳武革,薛庆中.蛋白酶抑制剂及其在抗虫基因工程中的应用.生物技术通报,2000,1:20~25.
    28.陆瑞林.植物激素对番茄花托的脱分化与分化的影响.兰州大学学报,1986,
    22(3):114~119.
    29.马雄风,喻春明,熊和平等.苎麻组织培养和遗传转化研究进展.分子植物育种,2008,6(5):967~970.
    30.莫荣达,黄记生等.植物激素对苎麻茎、叶外植体器官分化的影响.植物生理学通讯,1983,3:39~41.
    31.欧阳立明,吴宏文,喻子牛等.害虫对转Bt基因植物抗性的治理策略.植物保护学报,2001,28(2):183~188.
    32.潘昌立,李树川,李育君.苎麻体细胞无性系变异及其规律的研究.中国麻作,1996,18(1):15~17.
    33.潘昌立,李树川,李育君.苎麻体细胞植株再生及其影响因素的研究.中国麻业,1995,17(1):1~6.
    34.汪波,彭定祥,孙珍夏等.根癌农杆菌介导苎麻转绿色荧光蛋白(GFP)基因植株再生.作物学报,2007,33(10):1606~1610.
    35.汪波,彭定祥,孙珍夏等.三种常用抗生素对苎麻种子发芽及子叶再生的影响.分子植物育种,2006,4(6):495~500.
    36.王傲雪,李景富,徐香玲等.发根农杆菌介导的抗病毒基因导人番茄转化系统的建立.东北农业大学学报,2000,31(3):233~240.
    37.王琛柱,钦俊德.植物蛋白酶抑制素抗虫作用的研究进展.昆虫学报,1997,40(2):212~218.
    38.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,2002.
    39.王国英.转基因植物的安全性评价.农业生物技术学报,2001,9(3):205~209.
    40.王淑芳,聂宝华.化学农药在农业有害生物控制中的作用及科学评价.河南植保信息网,2004.
    41.王晓玲,彭定祥,陈小慧.基本培养基对苎麻不同外植体愈伤诱导及分化的影响.华中农业大学学报,2003,22(5):431~435.
    42.王晓玲,彭定祥.不同基因型对苎麻愈伤组织诱导及分化的影响.长江大学学报(自然科学版),2005,2(8):62~66.
    43.王志斌,郭三堆.双价抗虫植物表达载体的构建及其在烟草中的表达.高技术通讯,1999,11:1~6.
    44.王转花,杨斌.植物蛋白酶抑制剂抗虫基因工程研究进展.植物保护学报,2001,28(1):83~88.
    45.魏玉清,许兴.植物转基因技术及其应用.宁夏农林科技,2003,(4):41~44.
    46.文学,张宝红.转基因抗虫棉研究现状与展望.农业生物技术学报,2000,12(3):194~199.
    47.熊兴耀,甘霖,郑思乡等.苎麻原生质体再生植株及影响因子的初步研究.农业生物学报,1996,4(2):147~152.
    48.徐光硕,饶勇强,陈雁等.用inplanta方法转化甘蓝型油菜.作物学报,2004,1:1~5.
    49.徐琼芳,李连城,陈孝等.基因枪法获得GNA转基因小麦植株的研究.中国农业科学,2001,34(1):5~8.
    50.许明.IPT基因遗传转化谷秆两用稻的研究[博士学位论文].福州:福建农林大学,2003.
    51.严继勇.BcpLH反义基因在大白菜中的转化及其功能的研究[博士学位论文].杭州:浙江大学,2004.
    52.颜昌敬,赵庆华,胡继金等.苎麻组织培养及其在快速繁殖上的应用.中国农业科学,1982,2:1~8.
    53.叶兴国,王艳丽,丁文静.主要农作物转基因研究现状和展望.中国生物工程杂志,2006,26(5):93~100.
    54.易自力,李祥,蒋建雄等.苎麻再生体系的建立及抗虫转基因苎麻的获得.中国麻业,2006,28(2):61~66.
    55.张宏,王国英,谢友菊等.超声波介导法转化玉米愈伤组织及可育转基因植株的获得.中国科学(C辑),1997,27(2):162~167
    56.张丽娜.转基因植物及其应用.甘肃农业,2003,202(5):47~49.
    57.张秀君,刘俊起,赵倩等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.农业生物技术学报,1999,7(4):363~367
    58.张云孙,王力,高照等.三种水稻转基因技术体系的比较研究.云南大学学报(自然科学版),1999,21(2):97~98
    59.章力建,陈乐玫,袁静等.超声波法直接导入外源基因——高效烟草转化系统的建立.中国农业科学,1991,(02)
    60.赵志伟,曾凡亚,赵云,王茂林.甘蓝型油菜BAN同源基因片段克隆与序列分析.中国油料作物学报, 2001,(04)
    61.赵庆华,颜昌敬,潘昌立等.苎麻叶片组织培养的研究.中国麻作,1984,4:11~13.
    62.周国辉,李华平.转基因植物及其应用.热带作物学报,2000,21(3):8~12.
    63.朱新生,朱玉贤.抗虫植物基因工程研究进展.植物学报,1997,39(2):282~288
    64. Altabella T, Chrispeedls M. Tobacco plants transformed with the bean aai gene express an inhibitor of insectα-amylase in their seeds. Plant Physiol 1990, 93:805~810.
    65. Aronson A, Han S, McGaughey W. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol 1991, 57:981~986.
    66. Ashajyoti S, Bhat S, KuruvinashettiF M. Development of in planta transformation protocol in chilli (Capsicum annuum L.). Indian J Genet Plant Breeding 2004, 64: 228~230
    67. Babaoglu M, Yorgancilar.TDZ-specific plant regeneration in salad burnet. Plant Cell. Tissue and Organ Culture 2006, 3:31~34
    68. Beachy R, Loesch-friesS, Tumer N. Coat protein-mediated resistance aginst virus infection. Ann Rhthol 1990, 28:451~474.
    69. Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris 1993, 316:1194~1199.
    70. Beegle C, T. History of Bacillus thuringiensis Berliner research and development. Can. Entomol 1992, 124:587~616.
    71. Bent A .Arabidopsis thaliana floral dip transformation method. Methods MolBiol 2006, 343:87~103.
    72. Blechl AE,Anderson OD.Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat, Nature Biotechnology, 1996, 14(7): 875~879.
    73. Borges dPN, Vespasiano, Ribeiro da Mota T, Campos Otoni W. Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell, Tissue and Organ Culture 2003, 75:159~167
    74. Borychowski A, Niemirowicz-Szczytt K, J?draszko M. Plant regeneration from sweet pepper (Capsicum annuum L.) hypocotyl explants. Acta Physiologiae Plantarum 2002, 24:257~264
    75. Chalupa V. Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biologia Plantarum1988, 30:414~421
    76. Clough S, Bent.A Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana .Plant J 1998, 16:735~743.
    77. Cseke L, Cseke S, Podila G.High efficiency poplar transformation. Plant Cell Reports 2007, 26:1529~1538.
    78. Curtis Ian S, Nam Hong G. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method- plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 2001 10:363–371
    79. Danhash N,Wagemakers C A,van Kan J A,de Wit,Molecular PJ.characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato.Plant Mol Biol 1993, 22:1017~1029.
    80. David B, Thomas AR,Mnchael B. Insecticidal toxins from the bacterium photorhabdus luminescens. Science 1999, 285:369~370.
    81. David R, Itzhaki H, Ginzberg I et al. Suppression of tobacco basic chitinasegene expression in response to colonization by the arbuscular mycorrhizal fungus Glomus intraradices. Mol Plan Microbe Interact 1998, 11:489~497.
    82. Debnath S. Improved shoot organogenesis from hypocotyl segments of lingonberry (Vaccinium vitis-idaea L.). In Vitro Cellular & Developmental Biology-Plant 2003,39:490~495.
    83. Divya K, Swathi Anuradha T, Jami S et al. Efficient regeneration from hypocotyl explants in three cotton cultivars. Biologia Plantarum 2008, 52:201~208
    84. Dusi D MA, Almeida MDE RP, Caldas LS et al.Transgenic plants of ramie (Boehmeria nivea Gaud.) obtained by Agrobacterium mediated transformation. Plant Cell Rep 1993, (12):625~628.
    85. Edmonds H, Gatehouse L, Hilder V.The inhibitory effects of the cycteine protease inhibitor,oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm (Diabrotica undecimpunctata howard )J. Entomal Exp Appl 1996, 78:83~94.
    86. Feitelson J, Payne J, Kim L. Bacillus thuringiensis:insects and beyond. Bio/Technology 1992, 10:271~275.
    87. Feldmann K, Marks M. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 1987, 208:1~9
    88. Gargouri-Bouzid R, Jaoua L, Mansour R. PVY resistant transgenic potato plants (cv. Claustar) expressing the viral coat protein. Journal of Plant Biotechnology 2005, 7(3):143~148.
    89. Gatehouse A, Davison G, Stewan J. Concanavalin A inhibits development of tomato moth(Lacanobia oleracea)and Peach-Potato aphid(Myzus persicae)whenexpressed in transgenic potato Plants. Molecular Breed 1999,5:153~165.
    90. Heitz T, Segond S, Kauffmann S et al. Molecularcharacterization of a novel tobacco PR protein: a new plant chitinase/lysozyme. Mol Gen Genet 1994, 245:246~254.
    91. HIinder V, Gatehouse A, Sheeman S. A novel mechanism of insect resistance engineered into tobacco. Nature 1987,330:160~163.
    92. Hinder V, Barker R, Samour R. Protein and cDNA sequences of Bowman~Birk protein inhibitor from the cowpea (Vigna unguiculata). Plant Mol Biol 1989a ,13:701~710.
    93. Hoffmann T, Zalom F, Wilson L.Field ealuation of transgenic tobacco containing genges encoding Bacillus thuringiensisδ-endotoxinns or cowpea trypsin inhibitor :efficacy against Helicoverpa zea(Lepidoptera:Noctuidae). Econ Entomol 1992, 85:2516~2522.
    94. Hofmann C, Luthy P, Hutter R. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae) .Eur. J. Biochem 1988, 173:85~91.
    95. Hofmann C, Vanderbruggen H, Hofte H. Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 1988, 85:7844~7848.
    96. Horsch RB, Fry JE, Hoffmanm NL et al. A simple and general method for transferring gene into plant. Science1985, 227:1229-1231.
    97. Hudspeth R, Hobbs S, Anderson D, Grula J. Characterization and expression of chitinase and (3-1,3-glucanase genes in cotton. Plant Mol Biol 1996, 31: 911~916.
    98. Huetteman CA, Preece JE. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue and Organ Culture 1993,33:105~119.
    99. James C. Global status of transgenic crops in1997. ISAAA Briefs 1997, No 5.
    100. Jefferson J, Kavanagh T, Bevan M.GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 1987, 6(13):3901~3907
    101. Jongsma M, Bakker P, Peters J BD et al. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 1995, 92:8041~8045.
    102. Joseph S, Rusell DW. Molecular Cloning: A Laboratory Manual. Beijing: Science Press 2002:487~510.
    103. Kenneth,Livak D,Analysis of relative gene expression data using real-time quantitative PCR and the 2-△Ct method.Method 2001,25:402~408.
    104. Kim C, Gal S, Choe M et al. A new class rice chitinase, Rcht2, whose induction by fungal elicitor abolished by protein phosphatase 1 and 2A inhibitor. Plant Mol Biol 1998,37:523~534.
    105. Klein T M et al.Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/Technology 1988, 6:559~563.
    106. Klein T.M. et al. High- velocity microprojectile for delivery of mucleic acids into living cells. Nature 1987, 327:70~73.
    107. Kojima M, Arai Y, Iwase N et al. Development of a simple and efficient method for transformation of Buckwheat plants Fagopyrum esculentum using Agrobacterium tumefaciens. Biosci Biotechnol Biochem 2000,64:845~847
    108. Kojima M, Shioiri H, Nogawa M et al. In planta transformation of Kenaf plants (Hibiscus cannabinus var. aokawa No. 3) by Agrobacterium tumefaciens. J Biosci Bioeng 2004, 98:136-139
    109. Kouskoura T, Tickner C, Crickmore N. Expreesion and crystallization of an N-teminally activated form of the Bacillus thuringiensis Cry1Ca toxin. Current Microbiology 2001, 43:371~373.
    110. Liao Y, Kreuzaler F, Fischer R, Reisener H, Tiburzy R. Characterization of wheat class b chitinase gene differentially induced in isogenic lines by infection with puccinia graminis. Plant Sci 1994,103:177~187.
    111. Lu C-Y.The use of thidiazuron in tissue culture. In Vitro Cellular & Developmental Biology-Plant 1993, 29:92~96.
    112. Manoj Kumar A, Kalpana N. Reddy , Rohini Sreevathsa et al. Towards crop improvement in bell pepper (Capsicum annuum L.): Transgenics (uid A::hpt II) by a tissue-culture-independent Agrobacterium-mediated in planta approach. Scientia Horticulturae 2009, 119:362~370
    113. Martens J, Visser B, Vlak J. Mapping and characterization of the entomocidal domain of the Bacillus thuringiensis CryIA protoxin. Mol Gen Genet 1995,247: 482~487.
    114. McCabe DE, Swain WF, Martinell BJ et al. Stable transformation of soybea (Glycin max) by particle bombardment.Bio/Tech. 1988, 6:923~926.
    115. Mcgaughey WH, Whalon ME. Managing insect resistance to Bacillus thuringiensis toxins. Science 1992, 258:1451~1455.
    116. Melchers L, Apotheker-De GM, Van der Knaap J et al. A new class of tobacco chitinaseshomologous to bacterial exo-chitinases displays antifungal activity. Plant J 1994, 5:469~480.
    117. Mol J, Cornish E, Mason J et a1. Novel coloured flowers. Current Opinion in Biotechnology 1999, 10(2):198~201.
    118. Nehra NS, Chibbar RN, Leung N et al. Self-fertile transgenic wheat plantsregenerated from isolated scutella following microprojectile bombardment with two distinct gene construct. The Plant Journal 1994, 5: 285~297.
    119. Nishizawa Y, Kishimoto N, Saito A, Hibi T. Sequence variation, differential expression and chromosomal location of rice chitinase genes. Mol Gen Genet 1993, 241:1~10.
    120. Novillo C, Castan, Ortego F. Characterization and dis-tribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae. Arch. Insect. Biochem Physiol 1997, 36:181~201.
    121. Payne G, Ahl P, Moyer M, Proc M. Isolation of complementary DNA clones encoding pathogenesisrelatedproteins P and Q two acidic chitinases from tobacco. Acad Sci USA 1990, 87:98~102.
    122. Ping L, Nogawa M, Shioiri H etal. In planta transformation of mulberry trees (Morus alba L.) by Agrobacterium tumefaciens. Insect Biotechnol Sericology 2003, 72:177~184.
    123. Powell AP, Nelson R, De B et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 1986, 232:738~743.
    124. Provvidenti R, TricoliD M. Inheritance of resistance to squash mosaic virus in a squash transformed with the coat protein gene of pathotype. HortScience 2002, 3(3):575~577.
    125. Rajamohan, Alcantara, Lee M. Single amino acid changes in domain II of Bacillus thuringiesis CrytAbδ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. Bacteriol 1995, 177:2276~2282.
    126. Sajib A, Shahidul Islam M, Shamim Reza M et al. Tissue culture independent transformation for Corchorus olitorius. Plant Cell, Tissue and Organ Culture 2008, 95:333~340
    127. Sanford JC, Klein TM,Wolf ED et al.Deliver of substance into cells and tissues using aparticle bombardment , Process J Part Sci Technol 1987, 5:27~37.
    128. Schnepf E, Crickmore N, Van RLJ. Bacilhm thuringiensis and Its Pesticidal Crystal Protein. Microbiol. Molecular Biology Review 1998, 62(3):775~806.
    129. Schuler T, Poppy G, Kerry B. Insect-resistant transgenic plants. TIBTECH 1998, 16:168~175.
    130. Sekar V, Held B, Tippett J. Biochemical and molecular characterization of the insecticidal fragment of CryV. Appl.Environ.Microbiol 1997, 63(7):2798~2801.
    131. Shade R, Schroeder H, Pueyo J. Transgenic pea seeds expressing thea-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 1994, 12:793~796.
    132. Shelton A, Zhao J, Roush R. Economic, ecological, food, safety and socialconsequence of the deployment of Bt transgenic plants. Annu Rev Entomol 2002, 47:845~881.
    133. Shinshi H, Usami S, M. O-T. Identification of an ethylene~responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 1995, 27: 923~932.
    134. Silvia S, Livio T, Giorgio C. A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. Journal of Experimental Botany 2001, 52:845~850
    135. Supartana P, Shimizu T, Nogawa et al. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 2006, 102:162~170.
    136. Takeshi Takasaki, Katsunori Hatakeyama, Kunihiko Ojima et al. Factors influencing Agrobacteriun-mediated transformation of Brassica rapa L. Breeding Science 1997, 47:127-134.
    137. Tojo A, Aizawa K. Dissolution and degradation of Bacillus thurlngiensisδ~endotoxin by gut juice protease of the silkworm Bombyx mori. Appl. Environ. Microbiol 1983, 45:576~580.
    138. Uranbey S. Thidiazuron induced adventitious shoot regeneration in Hyoscyamus niger. Biologia Plantarum 2005, 49:427~430.
    139. Vaeck, Reynaerts, MA, HH et al. Transgenic plants protected from insect attack. Nature 1987, 328:33~37.
    140. Vasil V, Srivastava V, Castilo A. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 1993, 11:1153~1158.
    141. Wu S, Kriz A, M. WJ. Molecular analysis of two cDNA clones encoding acidic class chitinase in maize. Plant Physiol 1994, 105:1097~1105.
    142. Yasmeen A, Mirza B, Inayatullah S et al In Planta Transformation of Tomato. Plant Molecular Biology Reporter 2009,27:20~28.
    143. Yeboah N, Arahira M, Nong V, Zhang D, Kadodura K, Watanabe A, Fukazawa C. A class III acidic endochitinase is specifically expressed in the developing seed of soybean (Glycine max L.Merr.). Plant Mol Biol 1998, 36: 407~415.
    144. Yi-chang wang, Theodore M.Klein, Michael Fromm et al. Transient expression of foreign gene in rice, wheat and soybean cell following particle bombardment. Plant Molecular Biology 1988, 11:433~439.
    145. Yusnita S, Geneve RL, STK. Micropropagation of white flowering eastern redbud (Cercis canadensis var‘alba’L.). J Environ Hortic 1990, 8:177~179.
    146. Zambryski P,Joos H ,Genetello C, et al.Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity.
    147. EMBO J 1983, 2:2143-2150.
    148. Zheng SJ, Henken B, Sofiari E et al. Efect of cytokinins and lines on plant regeneration from long-term callus and suspension cultures ofAllum cepa L. Euphytica 1999, 108:83~90.
    149. Zhou GY, Weng J, Zeng Y et al. Introduction of exogenous DNA into cotton embryos. Method in Enzymology.1983, 101:433-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700