纳米金属铝粉水解法制备净水材料及其在微污染废水治理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在常规污水处理中,铝、铁、锰等氧化物及其氢氧化物由于具有较大比表面积、良好的微孔结构、电荷密度高等特点,对水中的重金属、有机物、细菌病毒等有较强的吸附作用。利用含有上述金属元素的吸附剂处理环境中污染物已引起越来越多科研工作者的兴趣。纳米粒子所具有的小体积效应、量子尺寸效应、宏观量子隧道效应及表面界面效应以及由其制备的纳米功能材料具有完全新型的性质,为纳米材料在各个领域的应用,奠定了基础。本文利用实验室自有设备,采用电爆炸法制备纳米铝粉,探讨了金属丝电爆炸实验装置的工艺条件,研究了各电爆炸工艺参数对纳米铝粉晶粒度的影响。该方法制备纳米材料,方法独特,无二次污染,工艺流程简单。本文进一步研究了氮气环境下,电爆炸法制备的纳米铝粉与二次去离子水直接水合反应后产物的特征,对水合过程中水解产物的粒度、形貌、比表面积进行了研究,并考察了外加试剂对水解产物比表面积的影响。选择比表面积较大的水解产物AlO(OH)作为吸附剂对Cu~(2+)和Pb~(2+)模拟废水进行吸附处理,研究该吸附剂对水中Cu~(2+)和Pb~(2+)的去除作用,探讨该吸附剂对重金属离子的吸附机理。由于纳米颗粒吸附剂从水中分离出来困难,导致在水处理运行中不能充分发挥这些物质的吸附特性,本研究采用纳米铝粉水解法、以活性炭纤维毡为载体,制备一种新型的复合净水材料。通过对含有低浓度Cd~(2+)、Mn~(2+)模拟废水的动力学以及影响吸附的因素研究,考察该净水材料的吸附性能,并在此基础上进一步研究了复合净水材料对苯酚、细菌的吸附。通过该论文的研究结果,希望能够给环境废水污染治理领域提供一种新方法,新思路和新材料。
The problem of environmental pollution and ecological threats to human health has become widespread concern. It has environmental , economical and social signifecance to adopt a simple and effective way to remove the pollutants in water. Heavy mentals, one of various pollutants in the natural water environment, become an important category of pollutant because of its non-degradation, bio-accumulative effect and greater toxic characteristics at lower concentrations. The traditional methods of removing heavy metals are the chemical precipitation, ion exchange and membrane treatment, but people have encountered a new problem in the purification of drinking water because of complicated polluntants and the increasing types of harmful substances in the contaminated water. The purification materials and technology have been researched a lot at home and abroad. The process technology mainly removes the turbidity, suspended solids, colloid, color and microorganisms, so the ability to remove the organic matter, especially, the dissolved organic matter in water is low (20 percent to 30 percent), and moreover, the wastewater after removal of the heavy metals with low concentration can hardly meet the water quality criterion for drinking. In 2006, China promulgated a new "The Living Drinking Water Standard " GB 5749-2006 which replaced the original standard of GB 5749-85. In the new standard, the number of the tested water-quality items increases from the original 35 to 106 and toxicology indicators of inorganic compounds increase from 10 to 22. The higher requirements are proposed in water quality for the emission limits of arsenic, lead, cadmium and other heavy metals are increased. In the process of conventional wasterwater treatment, aluminum, iron, manganese oxides and hydroxides have the stronger ability to adsorb heavy metals, organic matter, bacteria and viruses in water because they have a larger surface area, a good porous structure and high charged density. The adsorbents which contain aforementioned metal elements are used to treat contamination in the environment, which has attracted more and more interest of science researchers. Nano-materials have the small size effect, surface and interfacial effect, quantum size effect and macroscopic quantum tunnel effect, which enables nano-materials to have the absolute superiority compared with other materials. Nano-materials have high surface activity, high surface energy and large surface areas due to the surface effect. Therefore, nano-materials display the huge potential in the preparation of high-capacity adsorbent. Many kinds of methods, such as chemical vapor deposition, colloidal micellear process, hydrothermal process and hydrolysis methods are used for the synthesis of nanostructure materials. In the above synthetic methods, hydrolyzing nanometer aluminum powders in water is a simple and fast synthesis procedure to produce an aluminum hydroxide fiber with a high specific surface area. Nano-aluminum material is widely used in chinaware, catalyst carrier, catalyst and environment pollution treatment. At present, the researches on application of nanometer fibers prepared by hydrolysis of aluminum nano powders which are prepared by wire electric explosion method to wastewater treatment are still less. So the research of this paper has theoretical and practical significance for the study on the technologies of the environmental wasterwater treatment and the development of materials science.
     Aluminum nanometer powders were prepared by wire electric explosion method with the equipments in our lab. The technical conditions of electric explosion, the wire explosion parameter and physical mechanism were studied. Simultaneously, the aluminum nano powders were characterised. The result found that the experimental conditions had an effect on the powder’s size. The bigger the diameter of metal wire was, the higher the pressure of the medium gas is, the greater the size of the powders was. The energy loaded on the aluminum wire has some impact on the granularity of powders. The concentration of the metallic steam was lower and the granularity of aluminum particles was small when the K was1.5. Meanwhile, the physical mechanism of the process of wire electric explosion: was discussed, namely, "metal wire-melting wires (liquid)-colloid (liquid phase and a metal bubbles)- aerosol-condensation forming metal powder."
     The nano AlN/Al powders prepared by wire electric explosion method at the nitrogen atmosphere were immersed into deionized water to react with deionized water, thus nano-fibrillar alumina oxyhydroxides were formed in the temperature 40-80℃. The reaction behavior of AlN/Al with water yielded the following results. The boehmite was dominant at a high temperature and low pH, while the bayerite phase became dominant at a low temperature and high pH. The hydrolysis products with the highest specific surface area 267m2 /g came into being at 70℃in the alkaline solution and showed a nano fibrous shape with several nm in diameter and several hundreds nm in length . The hydrolysis reaction was accelerated with the additive salicylate agent. The specific surface areas of hydrolysis products were enlarged from 136.68m2/g to 230.11 m2/g when 0.08 percent of the salicylate sodium was added. the study of sodium salicylate to join the 0.04-0.08 percent suitable. During crystallized process the variation of the hydrolysis product had several stages, which was conduced by the crystal growth, agglomeration, the second nucleus and milling. On the basis of datum, confirm the first production-bayerite decompound to form supersaturation aqua, then the crystallized process was excitated. Along with reaction time went, the crystals become stable and the crystalline raise consumedly.
     In this paper, the nano-AlO(OH) particles with high surface area prepared by the hydrolysis as an adsorbent for removing copper and lead ions from synthetic solutions were investigated in a batch system. The influential factors, such as adsorbents dose, pH values, salt concentration, contact time, etc. were studied. The adsorption mechanism, thermodynamics and kinetics of adsorptive process were investigated also. The results showed that AlO(OH) could adsorb certain quantity of Cu~(2+) and Pb~(2+). The initial pH value of the solution and salt ions have impact on adsorption of Cu~(2+) and Pb~(2+) on the surface of AlO(OH) particles. Binding of Cu~(2+) and Pb~(2+) ions onto adsorbents was highly pH dependent. The adsorptive quantity of Pb~(2+) was higher than that of Cu~(2+) adsorbed on the surface of AlO(OH) particles. The adsorption of metal ions was partly influenced by the existence of conventional ions in solution. The effect of adsorptive quantity of Cu~(2+) and Pb~(2+) on the AlO(OH) by the existence of Mg~(2+) was greater than that by the presence of Na+. Through the analysis of adsorption isotherms of adsorption of Cu~(2+) and Pb~(2+) onto the AlO(OH), adsorption behavior of Cu~(2+) and Pb~(2+) on the AlO(OH) could be approximately described with the Freundlich equations in the studies of static adsorption. The pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu~(2+) and Pb~(2+) on the AlO(OH).
     A novel composite water purifying material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd~(2+), Mn~(2+), phenol and bacteria from aqueous solution using column adsorption experiment because it is difficult to separate powder absorbents from the water. The influential factors, such as the initial metal ions concentration, pH value and coexisting metal ions, etc. were studied. The studies found that compared with minicrystal cellulose and polyethylene fiber, glass fiber as the carrier of the nano-AlO(OH) particles had better removal ability. Meanwhile further experimental results showed that the ACF carrier was an assistant in the adsorption Cd~(2+) process. The experiment conditions, such as the initial pH, initial Cd~(2+) concentration and the coexisting Pb~(2+) ions have mainly impact on the absorption capability of the novel composite water-purifying material. The results indicated that the relationship between adsorption capacity of Cd~(2+) and pH was not linear, and the maximum adsorption capacity was existed when pH was 6.5. The main adsorption power was exerted due to the different concentrations of Cd~(2+) in sorbent and that in solution, so the adsorption capacity increased and reduced when Cd~(2+) initial concentration was less than 0.068 mg/L and greater than 0.068 mg/L, respectively. The maximum adsorption capacity was exerted in the concentration of 0.068 mg/L. The adsorption ability of the composite water purifying material on Cd~(2+) obviously reduced from 128.5 mg/g to 64.28 mg/g when Pb~(2+) existed because Pb~(2+) took up more adsorption sites. The removal of Mn~(2+) by the water purifying material was also studied. The results indicated that the maximum adsorption capacity of Mn~(2+) was 283.76 mg/g. The adsorptions of metal ions on the composite water-purifying material in aqueous solution were also studied with the fixed-bed column. Thomas equation obtained with the non-linear analysis could describe the adsorption data better than that with the linear analysis. The experiment results indicated that the properties of the new composite water-purifying material was excellent. The adsorbed Cd~(2+) was easily desorbed from the material with 0.1M HCl solution. Adsorption-desorption cycles showed the feasibility of repeated uses of the composited material. Although the removal efficiency of phenol was maintained above 55% when the initial concentration of phenol was 5mg/L, the concentration of the effluent was not steady and the new composite water-purifying material has the disadvantage of short duration. All of those mean the new composite water-purifying material should be amended and its water purifying ability should be optimized. The removal efficiency of the material on bacteria was 68%-97%, and the total bacteria in the effluent were meeting "The Living Drinking Water Standard " GB 5749-2006, which showed that the composite water purifying material for the removal of bacteria had a certain effect. SEM/EDAX and XPS analyses were empolyed to examine the process and mechanism of adsorption on the new composite water-purifying material. The results indicated that the cadmium element evenly scattered on the surface AlO(OH) particles and Cd~(2+) coordinated with oxygen atoms of hydroxyl groups on the AlO(OH) in coordination bond.
引文
1. 何振立,周启星,谢正苗。污染及有益元素的土壤化学平衡,北京:中国环境科学出版社,1998,209-210。
    2. 陈静生,陶澍,邓宝山,金相灿,季维,唐飞。水环境化学,北京:高等教育出版社,1995。
    3. Ren, J., Packman, A. Modeling of simultaneous exchange of colloids and sorbing contaminants between streams and streambeds. Environ. Sci. Technol. 2004, 38 (10): 2901-2911.
    4. 王绍文,姜有风。重金属废水处理技术,北京:冶金工业出版社,1993。
    5. Trivedi, P., Axe, L. Modeling Cd and Zn sorption to hydrous metal oxides. Environ. Sci. Technol. 2000, 34, 2215-2223.
    6. Dong, D.M., Li, Y., Zhang, J.J., Hua, X.Y. Comparison of the adsorption of Lead, cadmium, copper, zinc and barium to freshwater surface coatings. Chemosphere. 2003, 51, 369-373.
    7. 张增强,张一平。在土壤中吸附的动力学研究,环境科学学报,2000,20(1):370-375。
    8. 杜青,文湘华。天然水体沉积物对重金属离子的吸附特性,环境化学,1996,15(3):199-207。
    9. 惠秀娟。环境毒理学,北京:化学工业出版社,2003。
    10. Shin, E.W., Rowell, R.M. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement. Chemosphere, 2005, 60, 1054-1061.
    11. 汤为龙,林嗣荣,许福根,陆诗洁。从铁锰含量高的地下水制取生活饮用水的研究,铀矿冶,1998,17(3):189-193。
    12. 赵璇,吴天宝,叶裕才。我国饮用水源的重金属污染及治理技术深化问题,给水排水,1998,24(10):22-25。
    13. 冯彬,张利民。电镀重金属废水治理技术研究进展及展望,江苏环境科技,2004,17(3):38-40。
    14. 刘剑彤,肖邦定,陈珠金。曝气混凝一体法去除碱性废水中砷的研究,中国环境科学,1997,17(2):184-187。
    15. 张建梅。重金属废水处理技术研究进展,西安联合大学学报,2003,6(19):55-59。
    16. 丁明,曾桓兴。铁氧体工艺处理含重金属污水研究现状及展望,环境科学,1992,13(2):21-24。
    17. Bouraqadi, A.I., Albet, J., Kyuchoukov, G.., Molinier, J. Model Based on Reaction in the Aqueous Phase for Liquid-Liquid Extraction of Monocarboxylic Acids. Ind. Eng. Chem. Res. 2007, 46, 5192-5198.
    18. Marinova, M., Albet, J., Molinier, J. Specific Influence of the Modifier(1-Decanol) on the Extraction of Tartaric Acid by different Extractants. Ind. Eng. Chem. Res. 2005, 44, 6534-6538.
    19. Hsien Lee, I., Kuan, Y.C., Chern, J.M. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. J. Hazard. Mater. 2006, 138, 549-559.
    20. Saha, B., Streat, M. Adsorption of trace heavy metals: application of surface complexation theory to a macroporous polymer and a weakly acidic ion-exchange resin. Ind. Eng. Chem. Res. 2005, 44, 8671-8681.
    21. Pehlivan, E., Altun, T. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution onDowex 50W synthetic resin. J. Hazard. Mater. 2006, 134, 149-156.
    22. Mumford, K.A., Northcott, K.A., Shallcross, D.C., Stevens, G..W., Snape, I. Development of a two parameter temperature-dependent semi-empirical thermodynamic ion exchange model using binary equilibria with amberlite IRC 748 resin. Ind. Eng. Chem. Res. 2007, 46, 3766-3773.
    23. Reimann, W. Influence of organic matter from waste water on the permeability of membranes. Desalination, 1997, 109(1):51-55.
    24. Rautenbach, R., Voβenkaul, K. Pressure driven membrane process-the answer to the need of a growing world population for quality water supply and waste water disposal. Sep. Purif. Technol. 2001, 22-23:193-208.
    25. Braeken, L., Van. Der. Bruggen, B., Vandecasteele, C. Regeneration of brewery waste water using nanofiltration. Water. Res. 2004, 38(13): 3075-3082.
    26. Mohsen-Nia, M., Montazeri, P., Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination. 2007, 217, 276-281.
    27. De Schamphelaere, K.A.C., Unamuno, V.I.R., Tack, F.M.G., Vanderdeelen, J., Janssen, C.R. Reverse osmosis sampling does not affect the protective effect of dissolved organic matter on copper and zinc toxicity to freshwater organisms. Chemosphere. 2005, 58, 653-658.
    28. Dobson, R.S., Burgess, J.E. Biological treatment of precious metal refinery wastewater: a review. Miner. Eng. 2007, 20, 519-532.
    29. 李长波,赵国峥,张洪林,蒋林时,苗磊。生物吸附剂处理含重金属废水研究进展,化学与生物工程,2006,23(2):10-12。
    30. 李福德,李昕,吴乾菁。微生物法治理电镀废水新技术,工业给排水,1997,23 (6): 25-29。
    31. 近藤精一,石川达雄,安部郁夫。吸附科学,北京:化学工业出版社。
    32. 凌敏,李艳琳,黄铁明。吸附分离技术在环境工程中的应用,广西大学学报(自然科学版),2003,28(1): 22-25。
    33. Park, S.J., Kim, Y.M. Influence of anodic treatment on heavy metal ion removal by activated carbon fibers. J. Colloid. Interf. Sci. 2004, 278(2): 276-281.
    34. Wu, S.H., Pendleton, P. Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength, and hydrophobicity. J. Colloid. Interface. Sci. 2001, 243(3):306-315.
    35. Jusoh, A., Shiung, L.S., Ali, N., Noor, M.J.M.M. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination. 2007, 206, 9-16.
    36. Babic, B.M., Milonjic, S.K., Polovina, M.J., Cupic, S., Kaludjerovic, B.V. Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon. 2002, 40(7):1109-1115.
    37. Hanzlík, J., Jehli?ka, J., ?ebek, O., Weishauptová, Z., Machovi?, V. Multi-component adsorption of Ag(Ⅰ), Cd(Ⅱ ) and Cu(Ⅱ ) by natural carbonaceous materials. Water. Res. 2004, 38, 2178-2184.
    38. Lao, C., Zeledón, Gamisans, X., Solé, M. Sorption of Cd(Ⅱ ) and Pb(Ⅱ ) from aqueous solutions by a low-rank coal (leonardite). Sep. Purif. Technol. 2005, 45, 79-85.
    39. Sutcu, H., Dural, A. The adsorption of lead, copper and nickel ions fromaqueous solutions on activated carbon produced from bituminous coal. Fresen. Environ. Bull. 2007, 16(3): 235-241.
    40. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sanchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manage. 2007, 85(4): 833-846
    41. 邵林广,范艳丽。微污染水源水净化技术。工业安全与环保,2004,30(11):1-4。
    42. Sikorska-Sobiegraj, E., Zielinski, S. Adsorption of heavy metals on a modified activated carbon. Przem. Chem. 2006, 85(3):189-192.
    43. Armuda, O.S., Giwa, A.A., Bello, I.A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007, 36(2):174-181.
    44. Namasivayam, C., Sangeetha, D., Gunasekaran, R. Removal of anions, heavy metals, organics and dyes from water by adsorption onto a new activated carbon from jatropha husk, an agro-industrial solid waste. Process. Saf. Environ. 2007, 85(B2):181-184.
    45. Kobya, M., Demirbas, E., Senturk, E., Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technol. 2005, 96(13): 1518-1521.
    46. Wilson, K., Yang, H., Seo, C.W., Marshall, W.E. Select metal adsorption by activated carbon made from peanut shells. Bioresource Technol. 2006, 97(18): 2266-2270.
    47. Rivera-Utrilla, J., Mendez-Diaz, J., Sanchez-Polo, M., Ferro-Garcia, M. A.,Bautista-Toledo, I. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O(3)/H2O2. Water. Res. 2006, 40(8):1717-1725.
    48. Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., Decarolis, J., Oppenheimer, J., Wert, E.C., Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination. 2007, 202(1-3):156-181.
    49. Davis, M.E. Zeolites and molecular sieves: not just ordinary catalysts. Ind. Eng. Chem. Res. 1991, 30(8): 1675-1683.
    50. Davis, M.E., Lobo, R.F. Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4(4): 756-768.
    51. Alvarez-Ayusoa, E., Garcla-Sancheza, A., Querol, X. Purification of metal electroplating waste waters using zeolites. Water. Res. 2003, 37, 4855-4862.
    52. Ouki, S.K., Kavannagh, M. Treatment of metals-contaminated wastewaters by use of natural zeolites. Wat. Sci. Tech. 1999, 34(3): 625-648.
    53. Mier, M.V., Callejas, R.L., Gehr, R., Cisneros B.E.J., Alvarez, P.J.J. Heavy metal removal with Mexican clinoptilolite: Multi-component ionic exchange. Water. Res. 2001, 35(2): 373-378.
    54. Yuan, G.., Seyama, H., Soma, M., Theng, B.K.G., Tanaka, A. Adsorption of some heavy metals by natural zeolites: XPS and batch studies. J. Environ. Sci. Heal. A. 1999, 34(3): 625-648.
    55. Jorgensen, T.C., Weatherley, L.R. Ammonia removal from wastewater byion exchange in the presence of organic contaminants. Water. Res. 2003, 37(8): 1723-1728
    56. Lee, H., Zones, S.I., Davis, M.E. Zeolite synthesis using degradable structure-directing agents and pore-filling agents. J. Phys. Chem. B. 2005, 109(6): 2187-2191.
    57. 张冬娜,弓爱君,宋永会,袁鹏,彭剑锋。沸石在多种环境介质中的应用研究进展,硅酸盐通报,2006,25(6):129-134.
    58. Chung, Y.C., Son, D.H., Ahn, D.H., Nitrogen and organics removal from industrial wastewater using natural zeolite media. Water. Sci. Tech. 2000, 42(5-6): 127-134.
    59. Chang, W.S., Hong, S.W., Park, J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter. Process. Biochem. 2002, 37(7): 693-698.
    60. Macias, A.F., Spinola, A.G., Mendoza, T.M.H., Gonzalez, F.D., Zelaya, F.P. Effect of zeolite(clinoptilolite and mordenite) amended on soil chemical environment and growth of oat. Interciencia. 2007, 32(10): 692-696.
    61. Manukyan, A.G., Martirosyan, G.G., Anakchyan, E.K., Kostanyan, K.A. Synthesis and properties of diatomite-based sorbing and filtering materials. Russ. J. Appl. Chem. 1999, 72(11): 1902-1906.
    62. Murathan, A., Benli, S. Removal of Cu2+, Pb2+ and Zn2+ from aqueous solutions on diatomite via adsorption in fixed bed. Fresen. Environ. Bull. 2005,14(6): 468-472.
    63. Phillips, I.R. The use of soil amendments to reduce nitrogen phosphorus and heavy metal availability. J. Soil. Water. Conserv. 1998, 7(2):191-212.
    64.Khraisheh, M., Al-degs, Y.S., Mcminn, W.A.M. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 2004, 99, 177-184.
    65. Gregorio C. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource. Technol. 2006, 97, 1061-1085.
    66. Liu, A.G., Gonzalez, R.D., Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals. J. Colloid. Interf Sci. 1999, 218(1): 225-232.
    67. 张彩云。膨润土对废水溶液中(Ⅱ)离子吸附的研究,广西化工,2002,31(2):18-19。
    68. 李晖,谭光群,彭同江。蛭石对 Cd(Ⅱ)的动态吸附研究,化学研究与应用,2000,12(6):661-663。
    69. Das, N.C., Bandyopadhyay, M. Selectivity sequence of adsorption of heavy metals by vermiculite. Asian. Environ. 1991,13(3):13-20.
    70. Yildiz, A., Gur, A. Adsorption of phenol and chlorophenols on pure and modified sepiolite. J. Serb. Chem. Soc. 2007, 72(5): 467-474.
    71. Strathmann, T.J., Myneni, S.C. Effect of soil fulvic acid on nickel (Ⅱ ) sorption and bonding at the aqueous-boehmite (γ-AlOOH) interface. Environ. Sci. Technol. 2005, 39, 4027-4034.
    72. Ludvik, J., Zuman, P. Adsorption of 1,2,4-triazine pesticides metamitron and metribuzin on lignin. Microchem. J. 2000, 64(1): 15-20.
    73. Miyata, K., Jin, C., Maekawa, M. Adsorption removal of anionic dyes in waste water from dyeing by chitosan. Sen-I Gakkaishi. 2002, 58(12): 462-465.
    74. Shao, J., Yang, Y.M., Shi, C.G. Preparation and adsorption properties for metal ions of chitin modified by L-cysteine. J. Appl. Polym. Sci. 2003, 88 (11): 2575-2579.
    75. 蒋挺大。甲壳素,北京:化学工业出版社环境科学与工程出版中心,2003。
    76. Gorman-Lewis, D., Jensen, M.P., Fein, J.B. Measuring the enthaply of proton, lead, and cadmium adsorption onto bacillus subtilis. Geochim. Cosmochim. Ac. 2005, 69(10): 669-669.
    77. Khizanishvili, A., Belokobyl’skii, A., Ginturi, E., Kuchava, N., Rcheulishvili, A., Mosulishvili, L. Effect of adsorption and accumulation of Cd(Ⅱ ) by the blue-green alga spirulina platensis on the cell growth, viability and physical characteristics. Journal of Biological Physics and Chemistry, 2006, 6(1): 9-13.
    78. Al-Qunaibit, M., Khalil, M., Al-Wassil, A. The effect of solvents on metal ion adsorption by the alga chlorella vulgaris. Chemosphere, 2005, 60(3): 412-418.
    79. Morata, A., Gomez-Cordoves, M.C., Suberviola, J., Bartolome, B., Colomo, B., Suarez, J.A. Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. J. Agr. Food. Chem. 2003, 51(14): 4084-4088.
    80. 孔庆霞,于金海。生物吸附水体重金属研究进展,科技与推广,2005,78-80。
    81. 张立德。超微粉体制备与应用技术,中国石化出版社,2002。
    82. 张立德,牟季美。纳米材料和纳米结构,科学出版社出版,2001。
    83. 张周伍。电爆法制备金属超细粉体材料的设备与工艺研究,兰州理工大学硕士学位论文,2006。
    84. 王世敏,许祖勋,傅晶。纳米材料制备技术,化学工业出版社,2001。
    85. 梁博。化学气相沉积法制备 Si-C 纳米粉,无机材料学报,1996,441-447。
    86. 刘继富。冷冻干燥法制备 MgO-ZrO2 超细粉末,硅酸盐学报,1996,24(1):105-108。
    87. 陈祖耀。喷雾冷冻干燥制备复合氧化物超细粉的研究,无机材料学报,1989,4(2):157-163。
    88. 刘宏英。超细金属粉制备新工业研究,湖南冶金,2003,31(5):19-21。
    89. 孟录,张海军,钟香崇。高温氮化反应合成 Ca-α-SiAlON,耐火材料,2006,40(4):260-263。
    90. 蒋渝,赖庆贵,杨彦明。纳米镍粉制备中影响产率的关键因素,电子原件与材料,2004,23(1):14-15。
    91. Tepper, F. Metallic nanopowders prodused by the electro-exploding wire process, The International Journal of Powder Metallurgy, 1999, 35(7): 38-45.
    92. Chemezova, L.I., Mesyats, G..A., Sedoi, V.S. The integral of specific current action and the specific energy input under fast electrical explosion. 18th. Int. Symp. on Discharge and electrical Insulation in Vacuum-Eindhovn, 1998: 48-51.
    93. An, V.V., Ilyin, A.P., Yablunovskii, G..V. Thermoanalytical study of energy saturated eletroexplosive nanopowders, Chemistry and Chemical Technologies, Proceedings of the 6th Russian-Korean International Symposium on 24-30 June, 2002, 317-319.
    94. Патент. 59-129701.(Япония). Способ получения порошков металлов инеметаллов и их сплявов (и соединений). Опубл. 26.07.84.
    95. Рыкадин Н.Н.,Зуев И.В.,Углов А.А. Основы влекпренно-луевой обработки материалов. Маниксстровние. 1978.238.
    96. Патент. 48-133590.(Япония).Способ получения высокодиспреного порошка металла или сплава. Опубл. 11.11.80.
    97. Патент. 52-9615.(Япония). Способ и устройство для получения металлического порошка. 1970.
    98. Вейхадкев Ш.И.,Попель С.И. Получение порошков в получения и расплавов электрическом током. Получения ис примонение распыленных металлических порошков.1982.33-37.
    99. А.с 1038163.(СССР). Генератор для электроимпульсного рестртирозоыния расплавов. Харитонов А.В., Шойхалмев Ш.М. 1983.32.
    100. 刘辉。全流程生物氧化技术处理微污染原水,北京,化学工业出版社,2003。
    101. 赵璇,吴天宝,叶裕才。我国饮用水源的重金属污染及治理技术深化问题,给水排水,1998,24(10):22-25。
    102. Carriazo, J., Guelou, E., Barrault, J. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe. Water. Res. 2005, 39, 3891-3899.
    103. Catrinescu, C., Teodosiu, C., Macoveanu, M., Miehe, B.J., Ledred, R. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water. Res. 2003, 37, 1154-1160.
    104. 姜梅,展惠英,袁建梅,陈慧。2,4-二氯苯酚在黄土中的吸附-解析行为研究,安全与环境学报,2003,3(4):73-77。
    105. Hoek, J.P., Hofman, J.A.M.H. The use of biological activated carbon filtration for the removal of natural organic matter and organic micropollutants from water. Water Science Technology, 1999, 40(9): 257-264.
    106. Camel, V., Bermand, A. The use of ozone and associated oxidation process in drinking water treatment. Water. Res. 1998, 35(11): 3208-3222.
    107. Dunlop, P.S.M., Byrne, J.A. The photocatalytic removal of bacterial pollutants from drinking water. J. Photoch. Photobio A. 2002, 148, 355-363.
    108. 王华,吕锡武。饮用水处理技术现状及研究进展,江苏环境科技,2004,17(2):41-43。
    109. Ozia, S., Omaszewska, M.T. Treatment of surface water using hybrid processes adsorption on PAC and ultrafiltration. Desalination, 2004, 162, 23-31.
    110. Bart, V., Ruggen, B., Carlo,V.E. Removal of pollutants from surface water and ground water by nanofiltration overview of possible application in the drinking water industry. Environment. Pollution. 2003, 122, 435-445.
    111. Horányi, G.., Kálmán, E. Anion specific adsorption on Fe2O3 and AlOOH nanoparticles in aqueous solutions: comparison with hematite and γ-Al2O3. J. Colloid. Interf. Sci. 2004, 269, 315-319.
    112. El Shafei, G..M.S., Philip, C.A. Adsorption of α-Alanine on Boehmite. J. Colloid. Interf. Sci. 1997, 185, 140-146.
    113. Yang, X.F., Wang, D.S., Sun, Zh. X., Tang, H.X. Adsorption of phosphateat the aluminum (hydr)oxides-water interface: role of the surface acid-base properties. Colloid. Surface. A. 2007, 297, 84-90.
    114. Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., Tamura, T. Removal of phosphate by aluminum oxide hydroxide. J. Colloid. Interf. Sci. 2003, 257,135-140.
    115. Yoon, T.H., Johnson, S.B., Brown, G..E. Adsorption of suwannee river fulvic acid on aluminum oxyhydroxide surfaces: an in situ ATR-FTIR study. Langmuir, 2004, 20(14): 5655-5658.
    116. Szekeres, M., Tombácz, E., Ferencz, K., Dékány I. Adsorption of salicylate on alumina surfaces. Colloid. Surface. A. 1998, 141, 319-325 .
    117. Shafei, G..M.S.E., Philip, C.A. Adsorption of α-Alanine on boehmite. J. Colloid. Interf. Sci. 1997, 185, 140-146.
    118. Persson, P., Nordin, J., Rosenqvist, J., L?vgren, L., ?hman, L., Sj?berg, S. Comparison of the adsorption of o-Phthalate on boehmite (γ-AlOOH), aged γ-Al2O3, and goethite (α-FeOOH). J. Colloid. Interf. Sci. 1998, 206, 252-266.
    119. Zenobi, M.C., Hein, L., Rueda, E. The effects of 1-hydroxyethane-(1,1diphosphonic acid) on the adsorptive partitioning of metal ions onto γ-AlOOH. J. Colloid. Interf. Sci. 2005, 284, 447-454.
    120. Weesner, F.J., Bleam, W.F. X-ray absorption and EPR spectroscopoic characterization of adsorbed copper(Ⅱ ) complexes at the boehmite (AlOOH) surface. J. Colloid. Interf. Sci. 1997, 196, 79-86.
    121. 鄂勇,福兹利·赫尔维。重金属在氧化铝微粒上吸附的实验研究,哈尔滨工业大学学报,2005,37(5):713-716。
    122. 熊文明,周方钦,江放明。纳米氧化铝对贵金属 Pd( Ⅱ) 的吸附性能研究,分析试验室,2005,24(12):41-43。
    123. 居沈贵,曾勇平,姚虎卿。活性氧化铝对废水中例子的吸附性能,水处理技术,2005,31(7):25-27。
    124. Oh Y.H., Rhee C.K., Kim D.H., Lee G.H., Kim W.W. Formation characteristics of an aluminum hydroxide fiber by a hydrolysis of aluminum nano powder. J. Mater. Sci. 2006, 41, 4191-4195.
    125. Li, G..S., Li, L.P., Boerio-Goates, J., Woodfield, B.F. Grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions. J. Mater. Res. 2003, 18(11), 2664-2669..
    126. Кзаруесава И.Ф., Бондаренко В.В., Плютио А.А. и др. Определение энеркии электрического взрыва. 1956, 5(31): 745-751.
    127. Jiang, W.H., Yatsui, K. Pulsed Wire Discharge for Nanosize Powder Synthesis. 1998, 26(5):1498-1501.
    128. Hakuta, Y., Ura, H., Hayashi, H., Arai, K. Effects of hydrothermal synthetic conditions on the particle size of gamma-AlO(OH) in sub and supercritical water using a flow reaction system. Mater. Chem. Phys. 2005, 93(2-3): 466-472.
    129. Shen, S.C., Ng, W.K., Chen, Q., Zeng, X.T., Tan. R.B.H. Novel synthesis of lace-like nanoribbons of boehmite and gamma-alumina by dry gel conversion method. Mater. Lett. 2007, 61(21): 4280-4282.
    130. Carmo, A.M., Hundal, L.S., Thompson, M.L. Sorption of hydrophobic organic compounds by soil materials: application of unit equivalent freundlich coefficients. Environ. Sci. Technol. 2000, 34(20): 4363-4369.
    131. Hongo, H., Nihey, F., Ichihashi, T., Ochiai, Y., Yudasaka, M., Iijima, S. Support materials based on converted aluminum films for chemical vapor deposition growth of single-wall carbon nanotubes. Chem. Phys. Lett. 2003, 380(1-2): 158-164.
    132. Jahanshahi, M., Sanati; M.H., Minuchehr, Z., Hajizadeh; S., Babaei, Z. Controlled fabrication of gelatin nanoparticles as drug carriers. Nanotechnology and its applications. 2007, 929, 228-232.
    133. Kim, Y.H., Kim, C.W., Cha, H.G., Kang, Y.C., Kang, Y.S. Preparation and characterization of Ag nanoparticle using hydrothermal process, Ieee Nmdc: Ieee Nanotechnology Materials and Devices Conference. 2006, 646-648.
    134. Ram, S., Rana, S. Synthesis of porous Al2O3 ceramic clusters by surface hydrolysis of a thin Al-metal plate in water. Mat. Sci. Eng. A-Struct. 2001, 304-306: 790-795.
    135. Park, J.H., Lee, M.K., Rhee, C.K., Kim., W.W. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers. Mat. Sci. Eng. A-Struct. 2004, 375, 1263-1268.
    136. Oh, Y.H., Rhee, C.K., Kim, D.H., Lee, G.H., Kim, W.W. Formation characteristics of an aluminum hydroxide fiber by a hydrolysis of aluminum nano powder. J. Mater. Sci. 2006, 41: 4191-4195.
    137. Kocjan, A., Krnel, K., Kosmac, T. The influence of temperature and time on the AlN powder hydrolysis reaction products. J. Eur. Ceram. Soc. 2008, 28(5): 1003-1008.
    138. Fukumoto, S., Hookabe, T., Tsubakino, H. Hydrolysis behavior of aluminum nitride in various solutions. J. Mater. Sci. 2000, 35, 2743-2748.
    139. Szekeres, M., Tombácz, E., Ferencz, K., Dékány, I. Adsorption of salicylate on alumina surfaces. Colloids. Surface. A. 1998, 141, 319-325.
    140. Vucina-Vujovic, A.J., Jankovic, I.A., Milonjic, S.K., Nedeljkovic, J.M. Influence of AlOOH nanoparticles on the oxidation of iodide by persulphate. Colloid. Surface. A. 2003, 223, 295-300.
    141. 近藤精一,石川达雄,安部郁夫。吸附科学,化学工业出版社,2006。
    142. Aksu, Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(Ⅱ ) ions onto Chlorella vulgaris. Process. Biochem. 2002, 38, 89-99.
    143. Li, T.C., Jiang, B., Feng, X., Wang, D.W., Yuan, S.J., Li, X.G.. Purification of organic wastewater containing Cu2+ and Cr3+ by a combined process of micro electrolysis and biofilm. Chinese. J. Chem. Eng. 1999, 11(2):146-150.
    144. Zhan, X.M., Zhao, X., Miyazaki, A., Nakano, Y. Lead removal from aqueous solutions using novel gel adsorbent synthesized from natural condensed tannin. Chinese. J. Chem. Eng. 2003, 11(4):426-430.
    145. Li, X., Li, Z., Luo, L.A. Adsorption isotherm and kinetics of dibenzofuran on granular activated carbons. Chinese. J. Chem. Eng. 2005, 13(5): 701-704.
    146. Trivunac, K., Stevanovic, S. Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere, 2006, 64(3): 486-491.
    147.Li, C.J., Xu, Z.L., Li, C.P. Removal of 5-amino-2-chlorotoluene-4-sulfonic and chlorhydric acids from wastewater by weakly basic resin. Chinese. J. Chem. Eng., 2006, 14(5): 696-699.
    148. Horányi, G.., Kálmán, E. Anion specific adsorption on Fe2O3 and AlOOH nanoparticles in aqueous solutions: comparison with hematite and gamma-Al2O3. J. Colloid. Interf. Sci. 2004, 269 (2): 315-319.
    149. Li, Y., Wang, Y., Han, W., Li, S.W., Zh, H., Zhu, C.Y., Wang, H. Kinetic adsorption of Cd onto nanometer Al2O3/carbon fibre. Chem. Res. Chinese U. 2005, 21, 522-524.
    150.Rajesh, N., Deepthi, B., Subramaniam, A. Solid phase extraction of chromium( Ⅵ ) from aqueous solutions by adsorption of its ion-association complex with cetyltrimethylammoniumbromide on an alumina column. J. Hazard. Mater. 2007, 144, 464-469.
    151. Novel nanofibre filter medium attracts waterbornepathogens, www. filtsep. com, 2002.
    152. Su, H.J., Wang, L.J., Tan, T.W. Adsorption of heavy metal ions by adsorbent from waste mycelium chitin. Chinese. J. Chem. Eng. 2002, 10(6): 650-652.
    153. Carmo, A.M., Hundal, L.S., Thompson, M.L. Sorption of hydrophobic organic compounds by soil materials: application of unit equivalent freudlich coefficients. Environ. Sci. Technol. 2000, 34, 4363-4369.
    154. Bruggen, B.V.D., Schaep, J., Wilms, D., Vandecasteele, C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membrane. Sci. 1999, 156, 29-41.
    155. Gabaldón, C., Marzal, P., Alvarez-Hornos, F.J. Modelling Cd(Ⅱ ) removal from aqueous solutions by adsorption on a highly mineralized peat. J. Chem. Technol. Biot., 2006, 81(7): 1107-1116.
    156. Tobin, J.M., Cooper, D.G., Newfeld, R.J. Uptake of metal ions by rhizopus arrhizus biomass. Appl. Env. Microbiol. 1984, 47, 821-824.
    157. Fourest, E., Canal, C., Roux, J.C. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS. Microbiol. Rev. 1994, 14, 325-332.
    158. Chang, J.S., Law, R., Chang, C.C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas Aeruginosa PU21. Water. Res. 1997, 31, 1651-1658.
    159. Matheickal, J.T., Iyengar, L., Venkobachar, C. Sorption and desorption of Cu(Ⅱ ) by Ganoderma lucidum. Water. Poll. Res. J. Canada. 1991, 26, 187-200.
    160. Gosset, T., Transacart, J.L, Thevenot, D.R. Batch metal removal by peat. Kinetics and thermodynamics. Water. Res. 1986, 20, 21-26.
    161. Curkovic, L., Stefanovic, S.C., Filipan, T. Water. Res.1997,31, 1379-1382.
    162. Namasivayam, C., Ranganathan, K. Removal of Cd(Ⅱ ) from wastewater by adsorption on “waste” hydroxide. Water. Res. 1995, 29, 1737-1744.
    163. Deliyanni, E.A., Matis, K.A. Sorption of Cd ions onto akaganéite-type nanocrystals. Sep. Purif. Technol. 2005, 45, 96-102.
    164. Ramos, R.L., Mendez, J.R.R., Barron, J.M. Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon. Wat. Sci. Tech. 1997, 35, 205-211.
    165. Li, Y., Dong, D.M., Hua, X.Y., Yang, F., Zhang, J.J., Liu, L., Chen, L.Y. Removal of Cd from aqueous solutions by natural freshwater surfacecoatings. Chem. Res. Chinese. U. 2005, 21(1): 53-58.
    166. Li, Y., Wang, Y., Han, W., Li, S.W., Zhao, H., Zhu, C.Y., Wang, H. Kinetic adsorption of Cd onto nanometer Al2O3/Carbon fibre, Chem. Res. Chinese. U. 2005, 21(5): 522-524.
    167. 宋菲,郭玉文,刘孝义,陈维新,张玉龙,李军,刘玉机,金淑。土壤中重金属镉锌铅复合污染的研究,环境科学学报,1996,16(4):431-436。
    168. 高廷耀,顾国维。水污染控制工程(下册)(第二版):249。
    169. Zümriye, A., Ferda, G. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves Chemical Engineering Department, Hacettepe University, 06532 Beytepe, Ankara, Turkey.
    170. 刘衡,王建龙,文湘华。啤酒酵母吸附重金属离子铅的研究,环境科学研究,2002,15(2):26-29。
    171.于天仁,季国亮,丁昌璞。可变电荷土壤的电化学,北京:科学出版社,1996。
    172. Bell, R.R., Saunders, G.C. Cadmium adsorption on hydrous aluminium(Ⅱ ) oxide:effect of adsorbed polyelectrolyte. Appl. Geochem. 2003, 257, 135-140.
    173. Kloprogge, J.T., Duong, L.V., Wood, B.J., Frost, R.L. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite. J. Colloid. Interf. Sci. 2006, 296, 572-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700