滑石粉对重金属离子的吸附性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人类赖以生存的三大要素之一,但是随着经济的快速增长,工农业的快速发展,水资源正在急剧消耗。此外,更让人担忧的是随之而来的水体严重污染问题,这直接威胁人类和其它生物的生命健康,破坏整个生态系统的稳定性。水体中的污染物种类繁多,如重金属污染物、有机污染物、氰化物、硫化物、酸碱盐污染物。其中重金属以其对人体和动植物等严重的毒害性和难处理性,成为水体中具有严重危害性的无机污染物。
     对重金属污染物的处理方法很多,其中利用天然矿物材料作吸附剂处理重金属成为焦点。目前,人们已利用天然层状硅酸盐矿物处理重金属污染物,并取得良好的实验结果。滑石粉作为一种不带层电荷的层状硅酸盐矿物,具有优良的化学稳定性,对油脂、颜料、药剂和溶液里的杂质都有极大的吸附能力。因此本文研究了滑石对水中重金属Cu~(2+)、Pb~(2+)、Cd~(2+)的吸附效果;分别讨论滑石用量、溶液pH值、吸附温度和吸附时间对重金属离子去除效果的影响;用Langmuir和Freundlich吸附等温线描述滑石对吸附质的吸附特性;利用X衍射分析和红外光谱分析,初步探讨了滑石对重金属离子的吸附机理。
     通过实验表明,滑石对水溶液中的重金属Cu~(2+)、Pb~(2+)、Cd~(2+)具有良好的吸附效果,三种重金属离子的等温线均符合Langmuir和Freundlich的吸附等温线,尤其与Freundlich吸附等温式的符合情况更好。当三种重金属初始浓度相同时(100mg/L),滑石对Cu~(2+)、Pb~(2+)、Cd~(2+)吸附能力的顺序为Pb~(2+)> Cu~(2+)> Cd~(2+)。
     影响重金属Cu~(2+)去除率的主要因素有滑石用量、溶液pH值、吸附时间和吸附温度。其中滑石用量为2g时,对Cu~(2+)的去除率为45%,用量为10g时Cu~(2+)的去除率为97.5%;pH值为3时Cu~(2+)的去除率仅为59%,而当pH增加值7时,去除率迅速增加至99.87%,可见pH值对Cu~(2+)的去除率影响显著;滑石对Cu~(2+)的去除率随吸附时间的不断增加而增大,7h后基本达到吸附平衡状态,去除率为98.4%;滑石吸附Cu~(2+)的最佳温度范围为60~70℃。
     影响重金属Pb~(2+)以及高浓度Cd~(2+)去除率的主要因素为溶液pH值。当溶液pH值小于4时对Pb~(2+)的去除率为81%,而pH值超过4时去除率显著增大至98.89%;当溶液pH值在3~6时,滑石对Cd~(2+)(100mg/L)的去除率最大仅为22%,而pH增大至7时,去除率达到99.97%。
     溶液pH值和吸附时间是影响滑石吸附处理低浓度Cd~(2+)的主要因素。pH值在3~7时,滑石对Cd~(2+)的去除率从97.2%增大至99.96%,之后随着pH的进一步增大Cd~(2+)去除率变化缓慢;滑石吸附处理Cd~(2+)的最佳吸附时间为5h且此时基本达到吸附平衡,去除率为99.1%。
     吸附重金属Cu~(2+)的滑石的X衍射和傅立叶变换红外光谱表明滑石对重金属Cu~(2+)的吸附中存在表面OH-的络合吸附和表面物理吸附,但使用X衍射和傅立叶变化红外光谱这两种手段来研究滑石对Pb~(2+)和Cd~(2+)吸附作用时,效果不理想,因此有必要采用其它手段研究滑石对重金属离子的吸附机理。
Water is vital factor on which human being depend to exist. Water symbolizes the civilization of humans. With the rapid development of economy, the water resource is consumed rapidly. Furthermore, the problem of water pollution has been becoming more and more serious. It is threat to huaman and anmimals health and destroies the stabilization of the whole ecosystem. There aew lots kinds of contaiminations in water, such as Heavy metal, Organic Pollutant , Cyanide , sulpHide et al. Among this, Heavy metals are serious inorganic contamination in water according to its property of poison to huaman and propagation, and they are hardly to deal with. Generally, heavy metals are come from the industry pollution.
     So, People use many ways to uptake the heavy metals and using natural silicates to solve the pollution have being become more and more popular. At present, people use layer silicates to adsorb the heavy metal from wastewater and found that they have excellent adsorptive performance. Taclum powder is a kind of layer silicate. It has excellent adsorption to deal with lipin, pigment, medicament or other impurity in water. So, I’d like to study the adsorption of talcum to sorb the heavy metals(Cu~(2+),Pb~(2+),Cd~(2+))from water and studied the relationship between experiment factors and adsorbent property. The Langmuir and Freundlich isotherm are used to describe the performance of absorption. In addition, Using the X-Ray diffraction and Fourier transform infrared spectrometry, the adsorbent law and mechanism is studied in the course of adsorption.
     The experiment results showed that Talcum has good adsorption to sorb heavy metal, such as Cu~(2+),Pb~(2+),Cd~(2+). The adsorption isotherms of Cu~(2+),Pb~(2+),Cd~(2+) fit the Langmuir and Freundlich equation, but fit the Freundlich well. The heavy metals having the same initial dye concentration, the adsorption property of talcum to solve Cu~(2+),Pb~(2+),Cd~(2+) is Pb~(2+)> Cu~(2+)> Cd~(2+).
     Talcum amount, initial pH of solution, adsorption time and adsorption temperature are the major factors to effect the adsorption effect of Cu~(2+). When the talcum amout arise from 2g to 10, the adsorption removal rate can be obtained from 45% to 97.5%. and the pH of solution is a major factor. The pH of solution is 3, the removal rate is 59%; while it is 7, the removal rate is 99.87%. and the best temperature is 60~70℃。
     And pH of solution is a major factor to effect the removal rate of Pb~(2+) and Cd~(2+)(100mg/L). when the pH of solution is lower than 4, the removal rate of Pb~(2+) is 81%. But the pH is higher than 4, the rate is 98.89%. According to Cd~(2+)(10mg/L), when the pH of solution range from 3 to 6, the removal rate of Cd~(2+) range from 22% to 99.97%.
     While the pH of solution and the adsorption time is major factor to solve the Cd~(2+) which concentration is 10mg/L. pH of solution range from 3 to 7, the removal rate of Cd~(2+) range from 97.2% to 99.96%. And the best adsorption time is 5 hours. Then the removal rate is 99.1%.
     And the results of XRD and FTIR of the Talcum powder which adsorbs the Cu~(2+) shows that the Talcum powder adsorb heavy meatal ion mainly by means of surface compound adsorption and pHysics adsorption. But the XRD and FTIR can not express the whole adsorption law. So we need to choose another way to study the adsorbent law and mechanism of Talcum.
引文
[1]经世.世界水资源危机[J] .城市公用事业, 2004, 18(4):40-42
    [2]刑平伟,秦天,宋清生.中国的水污染现状及防治对策浅谈[J] .太原科技, 2003, (4):4-5
    [3]吴舜泽,夏青,刘鸿亮.中国流域水污染分析[J] .环境科学与技术. 2000, (2):1-6
    [4]王建军.国内河流水污染现状及防治对策的探讨[J] .辽宁城乡环境科技, 2006, 26(6):13-15
    [5]马彦峰,吴耀华.沉淀法处理金属污水的研究[J] .环境保护科学, 1998, 24(3):1-3
    [6]葛俊森,梁渠.水中重金属危害现状及处理方法[J] .广州化工, 2007, 35(5):69-71
    [7]徐小清,邓冠强.长江三峡库区江段沉积物的重金属污染特征[J] .水生生物学报, 1999, 23(1):1-10
    [8]申锐莉,鲍征宇.洞庭湖湿地水相中重金属的地球化学评价[J] .人民长江, 2007, 38(11):121-123
    [9] Weber J. Wastewater Treatment[J] .Metal Finishing, 1999, 97(1):801-816
    [10]戴世明,吕锡武.污染的水处理技术研究进展[J] .安全与环境工程, 2006, 13(3):63-66
    [11]冯德福.污染与防治[J] .沈阳化工, 2000, 29(1):44-46
    [12]张英,周长民.重金属铅污染对人体的危害[J] .辽宁华工, 2007, 36(6):395-39
    [13]马彦峰,吴韶华.沉淀法处理重金属污水的研究[J] .环境保护科学, 1998, 24(3):1-3
    [14] Jpn Kokai Tokyo Koho. The Reactor of the Waste Water Containing Heavy Metals was Treated by Ferrite Method [ P ] .Sumitomo Heavy Industries Ltd, 2003, 81(87):492
    [15]贾金平,陈兆娟.湿法合成铁氧体的烘干方法[P].中国发明专利: ZL 94112015.5, 1994-1-17
    [16]张学洪,王敦球.铁氧体法处理电解厂生产废水[J] .环境科学与技术, 2003, 26(1):36-39
    [17]罗超,陈小红.运用铁氧体沉淀法处理含锰废水[J] .江西科学, 2006, 24(5):370-373
    [18]王瑞静,赵如金.常温铁氧体处理重金属离子废水的研究[J] .环境科学与技术, 2006, 29(5):77-80
    [19]李军.铁氧体沉淀法处理重金属废水[J] .电镀与环保, 1999, 19(1):30-31
    [20]相波,刘亚菲. DTC类重金属捕集剂研究进展[J] .电镀与环保, 2003, 23(6):1-4
    [21]郑怀里,孙秀萍.一种重金属离子吸附捕集剂的合称及性能研究[J] .化学研究与应用, 2007, 19(7):730-734
    [22]徐颖,罗玉兰.重金属捕集剂处理含铅废水的试验研究[J] .环境科学与技术, 2006, 29, (5):75-78
    [23] Masafumi Moriya, Kazuo Hosoda, Akira Nishimura. , et al. Removal of Heavy Metals from Waste Water [P] .U S Pat:4731187 , 1988
    [24] Bhaduri S. , Khwaja H. J Chem Sci[J] .Dalton Tran, 1983, 415
    [25] Mathew B. , Rajasekharan V. N. Methylenebis Scrylamide Crosslinked Polyacrylamides as Supports for Dithiocarbamate Ligands for Metal Ion Complexation [J] .Polymer International, 1994, 28:201-208
    [26] Lezzi A. , Cobianco S. Chelating Resins Supporting Dithiocaba mate and Methylthiourea Groups in Adsorption of Heavy Metal Ions[J] .Journal of Applied Polymer Science , 1994 , 54:8892897
    [27] Martin Pardar , Karel Bouzek , Michal Laurich , et al . Application of a Three-Dimensional Electrode to the Electrochemical Removal of Copper and Zinc Ions from Diluted Solutions[J ] . Water Environment Research , 2000 , 72 (5): 618– 625.
    [28] Lanza M R V ,Bertazzoli R. Removal of Zn~(2+) from chloride medium using a porous electrode: current penetration within the cathode[J] .Journal of Applied Electrochemistry , 2000 , 30(1):61–70
    [29]沈品华.电镀废水治理方法探讨[J ] .电镀与环保,1998 ,18(5):28231.
    [30]杜仰民.利用腐植酸树脂处理镀镍废水[J] .环境工程,1993,11(3):21-25.
    [31]沈杭军,夏阳,杨岳平.离子交换法处理及回用镀镍漂洗废水[J] .水处理技术, 2006, 32(10):48-51
    [32]李卫平.活性炭吸附处理重金属进展[J] .山西建筑, 2007, 33(14):153-155
    [33]王桂芳,包明峰.活性炭对水中重金属离子去除效果的研究[J] .环境保护科学, 2004, 30(122):26-29
    [34]施红,努尔东拜.活性炭吸附法去除废水中重金属的研究进展[J] .江苏环境科技, 2006, 19(2):110-113
    [35]陈芳艳,唐玉斌.活性碳纤维对水中重金属离子的吸附研究[J] .辽宁城乡环境科技, 2002, 22(2):22-25
    [36]高效江,戎秋涛.麦饭石对重金属离子的吸附作用研究[J] .环境污染与防治, 1997, 19(4):4-7
    [37]郝艳玲,范福海.利用矿物材料治理重金属污染[J] .工业安全与环保, 2005,31(1):38-40
    [38]张永锋,许振良.重金属废水处理最新进展[J] .工业水处理, 2003, 26(3):1-5
    [39] Ruchhoft C. C.The Possibilities of Disposal of Radioactive Wastes by Biological Treatment Methods[J] .Sewage Works, 1949, 21(5):877~883
    [40] A nastasios I. Z. , Elen G. R. , Ko stas. , et al. Removal of toxic metals from aqueous m ixtures Part I : B io sorption [J] .J Chem Technol Biotechnol, 1999, 74:429-436
    [41] Tuppurainen K. O. , Vaisanen A. O. , Rintala J. A. Zinc removal in anaerobic sulpHate reducing liquid substrate process [J] .Minerals Eng, 2002, 15:847-852
    [42]李福德,李听吴,乾替,等.微生物法治理电镀废水新技术[J] .给水排水,1997,23(6):251
    [43]吴乾菁,李昕,李福德,等.微生物治理电镀废水的研究[J] .环境科学, 1997, 18 (5): 472-501
    [44]赵晓红,张敏,李福德,等. SRV菌去除电镀废水中铜的研究[J ] .中国环境科学, 1996, 16(4):288-291
    [45] Prasad M. N. V. , Freitas H. Removal of toxic metals from solution by leaf, stem and root pHytomass of Quercus ilex L[J] .Environmental Pollution, 2000, 110(2):277~283.
    [46] Mostafa M. E , Wagieh A. Growth and heavymetals removal efficiency of No stocmuscorum and Anabaena subcylindrica in sewage and industrialwastewater effluents[J] . Environmental Toxicology and pHarmacology, 2005, 19 (2):357~365.
    [47]李江,甄宝勤.吸附法处理重金属废水的研究进展[J] .应用化工, 2005, 34(10):591-595
    [48]吴宏海,吴大清,彭金莲.重金属离子与石英表面反应的研究[J] .地球化学, 1998, 27(6):523-531
    [49]贾木欣,孙传尧.几种硅酸盐矿物对金属离子吸附特性的研究[J] .矿冶, 2001, 10(3):25-31
    [50]刘晓,陈忠,曾凡刚.矿物材料对聚丙烯酰胺吸附的影响[J] .矿物岩石, 2004, 24(1):97-100
    [51]孙家寿,张泽强,刘羽.累托石层空材料处理含铬废水的研究[J] .岩石矿物学杂志, 2001, 20(4):555-558
    [52]杨秀红,胡振琪,张迎春.利用工业矿物治理重金属污染土壤的探讨[J] .金属矿山, 2003, (3):52-55
    [53]蒋侃.电气石对废水中重金属离子Cu~(2+)、Pb~(2+)、Zn~(2+)的吸附特性研究[D] .辽宁:东北大学, 2005
    [54]邹中云,管俊芳,李伟.电气石粉吸附Pb~(2+)的实验研究[J] .江苏环境科技, 2006, 19(6):22-24
    [55]刘春英,袁存光.改性沸石深度处理石油污水的实验研究[J] .精细石油化工进展, 2006, 7(11):49-52
    [56]赵磊,董发勤,杨玉山.层状硅酸盐在污水处理和净化中的应用[J] .中国矿业, 2007, 16(4):89-91
    [57]刘珺,秦善.层状硅酸盐矿物对重金属污染的防治[J] .岩石矿物学杂志, 2001, 20(4):466-466
    [58]于阳辉,袁继祖,曹明礼.膨润土环保材料的开发现状与应用前景[J] .中国非金属矿工业导刊, 2000, (5):36-39
    [59] Naseem R. ,Tahir S S.Removal of Pb(Ⅱ)from aqueous, pacidic solutions by using bentonites as an adsorbent[J] .Wat. Res. , 2001, 35(16):3982—3986
    [60] Ayari E. , Srasra E. , Trabelsi Ayadi M. Characterization of bentonitic clays and their use as adsorbent[J] .Desalination, 2005, l85:39l-397
    [61] Abidin Kaya, Ali Hakan O. Adsorption of zinc from aqueous solutions to bentonite[J] Journal of Hazardous Materials, 2005, Bl25:l83-189
    [62]谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J] .四川大学学报, 2001, 33(3):58-61
    [63]吴德意.“中性”粘土矿物对非水溶液中有机碱的吸附[J] .物理化学学报, 1997, 13(11):978-984
    [64]刘云,吴平宵.粘土矿物与重金属界面反应的研究进展[J] .环境污染治理技术与设备, 2006, 7(1):17-22
    [65]王学松,王静,胡海琼,周洪英.高岭石吸附水溶液中铜离子的研究[J] .淮海工学院学报, 2007, 16(1):39-45
    [66]郭继香,袁存光.蛇纹石吸附处理污水中重金属的实验研究[J] .精细化工, 2000, 17(10):586-589
    [67]杨智宽.用蛇纹石处理含铜废水的研究[J] .环境科学与技术, 1997, 77(2):17-19
    [68]郑水林,袁继祖.非金属矿加工技术[M] .北京:冶金工业出版社, 2005:461
    [69]张新岐,刘正堂.超微细滑石粉在硅酸盐涂料中的应用.[J] .颜填料, 2006, (9):47-48
    [70]近藤精一.吸附科学[M] .第二版.李国希.北京:化学工业出版社, 2006:6
    [71]刘旭东,王昭玲.滑石粉对MBR法处理造纸废水的影响[J] .沈阳建筑大学学报, 2006, 22(5):821-825
    [72]杨崇豪,宋继琴.用正交实验法研究超细滑石粉对混凝的作用[J] .华北水利水电学院学报, 2001, 22(1):63-67
    [73]吴大清,刁桂仪.矿物表面基团与表面作用[J] .高校地质学报, 2000, 6(4):225-233
    [74]卢龙,雷良城,林锦富,张佩华.矿物表面特征和表面反应的研究现状及其应用[J] .桂林工学院学报, 2002, 22(3):354-358
    [75]姚亚东,王树根.矿物的表面结构和表面性质[J] .矿产综合利用, 1998, (4):35-39
    [76]潘兆橹.结晶学及矿物学[M] .北京:地质出版社. 1985
    [77]李学军,王丽娟.天然蛇纹石活性机理初探[J] .岩石矿物学杂志, 2003, 22(4):386-391
    [78]吴清辉.表面化学与多相催化[M] .北京:化学工业出版社, 1991:144-149
    [79] Anderson M. A. , Ruben A. J . Adsorption Chemistry of Aqueous Solution-Liquid Interface[M] .Beijing:Science Press, 1989
    [80]杨华明,邱冠周,王淀佐.滑石粉超细粉碎过程的结构变化[J] .硅酸盐学报, 1999, 27(5):580-584
    [81]杨华明,邱冠周,王淀佐.滑石超细粉碎过程物理化学性质的变化[J] .硅酸盐学报, 2002, 30(1):91-93
    [82]郭继香,袁存光.蛇纹石吸附处理污水中重金属的实验研究[J] .精细化工, 2000, 17(10):586-589
    [83]胡振琪,杨秀红.粘土矿物对重金属的吸附研究[J] .金属矿山, 2004, (6):53-55
    [84]宋和付,陈安国,夏畅斌.膨润土吸附去除Zn~(2+)、Cd~(2+)的研究[J] .Materials Protection, 2001, 34(9):40-41
    [85] Giles C. H. , Smith D. , Huitson A. [ J ]. Colloid Interface Sci, 1974, 47:2463.
    [86] Langmuir I. , Amer J . Chem. Sco. , 1918, 40, 1361
    [87] T A Davis. Colloio land Interact ion[J] .Science. 1978, 67(1):90-97
    [88]樊邦棠.环境化学[M] .杭州:浙江大学出版社, 1991
    [89]孙胜龙,龙振永,菜保丰.非金属矿物修复环境机理研究现状[J] .地球科学进展, 1990, 14(5):475-481
    [90]朱江,周俊,邹爱红.粘土矿物对金属的吸附与解析研究[J] .安徽地质, 2004, 14(4):282-284
    [91]杨智宽.蛇纹石粉矿综合利用研究[J] .环境科学进展, 1997 , 5(2):32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700