蒙脱土、高岭土和层状双金属氢氧化物对Pb~(2+)和对硝基苯酚的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业生产的发展,污染物的排放量日趋增多,对生态安全和人类健康造成严重威胁,其中重金属污染就是亟需解决的环境问题之一。目前,重金属污染土壤的修复及废水的处理已成为环境科学与工程领域的研究热点。重金属在固-液界面的吸附-脱附行为是决定重金属的地球化学过程和环境生态效应的根本问题,对这一基本现象的科学认识,是了解重金属污染物形态分布、迁移转化和归宿、开发污染土壤修复及废水处理技术的基础。前期虽然已对重金属在固-液界面上的吸附现象进行了大量研究,且对其吸附规律有了较全面的认识,但对吸附机理的了解并不十分清楚,这主要是由吸附体系的复杂性所致。另外,所研究的吸附剂多是带负电荷的,带正电荷的吸附剂涉及很少。
     本文选择带结构负电荷的蒙脱土、基本不带结构电荷(或带微量结构负电荷)的高岭土和带结构正电荷的层状双金属氢氧化物(Layered double hydroxides,简称LDHs)为模型吸附剂,研究了对重金属铅的吸附行为,考察了多种因素的影响,以期探讨结构电荷(或由此引起的界面相微环境酸碱性)对重金属吸附的影响规律,加深对吸附机理的认识。同时,考察了煅烧层状双金属氢氧化物(CLDHs)、LDHs-EDTA纳米杂化物等对铅和对硝基苯酚的吸附,以期为高效吸附剂的开发提供信息。
     主要研究内容和结论归纳如下。
     一、蒙脱土和高岭土对Pb~(2+)的吸附作用及机理研究
     主要研究了Pb~(2+)在蒙脱土和高岭土上的吸附性能,考察了温度、pH值、离子强度和吸附剂含量等因素对吸附的影响,并结合X射线光电子能谱(XPS)、XRD和比表面积等实验结果探讨了吸附机理。研究表明,蒙脱土和高岭土吸附Pb~(2+)的动力学曲线符合准二级动力学方程和Elovich方程,等温线符合Langmuir方程。以mg/g为单位时,蒙脱土的饱和吸附量明显高于高岭土,而以mg/m~2为单位时,二者相近。吸附量主要由黏土的比表面积决定,而吸附力由黏土的结构电荷密度决定。Pb~(2+)在蒙脱土和高岭土上的吸附机理可分为化学键合吸附(或内络合层吸附)和静电键合吸附(或外络合层吸附),其中静电键合吸附主要为结构负电荷位吸附。化学键合吸附具有强的选择性和不可逆性,不受离子强度的影响;静电键合吸附没有选择性,具有较强的可逆性,受离子强度的影响较大。化学键合吸附和静电键合吸附的相对量与pH有关;在pH小于4和大于8的范围内,化学键合吸附为主,而在pH4~8范围内静电键合吸附比例增大。pH增高,吸附量增高;温度、离子强度和吸附剂含量增大,吸附量下降。Pb~(2+)能进入蒙脱土的层间,而不能进入高岭土的层间;部分Pb~(2+)可进入黏土颗粒的微孔中被固定。EDTA可明显降低Pb~(2+)在蒙脱土上的吸附,而基本不影响在高岭土上的吸附。
     二、层状双金属氢氧化物及其煅烧产物对Pb~(2+)的吸附作用
     合成了Mg/Al摩尔比分别为1:1和2:1的Mg-Al-LDHs样品(MgAl-LDH和Mg_2Al-LDH)及其煅烧产物(MgAl-CLDH和Mg_2Al-CLDH),同时还合成了乙二胺四乙酸(EDTA)-LDH纳米杂化物,考察了它们对Pb~(2+)的吸附作用。结果表明,Mg-Al-LDHs和Mg-Al-CLDHs对Pb~(2+)均有很强的吸附能力,有望成为一类新型高效吸附剂;吸附动力学符合准二级动力学过程,吸附等温线符合Freundlich方程。吸附量在pH=3~10的范围内变化不大。电解质可抑制Pb~(2+)在Mg-Al-LDHs上的吸附,但基本不影响在Mg-Al-CLDHs上的吸附。吸附机理为表面络合吸附,在Mg-Al-LDHs上的吸附同时存在化学键合(内层络合)吸附和静电键合(外层络合)吸附,而在Mg-Al-CLDHs的吸附主要为化学键合吸附。
     Mg-Al-CLDHs对Pb~(2+)的吸附能力明显高于相应的Mg-Al-LDHs;EDTA-LDH纳米杂化物也明显高于相应的Mg-Al-LDHs,表明EDTA的插入具有协同增效作用。
     三、对硝基苯酚在Mg_2Al-LDH及其煅烧产物上的吸附
     研究了对硝基苯酚在Mg_2Al-LDH和Mg_2Al-CLDH上的吸附,考察了pH、温度等因素的影响。结果表明,对硝基苯酚在Mg_2Al-LDH和Mg_2Al-CLDH上均有明显吸附,其吸附等温线均符合Freundlich等温式;在Mg_2Al-LDH上的吸附动力学符合双常数方程,而在Mg_2Al-CLDH上符合准一级动力学速率方程和Elovich方程;在Mg_2Al-CLDH上的吸附速率和吸附量明显高于Mg_2Al-LDH。初始pH在3~10范围内变化对吸附量的影响不大。温度升高,吸附量增大。CLDHs有望成为一种新型的高效酚类有机污染物处理剂。
With the development of industry and agriculture,the emission of pollutants is increasing which causes serious harm to ecological safety and human health.Heavy metal pollution is one of the environmental problems to be urgently resolved.The remediation of heavy metal contaminated soil and the treatment of waste water have become hot topics of environmental science and engineering.The adsorption/desorption behavior of heavy metal at the solid liquid interface is the fundamental problem which determines the geochemistry process of heavy metal and environmental ecological effect.The scientific knowing of the basic phenomena is the basis of understanding the speciation distribution,transport and fate of heavy metal pollutants and techonolgy on remediation of contaminated soil and waste water treatment.A great deal of studies have been done on the adsorption of heavy metal at the solid liquid interface and an overall understanding to adsorption law has been reached, however,the adsorption mechanism is not very clear due to the complexity of adsorption systems.Moreover,the adsorbents studied are usually negative charged.Rare studies have been done about positive charged heavy metal adsorbents.
     We choose structurally negative charged montmorillonite,structurally no charged kaolinite(or small quantity of negative structural charge)and structurally positive charged layered double hydroxides as model adsorbents and study the adsorption behavior of Pb~(2+) on them.The influence of various factors were investigated to obtain the influence law of structural charge(or interface phase microenvironmental acidity induced by it)on heavy metal adsorption and deepen the cognition to the adsorption mechanism.Adsorption of p-nitrophenol and Pb~(2+)on MgAl-CLDHs,adsorption of Pb~(2+)on LDHs- EDTA were also discussed to supply information to the development of the high- efficiency sorbent.
     The contents include the followings:
     Section1.Study on adsorption behavior and adsorption mechanism of Pb~(2+)on montmorillonite and kaolinite
     Sorption properties of Pb~(2+)on montmorillonite and kaolinite were studied,the influence of temperature,solution pH,ion strength and sorbent content on the sorption of Pb~(2+)were investigated,and the sorption mechanism was discussed in combination with the results of XPS,XRD and specific surface area(SSA)experiments.The sorption kinetics can be well described by the pseudo-second-order kinetics and the Elovich kinetic equation and the sorption isotherms can be described by Langmuir isotherm.The sorption amount in mg/g of Pb~(2+)on montmorillonite is obviously higher than that on kaolinite,however that in mg/m~2 on montmorillonite is very close with that on kaolinite.Adsorption amount is mainly determined by the SSA while the adsorption ability is determined by structural negative charge density of clays.The sorption mechanism of Pb~(2+)on the montmorillonite and kaolinite may be distinguished to the chemi-bonded adsorption(or inner-sphere surface complexation adsorption)and electrostatic-bond adsorption(or outer-sphere surface complexation adsorption).The electrostatic-bond adsorption is mainly negative structural charge sites adsorption.The chemi-bonded adsorption is irreversible,strong selective and the ionic strength has no effect on it.The electrostatic-bond adsorption is reversible,no selective and the ionic strength has a significant effect on it.The relative content of chemi-bonded adsorption and the electrostatic-bond adsorption is dependent of pH,and the relative content of the electrostatic-bond adsorption in the pH range of 4~8 is higher than in the pH ranges of lower than 4 and higher than 8.The increases of temperature,ion strength and sorbent content would induce the decrease of the adsorption amounts of Pb~(2+)on montmorillonite and kaolinite while the sorption amount increases with increasing pH.Pb~(2+)can be intercalated between the layers of the montmorillonite while it can not be intercalated between the layers of kaolinite.Portion of Pb~(2+)can be fixed by enterring in the micropore of clay particles.EDTA can significantly decrease the adsorption of Pb~(2+)on montmorillonite,hardly affects the adsorption of Pb~(2+)on kaolinite.
     Section2.Adsorption of Pb~(2+)on MgAl Layered double hydroxides and their calcined products
     Layered double hydroxides with an Mg/Al molar ratio of 1:1(MgAl-LDH),2:1 (Mg_2Al-LDH)and EDTA-LDH nanohybrids were synthesized by using a co-precipitation method and calcined LDHs(CLDHs)were obtained by calcination LDHs at 500℃.The sorption removal of Pb~(2+)by them was investigated.It was found that both Mg-Al-LDHs and Mg-Al-CLDHs show good sorption ability and they could be a new type of environmental sorbent for the removal of Pb~(2+).The sorption kinetics and the sorption isotherms of Pb~(2+)on both the Mg-Al-LDHs and the Mg-Al-CLDHs can be described by the pseudo-second order kinetics and Freundlich isotherm,respectively.The sorption amounts of Pb~(2+)are independent of the pH in the range of about 3~10.The presence of electrolyte inhibited the sorption of Pb~(2+)on the Mg-Al-LDHs while not on the Mg-Al-CLDHs.The sorption mechanism of Pb~(2+)may be contributed to the surface complexation.The adsorption of Pb~(2+)on the Mg-Al-LDHs may be contributed to both the chemi-bonded adsorption(or inner-sphere surface complexation adsorption)and the electrostatic-bond adsorption(or outer-sphere surface complexation adsorption),while that on the Mg-Al-CLDHs mainly to the chemi-bonded adsorption.
     The adsorption ability of Pb~(2+)on the Mg-Al-CLDHs is higher than that on the Mg-Al-LDHs.The adsorption ability of Pb~(2+)on the EDTA-LDH nanohybrids is also higher than that on the Mg-Al-LDHs which indicates the intercalation of EDTA had synergy.
     Section3.Adsorption of p-nitrophenol on Mg_2Al-LDH and Mg_2Al-CLDH
     The sorption removal of p-nitrophenol on Mg_2Al-LDH and Mg_2Al-CLDH were investigated.The influence of pH,temperature on the adsorption was investigated.The results showed that p-nitrophenol could be adsorbed on both Mg_2Al-LDH and Mg_2Al-CLDH.Adsorption isotherms could be fitted with the Freundlich equation,the sorption kinetics of p-nitrophenol on Mg_2Al-LDH could be well described by the two-constant equation while the sorption kinetics of p-nitrophenol on Mg_2Al-CLDH could be well described by pseudo-first-order kinetics and Elovich equation.The sorption rate and sorption amount of p-nitrophenol on the Mg_2Al-CLDH was higher than that on the Mg_2Al-LDH.The sorption amounts of p-nitrophenol on Mg_2Al-LDH and Mg_2Al-CLDH were independent of the initial pH in the range of about 3~10.The increases of temperature,the adsorption amounts decrease.CLDH was promising to be a new kind of high effective adsorbents for phenols.
引文
1.Langmuir I.The constitution and fundamental properties of solids and liquids[J].J Am Chem Soc,1919,38:2267.
    2.Ruthven D M.Principles of Adsorption and Adsorption Processes[M].New York:Wiley-Interscience,1984.
    3.Langmuir I J Am Chem Soc,1918,40:1361.
    4.Beliot J C Condoret J S.Process Biochemistry,1993,28:365.
    5.Freundlich H Z.Physic Chem,1907,57:38
    6.Harter R D.Baker D E.Applications and misapplications of the Langmuir equation to soil adsorption phenomena[J].Soil Sci Soc Am J,1977,41(6):1077-1080
    7.Elprince A M,Sposito G.Thermodynamic derivation of equations of the Langmuir type for ion equilibria in soils[J].Soil Sci Soc;Am J,1981,45(2):1077 1090
    8.Muzzareli R A A.Chitin[M].Oxford:Pergamon Press,1977.
    9.Ciardelli F.Tsuchida E.Wohrle D编著,张志奇,张举贤,译,高分子金属络合物[M],北京:北京大学出版社.1999
    10.Slips R.The Journal of Chemistry Physics,1948,16:490.
    11.周代华,徐凤琳等.用质量模型描述重金属离子在土壤中的吸附特点[J].环境科学学报,1996,16(4):425-430.
    12.傅献彩,陈瑞华.物理化学[M],北京:人民教育出版社,1983.
    13.陈家坊.土壤学进展.1980,17:17.
    14.张正斌,刘莲生.科学通报.1977,22:164.
    15.G.Pan,P.S.Liss,J.Colloid Interface Sci.201(1998)71.
    16.G.Pan,P.S.Liss,J.Colloid Interface Sci.201(1998)77.
    17.G.Pan,P.S.Liss,M.D.Krom,Colloids Surf.A 151(1999)127.
    18.G.Pan,M.D.Krom,B.Herut,Environ.Sci.Technol.36(2002)3519.
    19.Pan Gang,Qin Yanwen,Li Xianliang,Hu Tiandou,Xie Yaning,Wu Ziyu.EXAFS Studies on Adsorption Mechanism of Zn at Manganite—Water Interface.Journal of Colloid and Interface Science 271(2004)28-34.
    20.王宝庆,陈亚雄,宁平。活性炭水处理技术应用[J].云南环境科学,2000,19(3):46-50
    21.刘振南.壳聚糖对重金属离子吸附的研究.广西化工,1996,(2)8—11.
    22.M.T sezos,B.volesky,1982.The mechanism of uranium biosoption by Rhizopus arrhizus.Biotech.Bioeng.24:385-340.
    23.卢龙.矿物表面特征和表面反应的研究现状及其应用[J].桂林工学院学报,2002,22(3):354-358.
    24.谭光群.蛭石对重余属离子吸附作用的研究[J].四川大学学报,2001,33(3):58-61.
    25.吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:8-23.
    26.何宏平.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1996,19(2):231-235.
    27.Mellah A,Chegrouche H.The removal of zinc from aqueous solutions by natural bentonite[J].Wat.Res.,1997,31(3):621-629.
    28.邵涛.膨润土对不同价态铬的吸附研究[J].环境科学,1999,12(6):47-49.
    29.杭瑚.膨润土吸附—絮凝法处理污水中的重金属离子[J].环境科学研,1994,7(1):48-52.
    30.孙家寿.累托石层孔材料处理含铬废水的研究[J].岩石矿物学,2001,20(4):555-558.
    31.胡振琪.粘土矿物对重金属的吸附研究[J].金属矿山,2004(6):53-55.
    32.何宏平.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231-235.
    33.张立德,解思深.纳米材料和纳米结构[M].北京:化学工业出版社,2005.
    34.Vaia R A,Jandt K D,Kramer E J,等.插层聚合物动力学[J].高分子材料科学.1995.28(24):8080—8085(英文版).
    35.谢晓风,王京刚粘土矿物材料在水处理中的应用[J].国外金属矿选矿,2002,(1):22-24
    36.郭坤梅,马毅杰,韩和平,膨润土对Pb~(2+)的吸附性能及影响吸附的主要因素[J].环境科学报,2000,20(5):654—656
    37.李虎杰,田煦,易发成.膨润土改性技术与工业废水处理[J].矿产综合利用,1998,(5):40-43.
    38.胡付欣,杨性坤.改性膨润土及其在含铬废水处理中的应用研究[J].非金属矿,2002,21(1):46-47.
    39.Wirmie Matthes et al.,Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite[J].Clays and clay minerals,1999,47(5):617-619.
    40.Paul Sylvester.Separation science and technology,1999.34(12):1993-1995.
    41.金辉,富江,郑珊杰等.膨润士对汞的吸附性能研究[J].水处理技术,1999,25(4):226-339
    42.Sella Triantafylou,Eidni Christodoulou,Paraskevi Neou.Syngouna removal of Nickel and Cobalt from aqueousby Na-activated bentonite[J].Clay and Clay minerals,1999,47(5):567-572
    43.Laurent J.Michot,Thomas J.Pinnvaia.Adsorption of chlorinated phenols from aqueous solution by surfactant-modified pillared clays[J].Clay and Clay mineal,2001,39(6):634-641.
    44.Gitipour Saeid,Bowers Mark T,Huff Warren,etc.The Efficiency of Modified Bentonite Clays for Removal of Aromatic Organics from Oily Liquid Wastes[J].Spill Science & Technology Bulletin,1997,4(3):155—164.
    45.Banat F A.,Bashir B.,Asheh S,etc.Adsorption of phenol by bentonite[J].Environmental Polution,2000,(107)391-398.
    46.Viraraghavan T,Flor de Maria Alfaro.Adsorption of phenol from waste water by Peat,fly ash and bentonine[J].Journalof Hazardous Materials,1998,(57):59-70.
    47.Kubo.Interface activity of water given rise by tourmaline[J].Solid state physices,1989,24:12.
    48.陈天虎,汪家权.蒙脱石粘土改性吸附剂处理印染废水实验研究[J].中国环境科学,1996,16(1):60-63.
    49.王琼,吴翠玲.改性蒙脱石复合材料在污水处理中的研究与应用[J].坏境科学与技术,2004,27(1):87-89.
    50.夏海萍,柯家骏.膨润土粘土矿吸附焦化废水中氨氮的研究[J].重庆环境科学,1995,17(6):21-22.
    51.孙家寿,刘羽,鲍世聪等.交联粘士矿物的吸附特性研究(Ⅱ)-铝交联蒙脱石对磷酸根的选择吸附作用[J].武汉化工学院,1997,19(1):34-37
    52.戴劲草,肖子敬,叶玲等,多孔粘土材料研究与进展,硅酸盐通报,1999,4:64-70.
    53.刘伯元,黄锐,赵安赤,非金属纳米材料,中国粉体技术,2001,7(1):12—18
    54.戴劲草,肖子敬,叶玲等,纳米多孔粘土材料,非金属矿,1998,4:1-2
    55.Herrington,T.M.;Clarke,A.Q.;Watts,J.C.,The surface charge of kaolin,Colloids Surf A.1992,68,161-169
    56.徐同考,赵合军,新型锻烧高岭土功能母料在PE农膜中的应用研究,塑料加工,1999,29(3):30-31.
    57.王学谦,宁平,硫化氢废气治理研究进展,环境污染治理技术与设备,2001,2(4):77-85.
    58.马福善,张军,于杰等,分散介质pH值对蒙脱土性能的影响,工业催化,1998,6:28-31.
    59.侍倩,李翠华,酸、碱对粘土物理性质的影响的试验研究,武汉大学学报,2001,34(5):84-87.
    60.刘英俊,锻烧煤系高岭土在农用塑料薄膜中的应用,塑料科技,2002,2:22-26.
    61.黄自力,胡岳华,江赠富,用废盐酸和劣质高岭土生产聚合氢化铝的研究,上海环境化学,2002,21(6):381-382.
    62.刘从华,孙书红,马燕青,高岭土基质与重金属的相互作用,催化学报,1999,20(2)174-176.
    63.曾秀琼,刘维屏,无机一有机柱撑膨润土的制备及其在水处理中的应用进展,环境污染治理技术与设备,2001,2(2):9-12
    64.林海,宋存义,金龙哲等,改性煤系锻烧高岭土晶化焙烧产品分析测试,北京科技大学学报,2001,23(4):302-304.
    65.张兴法,徐超,韩效钊等,高岭土和盐酸反应的控制步骤研究,合肥工业大学学报,1998,21(1):50-52.
    66.陈敏,王祖兴,周烈华,热分析法研究酸处理对不同矿点膨润土的影响,非金属矿,1997,2:28-30.
    67.刘从华,高雄厚,邓友全,石嘴山高岭土制备裂化催化剂应用研究,石化技术与应用,2002,20(3):157-160.
    68.刘从华,邓友全,高雄厚,酸改性高岭土基质FCC催化剂的反应性能,工业催化,2003,11(4):49-52.
    69.沈学优,陈曙光,王烨,不同粘土处理水中重金属的性能研究,环境污染与防治,1998,20(3):15-18.
    70.王学谦,宁平,活性炭吸附硫化氢及微波辐照解吸研究,环境污染与防治,2001,23(6):274-275.
    71.Feitknecht W.and Gerber W.,Double hydroxides and basic double salts(Ⅲ) Mg-Al double hydroxides, Helv. Chim. Acta, Ibid., 1942, 25: 131-137
    72. Feitknecht W., Formation of double hydroxides between bi- and trivalent metals, Helv. Chim. Acta, 1942, 25: 555-569
    73. Allman R. and Jepser H. P., Structure of hydrotalcite, neues Jahrb Mineral Monatsh., 1969, (12):544-551
    74. Taylor H. F. W., Crystal structure of some double hydroxides minerals, Miner. Mag., 1973, 39(304): 377-389
    75. Allman R. Double layer structures with brucite-like ions [M( II )_(1-x)M(III)_x(OH)]~(x+), Chima, 1970,24(3):99-108
    76. F Cavani, F. Trifiro, A Vaccari. Hydrotalcite-type anionic clays: preparation, properties and applications [J]. Catal.Today, 1991, 11(2): 173-301.
    77. J Inacio, C Taviot-Gueho, C Forano,et al. Adsorption of MCPA pesticide by MgAl-layered double hydroxides. [J] Applied Clay Sci, 2001, 18(5-6): 255-264.
    78. Y W You, G F Vance,Zhao Hongting.Selenium adsorption on Mg-Al layered double hydroxides. [J] Applied Clay Sci, 2001, 20 (1-2) : 13-25.
    79. R Allman.The crystal structure of pyroaurite [J].Acta rystal, 1968, B(24): 972-977.
    80. V Rives, M A Ulibarri. Layered double hydroxides ( LDH) intercalated with metal coordination compounds and oxometalates [J].Coord Chem Rev, 1999, 181(1):61-120.
    81. H F W Taylor. crystal structure of some Layered double hydroxides minerals [J].Mineral Mag, 1973, 39(304):377-389.
    82. S Miyata.Anion exchange properties of hydrotalcite-like compounds [J].Clay Clay Miner, 1983,31:305-311.
    83. D L Bish. Anion exchange in the pyroaurite group: Applications to other hydroxide minerals [J].Bull Mineral, 1980, 103:170-175.
    84. M Meyn, Beneke, G Lagaly. Anion exchange reactions of Layered double hydroxides [J].Inorg Chem, 1990, 29: 5201-5207.
    85. L Chatelet, J Y Bollero, J Yvon, et al. Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: Anion exchange and sorption sites [J].Colloid Surf A, 1996, 111(3): 167-175.
    86. Th. F. Tadros, Advances in Colloid and Interface Sci., 1996, 68, 97.
    87.韩书华,张春光,侯万国等,Colloid Polym.Sci.,1996,274(9),860-865.
    88.侯万国,李稚樱,宋淑娥,孙德军,山东大学学报,1999,34(3),304-309.
    89.S.Velu,K.Suzuki,M.Okazaki,et al.,Chem.Mater,1999,11,2163-2172.
    90.Vicente,Srinivasan,J.Mater.Chem.,2000,10,489-495.
    91.Maria A.Aramendia,Yolanda Aviles,Jose A.Benitez,et al.,Microporous and Mesoporous Materials,1999,29,319-328.
    92.侯万国,张春光等,高等学校化学学报,1995,16(8),1292.
    93.温斌,何鸣元,宋家庆等,无机化学学报,2000,16(1),58-62.
    94.韩书华,张春光,侯万国等,高等学校化学学报,1996,11(17),1785-1787.
    95.韩书华,许之,侯万国等,无机化学学报,1998,14(2),148-152.
    96.W.T.Reichle.Synthesis of anionic clay minerals mixed metal hydroxides,hydrotalcite,Solid State Ionics,1986,22,135-141.
    97.段雪,何静,赵芸.CN00136739.0.
    98.赵芸,矫庆泽,李峰等,非平衡晶化控制水滑石晶粒尺寸,无机化学学报,2001,17(6),830-834.
    99.任玲玲,李峰,何静等,镁铝三元水滑石的合成与结构分析,北京化工大学学报,2002,29(2),77-79.
    100.冯桃,李殿卿,D.G.Evans等,水滑石晶体长厚比及晶粒尺寸控制方法研究,无机化学学报,2002,18(11),1156-1160.
    101.赵芸,层状双金属氢氧化物及氧化物的可控制备和应用研究,北京化工大学博士学位论文,2002年4月.
    102.I Pausch,HH Lohse,K Schurmamt,R Allmann.Synthesis of disordered and Al-rich hydrotalcite-like compounds[J].Clays and Clay Minerals,1986,34(5):507-510.
    103.M.Ogava,H.Kaiho,Homogeneous precipitation of uniform hydrotalcite particles,Langmuir,2002,18,4240-4242.
    104.谢晖,矫庆泽,段雪,镁铝型水滑石水热合成,应用化学,2001,18(1),70-72.
    105.E.Abdelali,L.Ahmed,De R.Andre,P.B.Jean.Shape and size determination for zinc-aluminium-chloride layered double hydroxide crystallites by analysis of X-ray diffraction line broadening,J Mater Chem,2000,10,2337-2341.
    106.R Mark.Weir,A Ronald.Kydd,Inorg.chem.,1998,37,5619-5624.
    107. Kottapalli, Monique, J. Catalysis, 1998,173,115-121.
    108. Federica, Didier, Remi, et al., Catalysis Today, 2000, 55,103-116.
    109. N. S. Puttaswamy, P. V. Kamath, J. Mater. Chem., 1997, 7, 1941.
    110. J. Rocha, M. del Arco, V. Rives, M. A. Ulibarri, J. Mater. Chem., 1999,9,2499
    111. S. K. Pramod, S. V. Jaime, C. F. Fran, Chem. Commun., 1998,1091.
    112. H. C. B. Hansen, R. M. Taylor, Clay Miner., 1991,26, 507.
    113. J. M. Fernandez, C. Barriga, M. A. Ulibarri, etc., J. Mater. Chem., 1994,4, 1117.
    114. S. Velu, N. Shah, T. M. Jyothi, etc., Microporous and Mesoporous Materials, 1999, 33, 61.
    115. P. Federica, G. Giovanna, G. Patrick, et al., Microporous and Mesoporous Materials, 2000,39,229-247.
    116. G. W. Brindley, S. Kikkawa, Am. Miner., 1979,64, 836.
    117. I. Di Cosimo, V. K. Diez, C. R. Apesteguia, Appl. Clay Sci., 1998,13,433.
    118. E. C. Kruissink, L. L. van Reijen, J. R. H. Ross, J. Chem. Soc.Faraday Trans., 1981, 77,649.
    119. LM. Parker, NB Milestone, RH Newman. The use of hydrotalcites as an anion absorbent [J]. Industrial and Engineering Chemistry Research, 1995,4(4): 1196-1202.
    120. M. A. Drezdzon. Synthesis of isopolymetalate-pillared hydrotalcites via organic -anion -pillared precursors [J]. Inorg Chem, 1988, 27(3): 4628-4632.
    121. S. Amin, G. G. Jayson, Humic substance uptake by hydrotalcites and pilcs, Water Res., 1996,30(2), 299-306.
    122. M. A. Ulibarri, I. Pavlovic, M. C. Hermosin, J. Cornejo, Hydrotalcite-like compounds as potential sorbents of phenols from water, Appl. Clay Sci., 1995, 10, 131-145.
    123. M. C. Hermosin, A. Crabb, J. Cornejo. Sorption capacity of organo-clays for anionic and polar organic contaminants, Fresenius Environ Bull, 1995,4, 514-519.
    124. D. L. Bish, Anion-exchange in takovite: applications to other hydroxide minerals, Bull Mineral, 1980, 103, 170-175.
    125. S. Tsugio, W. Takayoshi, S. Masahiko, Adsorption of various anions by magnesium aluminum oxide (Mg_(0.7)Al_(0.3)O_(1.15)), Ind. Eng. Chem. Prod. Res. Dev., 1988,25, 89-92.
    126. S. Miyata, Anion-exchange properties of hydrotacite-like compounds, Clays and Clay Minerals, 1983,31,305-311.
    127. L. Dekany, F. Berger, K. Imrik, et al., Colloid Polym. Sci., 1998, 275, 730.
    128. H. S. Shin, M. J. Kim, S. Y. Nama and H. C. Moon. Phosphorous removal by hydrotalcite-like compounds [J]. J. Water Sci. Tech., 1996, 34(1-2): 161-168.
    129. M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin and J. Cornejo. Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity [J]. Appl. Clay Sci. 2001, 18: 17-27.
    130. C. Barriga, M. Gaitan, I. Pavlovic, M. A. Ulibarri, M. C. Hermosin and J. Cornejo.Hydrotalcites as sorbent for 2,4,6-trinitrophenol: influence of the layer composition and interlayer anion [J].J.Mater.Chem.2002,12,1027-1034.
    131. R. L. Goswamee, P. Senguta, K. G. Bahattacharyya and D. K. Dutta. Adsorption of Cr(VI) in layered double hydroxides[J]. Appl. Clay Sci. 1998, 13:21 -34.
    132. E. T. Degens , J. Matheja, T. A. Jackson, Template catalysis:asymmetric polymerization of amino-acids on clay mineras [J].Nature, 1970 227:492-493.
    133. F. Kovanda, E. Kovacsova, D. Kolousek. Removal of anions from solution by calcined hydrotalcite and regeneration of used sorbent in repeated calcinations-rehydratation-anion exchange processes [J]. Collect.Czech. Chem. Commun, 1999,64: 1517-1528.
    134. J. Cornejo, R. Celis, I. Pavlovic, M. A. Ulibarri and M. C. Hermosin. Structural changes in phenol-intercalated hydrotalcite caused by heating [J]. Clay Miner. 2000, 35(5): 771-779.
    135. M. V. Villa, M. J. Sanchez-Martin, M. Sanchez-Camazano. Hydrotalcites and organo-hydrotalcites as sorbents for removing pesticides from water [J]. J. Environ. Sci. Health, Part B, 1999, 34: 509-525.
    136. T. Sato and A. Okuwaki. Intercalation of benzenecarboxylate ions into the interlayer of hydrotalcite [J]. Solid State Ionics, 1991,45: 43-48.
    137. I. Pavlovic. M. A. Ulibarri. M. C. Hermosin and J. Cornejo. Sorption of an anionic surfactant from water by a calcined hydrotalcite-like sorbent [J]. Fresenius Environ. Bull. 1997,6:266-271.
    1.Berninger K.,Pennanen J.Heavy metals in perch(perca fluviatilis L.)from two acidified lakes in the Salpausselka Esker area in Finland.[J]Water,Air and Soil Pollution,1995(81)283—294.
    2.Krishna G B.,Susmita S G.Pb(Ⅱ)uptake by kaolinite and montmorillonite in aqueous medium:Influence of acid activation of the clays.Colloids and Surfaces A:Physicochem.Eng.Aspects.2006(277)191-200.
    3.Serrano S.,Garrido F.Competitive sorption of cadmium and lead in acid soils of Central Spain.Geoderma.2005(124)91-104.
    4.Susmita S G.,Krishna G B.,Interaction of metal ions with clays:I.A case study with Pb(Ⅱ).Applied Clay Science.2005(30)199-208.
    5.Julide H.,Resat A.,Modeling of copper(Ⅱ)and lead(Ⅱ)adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.Journal of Colloid and Interface Science.2006(295)1-13.
    6.Heidmann I.,Christi I.,et al.,Sorption of Cu and Pb to kaolinite-fulvic acid colloids:Assessment of sorbent interactions.Geochimica et Cosmochimica,2005(69)1675-1686.
    7.Cynthia A.C.,Raymond N.Y.,Aspects of kaolinite characterization and retention of Pb and Cd.Applied Clay Science.2002(22)39-45.
    8.Freedman Y.E.,Magatz M G.,et al.,Interaction of metals with mineral surface in a natural groundwater environment.[J]Chemical Geology,1994(116)111-121.
    9.Manning P G and Wang X W.,The binding of Pb,Zn,and other metal ions in suspended riverine particulate matter.[J]The Canadian Mineralogist.1995(33)679—687.
    10.He Hongping,Guo Jiugao,et al.,Location and migration of cations in Cu~(2+)-adsorbed montmorillonite.[J]Environment International,2001(26)347—352.
    11.Zhang,N.-X.Research methods of clay mineral,Science Press,1990,pp.(in chinese) (张乃娴,粘土矿物研究方法,科学出版社,1990)
    12.Preocanin,T.,Kallay,N.Croat.Application of mass titration to determination of surface charge of metal oxides.Chim.Acta,1998,71,1117~1125.
    13.Lexandre M,Dubois P,2000.Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials[J].Materials Science and Engineering,28:1-63.
    14.郝玉芝,陶龙骧,郑禄彬.交联粘土催化剂的结构、酸性和反应性能[J].石油化工,1992,21:350-355.
    15.施耀曾.有机化合物光谱和化学鉴定.南京:江苏科技出版社.1988
    16.Chorover,J.;Sposito,G.Surface charge characteristics of kaolinitic tropical soils[J].Geochim Cosmochim Acta,1995,59(5):875~884.Geochim.Cosmochim.Acta.1995,59,875.
    17.Avena M J,De Pauli C P.Proton adsorption and electrokinetics of an Argentinean montmorillonite[J].J Colloid Interface Sci,1998,202:195-204.
    18.Van Olphen,H.An Introduction to Clay Colloid Chemistry.Wiley,New York,1977.
    19.Sposito,G.The Surface Chemistry of Soils.Oxford Univ.Press,New York.1984.
    20.Tombacz,E.,Szekeres,M.Colloidal behavior of aqueous montmorillonite suspensions:the.specific role of pH in the presence of indifferent electrolytes.Appli.Clay Sci.2004,27,75-94.
    21.Avena,M.J.,Mariscal,M.M.,De Pauli,C.P.Proton binding at clay surfaces in water.Appli.Clay Sci.2003,24,3-9.
    22.Itami,K.,Fujitani,H.Charge charakteristics and related dispersion flocculation behavior of soil colloids as the causa of turbidity.Colloids Surf.A.2005,265,55-63.
    23.Tao,Z.Y.;Chu,T.W.Adsorp.Sci.Technol.2003,21,607.
    24.C.E.威维尔,L.D.普拉德著,蓝德玉译,粘土矿物化学,地质出版社,1983。
    25.Rodda D.P.,Johnson B.B.,Wells J.D.Journal of Colloid and Interface Science.[J],1996(184):365-377.
    26.Bayramoglu G.Bekta S.,Arica M.Y.Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor.J.Hazard.Mater[J],2003(B101)285-300.
    27.Jain C.K.,Ram D.Adsorption of lead and zinc on bed sediments of the fiver Kali.a)WaterRes[J],1997(31)154-162.
    28. Ucun H., Bayhan Y.K., Kaya Y., Cakici A., Algur O.F. Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris . Desalination [J], 2003 (154) 233-238.
    29. Daniel G., Strawnl and Donald L, Sparks. The use of XAFS to distinguish between Inner and outer sphere lead adsorption complexes on montmorillonite. Journal of Colloid and Interface Science [J], 1999(216) 257-269
    30. Papelis C and Hayes K.F. Distinguishing between interlayer and external sorption sites of clay minerals using X-ray absorption spectroscopy. Colloids Surf [J], 1996, (107) 89-96.
    31. O'Day P., Parks G. A., Brown G. E. Molecular structure and binding sites of cobalt (II) surface complexes on kaolinite from X-ray absorption spectroscopy. Clays Clay Miner [J], 1994(42)337-355.
    32. Echevern'a J., Indurain J., Churio E., Garrido. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. J. Colloids and Surfaces A: Physicochem. Eng. Aspects[J], 2003 (218) 175-187
    33. Sposito G. "The Chemistry of Soils." Oxford University Press, New York, 1989.
    34. Rahnemaie R., Hiemstra T., Riemsdijk W H. Inner and outer sphere complexation of ions at the goethite-solution interface. Journal of Colloid and Interface Science [J], 2006(297) 379-388.
    35. Yu B., Zhang Y., Shukla A., Shukla S.S., Dorris K.L. The removal of heavy metal from aqueous solutions by sawdust adsorption — removal of copper. J. Hazard. Mater. 2000 (B80) 33-42.
    36. Bradl, H.B. Adsorption of heavy metal ions on soils and constituents.J.Colloid Interface Sci [J]. 2004,277(1): 1-18.
    37. Reed B. E., Cline S. R. Retention and Release of Lead by a Very Fine Sandy Loam . l. Isotherm Modeling. Sep Sci Technol[J], 1994(29)1529-1551
    38. Anne M. L., Kraepiel K K., Francois M. M. A Model for metal adsorption on montmorillonite. Journal of Colloid and Interface Science [J], 1999(210), 43-54
    39. Kim Y., Kirkpatrick R. J., Cygan R. T. ~(133)Cs NMR study of cesium on the surfaces of kaolinite and illite. Geochim Cosmochi.Acta, 1996 (60) 4059-4074.
    1.Miyata S.Physio-chemical properties of synthetic hydrotalcites in relation to composition[J].Clay Clay Miner,1980,28:50-56.
    2.Ulibarri M A,Pavlovic I,Barriga C,et al.Adsorption of anionic species on.hydrotalcite-like compounds:Effect of interlayer anion and crystallinity[J].Appl Clay Sci,2001,18(1-2):17-27.
    3.Parker L M,Milestone N B,Newman R H.The use of hydrotalcite as an anion absorbent[J].Ind Eng Chem Res,1995,34:1196-1202.
    4.Amin S,Jayson G G..Humic substance uptake by hydrotalcites and PILCs[J].Wat Res,2000,34(5)1487-1494.
    5.Lakraimi M,Legrouri A,Barroug A,et al.Removal of pesticides from water by anionic clays[J].Chem Phys,1999,96:470-478.
    6.Hermoson M C,Pavlovic I,Ulibarri M A,et al.Hydrotalcite as sorbent for trinitrophenol:Sorption capacity and mechanism[J].Wat Res,1996,30(1):171-177.
    7.Gutmann,N.H.,Spiccia,L.,Turney,T.W.,Complexation of Cu(Ⅱ)and Ni(Ⅱ)by nitriloacetate intercalated in Zn-Cr layered double hydroxides.J.Mater.Chem.2000(10)1219-1224.
    8.Li,C.,Wang,G.,Evans,D.G.,Duan,X.,Incorporation of rare earths ions in Mg-Al layered double hydroxides:intercalation with an[Eu(EDTA)]-chelate.J.Solid State Chem.2004(177)4569-4575.
    9.Tarasov,K.A.,O'Hare,D.,Isupov,V.P.Solid state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layer double hydroxide.Inorg.Chem.2003(42)1919-1927.
    10.姜鹏,侯万国,韩书华等.Zn-Mg-Al型类水滑石纳米颗粒制备及晶体结构研究[J].高等学校化学学报,2002,23(1):78-82..
    11.侯万国,张春光,孙德军,梁晓丽,王果庭,氢氧化铝正电胶制备及性能研究,高等学校化学学报,1995,16,1292-1294.
    12.L.Albiston,K.R.Frankin,E.Lee and J Bas A.F.Smeulders,Rheology and Microstructure of Aqueous Layered Double Hydroxide Dispersions,J.Mater.Chem,1996,6(5),871-877
    13.Ulibarri M A,Pavlovic I,Barriga C,et al.Adsorption of anionic species on hydrotalcite-like compounds:Effect of interlayer anion and crystallinity[J].Appl Clay Sci,2001,18(1-2):17-27.
    14.R.Vicente,K.Srinivasan,Layered double hydroxides with the hydrotalcite-type structure containing Cu~(2+),Ni~(2+)and Al~(3+).J.Mater.Chem.,2000,10:489-495.
    15.Reichle,W.T.Synthesis of anionic clay minerals(mixed metal hydroxides,hydrotalcite).Solid State Ionics,1986,22,135-141.
    16.Barriga C,Gaitan M,Pavlovic I,et al.Hydrotalcites as sorbent for 2,4,6 -trinitrophenol:layer composition and interlayer anion[J].J.Mater.Chem,2002,12,1027-1034
    17.Yang W,Kima Y,Liu P K T,et al.A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO_3 layered double hydroide[J].Chemical Engineering Science,2002,57,2945-2953.
    18.M.R.Perez,I.Pavlovic,C.Barriga,J.Cornejo,M.C.Hermosin,M.A.Ulibarri.Uptake of CU~(2+),Cd~(2+)and Pb~(2+)on Zn-Al layered double hydroxide intercalated with edta Applied Clay Science.2006(32)245-251
    19..彭文世,刘高魁.矿物红外光谱图集,科学出版社,北京,1982,127
    20.中西香儿,P.H.索罗曼.红外光谱分析100例,科学出版社,北京,1984,8
    21.S.Velu,V.Ramkumar,A.Narayanan,et al.Effect of interlayer anions on the physicochemical properties of zinc-aluminum hydrotalcite-like compounds[J].Journal of materials science,1997,32:957-964.
    22.M.R.Perez,I.Pavlovic,C.Barriga,J.Cornejo,M.C.Hermosin,M.A.Ulibarri.Uptake of Cu~(2+),Cd~(2+)and Pb~(2+)on Zn-Al layered double hydroxide intercalated with edta Applied Clay Science.2006(32)245-251
    23.Vera R.L.Constantino,Thomas J.Pinnavaia,Basic Properties of Mg_(1-x)~(2+)Al_x~(3+)Layered Double hydroxides Interlated by Carbonate,Hydroxide,Chloride,and Sulfate Anions,Inorg.Chem.,1995,34(4):883-892
    24.Malherbe,F.;Forano,C.;Besse,J.P.Use of organic media to modify the surface and porosity properties of hydrotalcide-like compounds.Microporous Materials(1997)10,67-84.
    25.Bradl H.B.Adsorption of heavy metal ions on soils and soils constituents.J.Colloid Interface Sci.2004(277)1-18.
    26.Reed B.E.,Cline S.R.Retention and release of lead by a very fine sandy loam.I.Isotherm modeling.Sep Sci Technol.1994(29)1529-1551
    1.安家驹.实用精细化工辞典(第2版).北京:中国轻工业出版社,2000.
    2.L.HlKeith,W.A.Telliard.Priority pollutants I:A perspective view.Environmental Science & Technology,1979,13(4):416~423
    3.周文敏,傅德黔,孙宗光.中国水中优先控制污染物黑名单的确定.环境科学研究,1991,4(6):9-12
    4.Dieckmann Melissa Sl,Gray Kimberly.A comparison of the degradation of nitrophenol via direct and sensitized photocatalysis in TiO_2 slurries.Water Research,1996,30(5):1169-1183
    5.S.W Peretti,C.JlTompkins,J.L.Goodall,et al.Extraction of nitrophenol from 12octanol into aqueous solution in a hollow fiber liquid contactor.Membrane Science,2002,195(2):193~202
    6.夏畅斌.改性粉煤灰吸附对硝基苯酚的研究.离子交换与吸附,2000,16(6):540~546
    7.Sumio A,Yuuki O,Kimihiro H,et al.Intercalation of nucleotides into layered double hydroxides by ion-exchange reaction[J].Applied Clay Science,2005(28)137-145
    8.Nakayama H,Wada N,Tsuhako M.Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method,Int.J.Pharm.2004,269,469-478.
    1 Faraday, F. O.; Orumwense. J. Chem. Tech. Biotechnol 1996, 65, 363.
    2 Francois, C; Michel, M.; Arnaud, B.; Roger, Guilard. Journal of Molecular Liquids 2005,118,89.
    
    3 Volzone, C; Tavani, E. L. Proceedings of the International Conferance on Clean Technologies for Mining Industry 1996, 3, 121.
    
    4 Jung, J.; Cho, Y. H.; Pilsoo, H. Bull Korean Chem Soc 1998,19(3), 324.
    5 Jeong, S.Y.; Lee, J.M. Bull Korean Chem Soc 1998, 19(2), 218.
    6 Cavani, F.; Trifiro, F.; Vaccari, A. Catal Today 1991,11,173.
    7 Rives, V.; Ulibarri, M. A. Coord Chem. Rev 1999, 181, 61.
    8 Crepaldi, EX.; Tronto, J.; Cardoso, L.P.; Valim, J.B. Colloid Surf. A: Physicochem. Eng. Aspects 2002,211, 103.
    9 Sato, T.; Okuwaki, A. Solid State Ionics 1991,45,43.
    10 Hermosin, M.C.; Pavlovic, I.; Ulibarri, M.A.; Cornejo, J. J. Environ. Sci. Health, Part A 1993,28,1875.
    11 Ulibarri. M.A.; Pavlovic. I.; Hermosin, M.C.; Cornejo, J. Appl. Clay Sci 1995,10,131.
    12 Pavlovic, I.; Ulibarri, M.A.; Hermosin, M.C.; Cornejo, J. Fresenius Environ. Bull 1997,6,266.
    13 Lakraimi,M.;Legrouri,A.;Barroug,A.;de Roy,A.;Besse,J.P.J.Chim.Phys 1999,96,470.
    14 You,Y.;Vance,G.F.;Zhao,H.Appl.Clay Sci 2001,20,13.
    15 Li,F.;Wang,Y.;Yang,Q.;Evans,D.G.;Forano,C.;Duan,X.J.Hazardous materials B 2005,125,89.
    16 Legrouri,A.;Lakraimi,M.;Barroug,A.;De Roy,A.;Besse,J.P.Water Research 2005,39,3441.
    17 Orthman,J.;Zhu,H.Y.;Lu,G.Q.Sep.Purif.Technol 2003,31,53.
    18 Lazaridis,N.K.Water,Air,and Soil Pollution 2003,146,127.
    19 Yoshida Mitsuo.;Journal of Ecotechnology Research 2002,8(2),248.
    20 Tomohito,K.;Shingo,S.;Yoshiaki,U.Separation and Purification Technology 2005,47,20.
    21 Miyata,S.Clays Clay Miner 1975,23,369.
    22 Ulibarri,M.A.;Pavlovic,I.;Barriga,C.;Hermosm,M.C.;Cornejo,J.Applied Clay Science 2001,18,17.
    23 Malherbe,F.;Forano,C.;Besse,J.P.Microporous Mater 1997,10,67.
    24 Reichle,W.T.Solid State Ionics 1986,22,135.
    25 Ho,Y.S.;Ng,J.C.Y.;McKay,G.Sep.Sci.Technol 2001,36(2),241.
    26 Bradl,H.B.J.Colloid Interface Sci 2004,277,1.
    [1]R.L.Zimdahl,J.H.Arvik,Reviews in Environmental Control.Chemical Rubber Company,New York,1973,213.
    [2]C.Taubaso,M.Dos Santos Afonso,R.M.Torres Sanchez,Geoderma,2004,121,123.
    [3]F.Cavani,F.Trifiro,A.Vaccari,Catal.Today,1991,11,173.
    [4]V.Rives,M.A.Ulibarri,Coord Chem.Rev,1999,181,61.
    [5]J.T.Klopprogge,L.Hickey,J.L.Frost,Appl.Clay Sci.2001,18,37.
    [6]G.B.Deacon,R.J.Philips,Coord.Chem.Rev,1980,33,227.
    Fig1.X-ray diffraction patterns of Mg-Al LDH(a)and EDTA-LDH(b)
    Fig2.Infrared spectra of Mg-Al LDH(a)and EDTA-LDH(b)
    Fig3.Adsorption isotherms of Pb~(2+)on Mg-Al LDH(a)and EDTA-LDH(b)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700