人工湿地污水处理系统中介质吸附和植物吸收的平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源的日益短缺和水环境的污染制约了人类社会和经济的可持续性发展。特别是随着工业化进程的加快,大量的含重金属废水被直接排入江河湖泊造成水体重金属含量急剧升高,导致我国各大水系受到不同程度的重金属污染,其中Zn、Pb、Cd、Cu、Cr等元素污染严重。水体重金属污染不仅加剧了可用水资源的短缺,而且直接影响到饮水安全、粮食生产和农作物安全,最终危害人类健康。因此探寻多元化的治理重金属废水方法成为世界各国治理环境的一个重要方向。
     人工湿地技术是20世纪70年代发展起来的一种废水处理新技术,由于其具有投资少、能耗低、效果好、运行管理简单且处理彻底、不产生二次污染等优点成为国内外污水处理技术中的研究热点。近年来的一些研究表明人工湿地独特而复杂的净化机理能够在含重金属工业废水的处理中发挥重要作用。有效降低废水中的重金属离子浓度是治理重金属废水的关键,其中基质吸附和植物吸收作用对重金属离子的去除是最主要的途径之一,因此基质和植物的选择及其吸附/吸收行为的研究在应用人工湿地治理重金属废水上具有重大意义。重金属废水可能影响普通湿地植物的正常生长,进而降低整个系统去除重金属的能力。同时,“超富集”植物又因为种类有限,专一性和生物量小等特点难以引入湿地进行重金属废水的治理。因此,为人工湿地处理重金属废水的应用探索新途径,这对人工湿地处理重金属废水技术的推广和应用具有重要意义。
     针对这些问题,本研究选用高吸附容量的蛭石作为基质,在潜流湿地单元建立离子吸附缓冲体系来调节系统污染离子的水平,经调节后的离子再经过植物的吸收,通过基质吸附和植物吸收建立可达标排放的可持续平衡系统。研究结果表明:
     1.天然蛭石具有储量丰富、价格低廉、吸附容量大、对环境无毒无害且容易再生等优点,采用蛭石作为吸附介质应用于人工湿地重金属废水处理当中,不仅具有较好的去除效果,同时还具有高效低廉的特点。
     2.动态吸附、温度影响、pH值影响的试验结果表明:蛭石离子具有较快的吸附能力,建议人工湿地潜流单元(缓冲系统)的最佳吸附时间为60 min;蛭石处理含废水的适宜温度条件是15-45℃,适宜pH值是3.5~7。
     3.校园废水中离子浓度分别6.20 mg/L和0.8 mg/L,计算得出蛭石基质对的设计负荷率是30 mg/kg(蛭石);对的设计负荷率是11 mg/kg(蛭石)。
     4.供试的四种水生植物对离子具有不同的耐受能力,对的耐受浓度上限分别是水葫芦10 mg/L,蕹菜5 mg/L,水花生5 mg/L,荇菜1 mg/L。对的耐受浓度上限分别是水葫芦2 mg/L,蕹菜1 mg/L,水花生和荇菜均为0.5 mg/L。
     5.水葫芦和蕹菜对具有较强的耐受能力和富集能力,通过植物对去除率影响的实验结果计算得出,水葫芦和蕹菜去除废水中离子并使之达标排放的的浓度范围(最大限度)分别是:1.84-10mg/L(Zn),0.32-2mg/L(Cd); 1.8-5mg/L(Zn),0.29-1mg/L(Cd)。
     6.通过培养箱试验,设定水葫芦和蕹菜的收获时间长度设计参数T=15~20天。进一步确定水葫芦去除废水的最佳浓度分别是1.84~4.00 mg/L和0.320.50 mg/L;确定蕹菜去除废水的最佳浓度范围是1.80~4.0 mg/L和0.290.50 mg/L。
     7.通过计算得出水葫芦的水力负荷设计参数:对0.05g/kg(植物).m3(污水).d,对0.44g/kg(植物).m3(污水).d;蕹菜的水力负荷设计参数:对0.16g/kg(植物).m3(污水).d,对1.30g/kg(植物).m3(污水).d。
     8.根据上述的试验结果进行分析计算,最终确定蛭石吸附和植物吸收平衡模型的工程参数:
     蛭石单元的水力停留时间HRT=2.1h;表面水力负荷=11.9 m3/m2.d;容积水力负荷=7.94 m3/m3.d;表面离子负荷=9.52 g/m2.d;表面离子负荷=73.78g/m2.d;容积离子负荷=6.35g/m3.d;容积离子负荷=49.21g/m3.d。
     表流单元的水力停留时间HRT=12h;表面水力负荷=3.97 m3/m2.d;容积水力负荷=1.98 m3/m3.d;表面离子负荷=1.59g/m2.d;表面离子负荷=4.17g/m2.d;容积离子负荷=0.79g/m3.d;容积离子负荷=2.08g/m3.d。
The renewable development of human world and economy was restricted increasingly due to shortage of the water resources and pollution of the water environment. In particular, along with the accelarated industrialization course, a mass of heavy metal containing waste waters was discharged into rivers and lakes, resulting in sever pollutions of heavy metals, in particular Zn、Pb、Cd、Cu and Cr, in water ecosystems. Not only the shortage of useable water resource was directly affected by heavy metal pollution, but also the security of drinking water, food and crop production, and the health of human being were endangered. Thus, an important orientation of manage environment is looking for a multiprocessing with waste water containing heavy metal.
     Constructed wetland, a new wastewater treatment technology, was developed in 1970s. On account of the merit of low investment, low energy consumtion, relatively high treatment efficiency, and easy operation and management, it has become a hotspot in the research field of sewage treatment. Recently, some studies indicated that the special and complex mechanism of constructed wetlands can play an important role in dispose of industry wastewater containing heavy metals. Effectively depression of the heavy metals in wastewater is the key to heavy metal sewage disposals. Physichemical adsorption and bio-absorption are uppermost approaches to wipe off the heavy metal hydronium. Thus, choose of proper adsorbents used as wetland fillers and determination of their adsorption characteristics, as well as selection of adequate plant species and study of their absorption natures are important topics for removale of heavy metals from wastewater using constructed wetland techniques. Heavy metal ions can affect the growth of plants in wetland and depress the treatment capacity of the whole system. On the other hand, there are limitations for introduction of "high-accumulative" plant species into constructed wetlands targeted at specific metal element. There are few sources of such plants available for selection and furthermore they are usually adopted to specific environmental conditions with low growth rates, It is therefore of significance to find altanative solutions with purpose to increase the treatment capacity and sustainability of constructed wetland system for disposal of heavy metal containing wastewaters.
     Aiming at these issues, we established an ion adsorption buffering system with vermiculite as adsorbent to accommodate the plant absorption system in constructed wetlands. Based on the established treatment systems experiments were carried out to investigate the essential factors that determine the treatment efficiency. The results obtained from the study indicated:
     1) Accounted for by its abundance in natural resource,, low price, high adsorption capability and re-generable nature, vermiculite can be used as wetland fillers for removal of heavy metals from wastewaters.
     2) The adsorption capacity of vermiculite samples was determined as X for zinc and Y for cadmium. The optimal adsorption time in terms of cost-efficiency was found to be 60 min within the proper temperature range 15~45℃and pH range 3.5-7.
     3) For the campus sewage containing 6.20 mg/L of Zn2+ and 0.8 mg/L of Cd2+,the designed load rate of vermiculite is 30 mg/kg for zinc and 11 mg/kg for cadmium.
     4) The four selected hydrophyte plants had different endurance to zine and cadminm concentration levels. The highest endurable concentration of zine was found to be 10 mg/L for Eichhornia crassipes,5 mg/L for Ipomoea aquatica Forsskal and Alternanthera philoxeroides, and 1 mg/L for Nymphoides peltatum. In comparison, The highest endurable concentration of cadmium was found to be 2 mg/L for Eichhornia crassipes,1 mg/L for Ipomoea aquatica Forsskal and 0.5 mg/L for Alternanthera philoxeroides and Nymphoides peltatum.
     5) Eichhornia crassipes and Ipomoea aquatica Forsskal had the stronger endurance capability and enrichment capability. The maxmum concentration in the enfluent for respective metal species that the selected plant species can not only stand for but also be able to fulfill the GB discharge standars was 1.84-10 mg/L(Zn) and 0.32~2mg/L(Cd) for Eichhornia crassipes;1.8~5mg/L(Zn) and 0.29~1 mg/L (Cd) for Ipomoea aquatica Forsskal.
     6) Based on tank culture tests the designed parameter of harvest time for Eichhornia crassipes and Ipomoea aquatica Forsskal is 15-20 days. The proper range of zinc and cadmum concentration for Eichhornia crassipes is, respectively,1.84~4.00 mg/L and 0.32-0.50 mg/L, and that for Ipomoea aquatica Forsskal is 1.84~4.00 mg/L and 0.32~0.50 mg/L.
     7) The designed parameter for water load for Eichhornia crassipes is 0.05 g/kg.m3.d for Cd and 0.05g/kg.m3.d for Zn, and that for Ipomoea aquatica Forsskal is 0.16 g/kg.m3.d and 1.30 g/kg.m3.d for the respective metal species.
     8) Based on the tested results, the engineering parameters for the established vermiculite adsorption and plant absorption equilibrium model are:
     Vermiculite adsorption unit:HRT=2.1 h, exterior waterpower charge= 11.9 m3/m2.d, cubage waterpower charge=7.94 m3/m3.d, exterior charge of cadmium= 9.52 g/m2.d, exterior charge of zine= 73.78 g/m2.d, cubage charge of cadmium=6.35 g/m3.d, cubage charge of zine=49.21 g/m3.d.
     Plant absorption unit:HRT=12 h, surface hydraulic load=3.97 m3/m2.d, volume hydraulic load=1.98 m3/m3.d, surface cadmium load=1.59 g/m2.d, surface zinc load= 4.17 g/m2.d, volume cadmium load=0.79 g/m3.d, volume zinc load=2.08 g/m3.d.
引文
[1]我国水资源的状况与利用.www.esph.com.cn,2004
    [2]刘昌明.中国水资源论坛:宗旨与设想[R],中国水资源论坛.2002.9
    [3]绿色.我国水污染状况.green.czboai.com,2005-05-13
    [4]国家环保总局.2004年全国环境统计公报[J].环境经济,2005,07:22-24
    [5]我国水污染状况依然严重[N].科技日报,2000-09-30(第五版)
    [6]国家环保总局.2000年环境状况公报[J].环境教育,2001,(4):46-47
    [7]朱圣清,臧小平.长江主要城市江段重金属污染状况及特征[J].人民长江,2001,32(7):23-25
    [8]王吉中,李胜荣,刘宝林等.国内矿物治理重金属废水研究进展与展望[J].矿物岩石地球化学通报,2005,24(2):159-164
    [9]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005(4):36-39
    [10]汪大翠,徐新华,宋爽.工业废水中专项污染物处理手册[M].化学工业出版社,2000,61-61
    [11]樊帮堂.环境化学(下)[M].浙江大学化学系,1987
    [12]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23(6):1-5
    [13]何鼎胜.液膜技术处理含废水[J].化工环保,1986.6(6):322-325
    [14]严忠.液膜法净化含铬废水的试验[J].水处理技术,1986,12(1):20-24
    [15]闵小波,于霞,柴立元,等.生物法处理重金属废水研究进展[J].中南工业大学学报,2003,33(2):90-93
    [16]朱雪强,韩宝平.重金属生物吸附研究进展[J].中国环保产业,2004(5):19-21
    [17]Lodeiro P, Cordero B, Barriada J L, et al. Biosorption of cadmium by biomass of brown marine macroalgae[J]. Journal of Hazardous Materials,2003,126.(13):96-104
    [18]Ri Qing Yu, Wen Xiong Wang. Biokinetics of cadmium, selenium,and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna. Environmental Poliution[J]. 2004,129(3):443-456
    [19]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86
    [20]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228
    [21]岳春雷,常杰,葛滢,等.利用复合垂直流人工湿地处理生活污水[J].中国给水排水,2003,19(7):84-85
    [22]Craig S Campbell, Michael H Ogden. Constructed wetlands in the sustainable landscape[M]. John Wiley & Sons Inc,1999:237-257
    [23]潘科,杨顺生,陈钰.人工湿地污水处理技术在我国的发展研究[J].四川环境,2005,24(2):71-75
    [24]Ji G-D, Sun T-H, Chang S-J. Super heavy oil produced water treatment by surface flow constructed wetland[J.]. Environ Sci(环境科学).2001.22(4):95-99(in Chinese)
    [25]Seidel K. Abbsu von bacteriam coli dutch hohrre wasser pflanzen. Naturwiss[J].1 964,51:395-398
    [26]Seidel K. Reingung von Gewassern dutch hohrre pflanzen.Naturwiss[J].1966,53: 289-297
    [27]Knight R L, Kadlec R H. Constructed treatment wetlands-a global technology [J]. Water 21, June 2000,57-58
    [28]Burgoon P S,Kirkbride K F, Henderson, E M et al. Reed beds for biosolids drying in the arid northwestern United States[J]. Wat Sci Tech,1997,35(5):287-292
    [29]Wang baozhen. The status and trend of the development of appropriate wastewater treatment technologies for Waste Management[J]. Murdoch University Western Australia 1991,11:27-28
    [30]何成达,季俊杰,葛丽英等.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水,2004,20(7):11-15
    [31]Lakatos G, Kiss M.K, Kiss M., Juhasz P. Application of constructed wetlands for wastewater treatment in Hungary[J]. Water Science and Technology,1997,35(5): 331-336
    [32]Sharma S S, Gaur J P. Potential of Lemna polyrhiza for removal of heavy metals[J]. Ecological Engineering,1995,4(1):37-45
    [33]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1): 98-101
    [34]宋志文,王仁卿,席俊秀等.人工湿地对氮、磷的去除效率与动态特征[J].生态学杂志,2005,24(6):·648-651
    [35]刘超翔,董春宏,李峰民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83
    [36]Gscll T,Steinman C. Constructed wetlands for effluent polishing of lagoons[J]. Wat Res,1998,33(2):505-511
    [37]Mitsch W J, Wise K M. Water quality fate of metals and predictive model validation of a constructed wetland treating acid mine drainage[J]. Wat Res,1998,32(6):1888-1900
    [38]唐述虞.铁矿酸性排水的人工湿地处理[J].环境工程,1996,14(4):3-7
    [39]王凡路,吴瑞琴,杨兵,等.凡口铅矿湿地系统沉积物中重金属的分布[J].生态环境,2003,12(3):292-295
    [40]梁继东,周启星,孙铁衍.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55
    [41]白文荣,王新春,周有.丹麦人工湿地技术治污的实践研究[J].北京水利.2005(5):10-12
    [42]成水平,吴振斌,况其军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184
    [43]Wieder, R K and G.E Lang. Modification of acid mine drainage in a freshwater wetland[J]. In:B.R.McDonald(Ed.),
    [44]Symposium on Wetlands of the Unglaciated Appalachian Region[J]. West Virginia University, Morgantown,1982,43-52
    [44]Lloyd R Stark, Frederick M. Williams. Assessing the performance indices and design parameters of treatment wetlands for H+, Fe, and Mn retention[J]. Ecological Engineering,1995,5:433-444
    [45]A S Mungur, R B E Shutes, D M Revitt, et al. An Assessment of metal removal by a laboratory scale wetland[J]. Wat. Sci Tech.1997,35(5):125-133
    [46]Shuiping Cheng, Wolfgang Grosse, Friedhelm Karrenbrock, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J]. Ecological Engineering,2002,18:317-325
    [47]唐述虞,宋正达,史建文等.金属矿酸性废水的湿地生态工程处理研究[J].中国环境科学,1993,13(5):356-360
    [48]Tang, S. Experimental study of a constructed wetland for treatment of acidic wastewater from an iron mine in China[J]. Ecological Engineering 1993,2:253-259
    [49]叶志鸿,陈桂珠,蓝崇钰等.宽叶香蒲净化塘系统净化铅/矿废水效应的研究[J].应用生态学报,1992,3(2):190-194
    [50]阳承胜,蓝崇钰,束文圣.宽叶香蒲人工湿地对铅/矿废水净化效能的研究[J].深圳大学学报(理工版),2000,17(2):51-57
    [51]阎丽.重金属在塘-湿地系统中迁移转化规律的探讨[D].哈尔滨建筑工程学院硕士生论文,1988
    [52]Kapoor, TViraraghavan. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters[J]. A Review Bioresource Technology,1995,53:195-206
    [53]李晖,谭光群,彭同江.蛭石对Cd(Ⅱ)的动态吸附研究[J].化学研究与应用,2000,12(6):661-663
    [54]吴平霄,廖宗文,毛小云.高表面活性矿物对Zn2+的吸附机理及其环境意义[J].矿物学报,2001,21(3):335-340
    [55]郭继香,袁存光,郑参军,等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报,1998,22(2):60-63
    [56]王代芝,黄育刚.酸改性膨润土处理含(Ⅱ)废水[J].无机盐工业,2005,37(2):38-40
    [57]李晖,谭光群,李瑞.蛭石对汞的吸附性能研究[J].重庆环境科学,2001,23(2):65-67
    [58]彭安,贾金平,周移.蓟运河底泥及其组成成分对甲基汞的吸附作用[J].环境化学,1987,6(2):22-32
    [59]谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报(工程科学版),2001,33(3):58-61
    [60]M.A.安德森,A.J.鲁宾.水溶液吸附化学[M].北京:科学出版社,1989
    [61]杜青,文湘华,李莉莉等.天然水体沉积物对重金属离子的吸附特性[J].环境化学,1996,15(3):199-206
    [62]LIN SH and WU CL. Ammonium removal from aqueous solution by ion-exchange[J]. Ind Eng Chem Res 1996,35:553-558
    [63]单宝田,张爱滨,胡立阁,等.沸石对重金属废水中Cu(HN3)42+的吸附性能研究[J].水处理技术,2002,28(4):207-209
    [64]Marc A Anderson, Alan J Rubin.水溶液吸附化学--无机物在固-液界面上的吸附作用[M].刘莲生,张正斌,刘国盛译,科学出版社,1989,119
    [65]罗道成,易平贵,陈安国.多孔质沸石颗粒对矿井水中吸附性能的研究[J].水处理技术,2003,29(6):338-340
    [66]施惠生,刘艳.膨润土对种金属离子Pb2+, Zn2+, Cr(VI),Cd2+的吸附性能[J].建筑材料学报.2006,9(5):507-510
    [67]仁乃林,徐佩荟.用底泥吸附处理含铬废水田.水处理技术,2002,28(3):172-174
    [68]戴荣玲,章钢娅,等.凹凸棒石黏土对Cd2+的吸附作用及影响因素[J].非金属矿.2006,29(5):47-50
    [69]Salt D E, Smith R D, Raskin I. Phytoremediation.Annu.Rev. Plant Physiol. Plant Mol. Biol[J].1998,49:643-668
    [70]桑伟莲,孔繁翔.植物修复研究进展,1997,7:40-44
    [71]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21:1196-1203
    [72]Salt D E, Baker A J M. Phytoremediation of Metals[J]. Biotechnol,2000,11:386-397
    [73]Salt D E, Blaylock M. Kumar N P B A,et al. Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plant[J]. Bio/Technology, 1995,13:468-474
    [74]Watanabe M E. Phytoremediation on the brink of commercialization[J]. Environ Sci. Technical,1997,31:182-186
    [75]Chaney R L. Land treatment of harzardous wastes. Park Ridge, Noyes Data Corpution[M].1983:50-76
    [76]骆永明.强化植物修复的螯合诱导技术及其环境风险[M].土壤,2000:57-61
    [77]Dushenkov S, Kapulnik Y. et al. Phytoremediation of Toxic Metals.Using Plants to Clean Up the Environment[M]. John Wiley&Sons,2000,89-106
    [78]Dushenlov V. Kumar/PDA,Mutto.et al. The Use of Rlants to Remove Heavy Metals from Aquaous Stream[J]. Environ.Sci. Technol,1995,29:1239-1245
    [79]Cunningham S D Shann J R, Crowley DF Et al. Phytoremediation of Soil and Water Contaminants[M]. American Chemical Society,1997:2-17
    [80]Kadlce R H, Knight R I. Treatmeng of Wetlands.In Krager FI Anderson T A, Coats J.R, eds. Phytoremediation of Soil and Water Contaminations[M]. American Chemical Society,1997:274-282
    [81]Huang J W, Chen J. In:Rengel Z. Handbook of Soil Acidity[M]. New York,Marcel Dekker,2003:449-472
    [82]金相灿.湖泊富营养化控制和管理技术[M].化学工业出版社,2001:113-146
    [83]谢丹超.湿地修复生态工程中水生植物对Cu、Zn污染废水的净化研究
    [84]辛晓云,马秀东.氧化塘水生植物净化污水的研究[J].山西大学学报(自然科学版),2003,26(1):85-87
    [85]李卫平,王军,李文,等.应用水葫芦去除电镀废水中重金属的研究[J].生态学杂志,1995,14(4):30-35
    [86]Zhu YL, et al.1999. Phytoremediation of trace elements by wetland plant II [J]. Water hyacinth J Envi ron. Qual,28:339-344
    [87]Green way M. Constructed wetlands in Queensland:Performance efficiency and nutrient bioaccumulation[J]. Ecol Eng.1999.12:39-55
    [88]达良俊,陈鸣.风眼莲不同部位对重金属的吸收、吸附作用研究[J].上海环境科学..2003,22(11):765-767
    [89]戴全裕,陈源高.凤眼莲对含银废水中银的富集量及其应用研究[J].应用生态学报.1991,2(2):159-161
    [901戴全裕,戴文宁.水生高等植物对废水中银的净化与富集特征研究[J].生态学报.1990,10(4):343-348
    [91]颜素珠,梁东,彭秀娟.8种水生植物对污水水中重金属铜的抗性及净化能力的探讨[J].中国环境科学,1990,10(3):166-170
    [92]LONG X X, YANG X E, YEZQ, el al. Differences of uptake and accumulation of zinc in four species of sedum[J]. Acta Botanica Sinica,2002,44(2):152-157
    [93]李锋民,熊治廷,郑振华.7种高等植物对铅的耐性及其生物蓄积研究[J].农业环境保护,1999,18(6):146-250
    [94]WEI S H, ZHOU Q X. Identification of weed species with hyperac-cumulative characteristics of heavy metals[J]. Progress in Natural Science,2004,14(6):495-503
    [95]Kidd P S, Diez J, Monterroso M C. Tolerance and bioac-cumulation of heavy metals in five populations of Cistus ladanifer L.subsp Ladanife[J]. Plant and Soil,2004,258: 189-205
    [96]Watson C, Pulford I D, Riddell-Black D. Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically:Development of a tolerance screening test[J]. EnvironmentalGeochemistry and Health,1999,21:359-364
    [97]余国营,张晓华,梁小民等.滇池水一植物系统金属元素的分布特征和相关性研究[J].水生生物学报,2000,24(2):172-177
    [98]王忠全,温琰茂等.几种植物处理含重金属废水的适应性研究[J].生态环境,2005,14(4):540-544
    [99]胡晓东,阮晓红,宫莹.植物修复技术在我国水环境污染治理中的可行性研究[J].云南环境科学,2004,23(1):48-50
    [100]鲁安怀.矿物环境属性与无机界天然自净化功能[J].矿物岩石地球化学通报,2002,21(3):192-197
    [101]周平,刘东.利用天然蛭石处理造纸黑液[J].环境科学研究,2001,14(3):37-39
    [102]赵芳.中南林业科技大学博士论文[D].2007
    [103]Borggaard O K. The influence of iron oxides on phosphate adsorption by soil[J].J Soil Sci,1983,34:333-341.
    [104]Cuttle S D. Chemical properties of upland peats influencing the retention of phosphate and potassium ions[J]. J Soil Sci,1983,34:75-82.
    [105]LiLi, Stanforth R. Distinguishing adsorption and surface precipitation of phosphate on goethite(a-FeOOH)[J]. J Colloid and Interface Science,2000,230:12-21.
    [106]Ozacar M. Adsorption of phosphate from aqueous solution onto alunite [J]. Chemosphere,2003,51:321-327.
    [107]Reed S C. Nitrogen removal in wastewater stabilization ponds [J]. Wat Pollut Control Fed,1985,57(1):39-45
    [109]顾龚平,吴国荣等.荇菜对污水的净化作用及其机制探讨[J].农村生态环境,2000,16(3):9-14
    [110]王庆安,任勇,钱骏等.成都市活水公园人工湿地塘床系统的生物群落[J].重庆 环境科学,2001,23(2):58-61
    [111]齐玉梅,高伟生.凤眼莲净化水质及其后处理工艺探讨[J].环境污染治理技术备,1999,7(2):81-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700