绢云母的酸处理与钠化修饰及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绢云母是一种重要的工业矿物原料,具有优良的物理化学性能,广泛应用于造纸、陶瓷、涂料、塑料、橡胶、化妆品等工业领域。聚合物/绢云母纳米复合材料不仅能够最大程度地发挥绢云母优良特性,而且能够附加新的功能,是提高绢云母价值和实现高档次应用的重要手段。但是绢云母结构非常稳定,难以直接用于制备聚合物/层状硅酸盐(PLS)纳米复合材料。
     本论文以热活化绢云母为对象,研究了硝酸处理对绢云母结构中铝溶出和层间剩余电荷量的影响,再对酸处理绢云母进行钠化修饰以获得层间阳离子交换性。经正交实验和单因素实验得到了酸处理和钠离子交换的最佳处理工艺。对酸处理和钠化修饰产物进行了表征,对过程机理进行了探讨。
     热活化绢云母经硝酸处理,结构中Al~(3+)离子有较大量溶出。在硝酸溶液浓度5mol/L,反应温度95℃,搅拌时间4h,固液比3%的优化条件下,Al~(3+)离子溶出量高达30mg/g左右。XRD分析表明,绢云母的晶体结构有一定程度的畸变,部分层间域出现扩张现象,但其晶体结构总体上依然完整。27Al NMR分析表明绢云母结构中四配位铝和六配位铝均被溶出。化学分析结果表明绢云母结构层中和层间的阳离子均被溶出,导致其结构单元负电荷从1.00降低到0.78,绢云母硝酸处理前后的Zeta电位测定结果证明了该结论。
     钠化修饰后绢云母形成了一定的阳离子交换能力。最佳实验条件为NaCl溶液浓度6mol/L,反应温度95℃,搅拌时间1h,重复3次。制备得到的绢云母的阳离子交换容量(CEC)最高达29.07mmol/100g。钠离子交换绢云母的晶体结构畸变程度变得更大,但仍然保持完整。
     对正交实验和单因素实验工艺条件的研究表明,硝酸处理及钠离子交换反应过程属于离子交换反应。获得足够高活化能的H~+离子越多,溶出的Al~(3+)离子及其它阳离子的量越高。Na~+离子水化能低,交换性好,溶液中Na~+离子的浓度越高,能够有效交换层间K~+离子的部分越多,从而钠化产物的CEC值越大。
Sericite is a kind of important industrial mineral raw materials with excellent physical and chemical properties. It has been widely applied in industrial fields such as paper making, ceramics, coatings, rubber, plastics and cosmetics. Polymer/sericite nanocomposites can not only farthest exert outstanding characteristics of sericite but also add new functions. So the preparation of polymer-layered silicate (PLS) nanocomposite based on sericite is an important means to improve the application values of sericite and realize high-level utilizations. However, the structure of sericite is firmly stabilized, it is hard to directly prepare PLS nanocomposite.
     Sericite raw material was calcined beforehand and its structure was activated to some extent. Then it was further modified through acid treatment and Na-exchange treatment. Influences of acid treatment on aluminum dissolution and interlayer negative charge of sericite structure were studied. Cation exchangeability was obtained by Na-exchange treatment. Optimum process conditions were determined by orthogonal experiments and single-factor experiments. The products were characterized and the action mechanisms were discussed.
     Relatively large amount of Al~(3+) cations were dissolved from heat-treated sericite using nitric acid. The dissolution amount reached around 30mg/g at the optimal processing conditions of concentration of nitric acid solution 5mol/L, reaction temperature 95℃, agitation speed 4h and solid-liquid ratio 3%. Results of XRD analyses show that the structure of sericite was distorted but not collapsed, and part of interlayer spacing was expanded. Results of ~(27)Al NMR analyses indicate that both 4-fold and 6-fold aluminum in the structure were dissolved. Because the cations in interlayer and layer were dissolved, the net negative charge reduced from 1.00 to 0.78. And this was proved by the Zeta potentials of sericite before and after acid-treated.
     Certain cation exchangeability was gained by Na-exchange treatment of acid-treated sericite. Optimum process conditions were determined: concentration of NaCl solution 6mol/L, reaction temperature 95℃, agitation time 1h and repeated for 3 times. Optimal CEC value reached 29.07mmol/100g. The distortion degree was larger than that of acid-treated sericite, but the structure of sericite was still integrated.
     Researches on the processing conditions by orthogonal and single-factor experiments indicate that acid treatment and Na-exchange treatment are ion exchange reaction. The dissolution amount of Al~(3+) cations and other cations increased with increasing H~+ cations with enough activation energy. The hydration energy of Na~+ cations are relatively low and its exchangeability is excellent. The CEC value of Na-exchanged products increased with increasing concentration of Na~+ cations that can efficiently exchange K~+ cations in the solution.
引文
[1]高惠民,袁继祖,张凌燕,等.绢云母及其加工利用现状.中国非金属矿工业导刊,2005,(5):6~9
    [2]方邺森,方金满,刘长荣.中国陶瓷矿原料[M].南京:南京大学出版社,1990
    [3]马鸿文.工业矿物与岩石.北京:地质出版社,2002:67~69
    [4]王建雄,王秋林.绢云母的特性及其对紫外线的屏蔽作用.湖南有色金属,2002,18(6):6~22
    [5]毛玉元,侯立玮.新的微晶云母资源的开发及其粉体材料的应用.中国粉体技术,2002,8(2):42~45
    [6]张进.以绢云母质粘土为主的墙地砖.河北陶瓷,1995,23(4):41~42
    [7]裴锋敏,石毅.嵩县西岭绢云母矿床地质特征及其成因浅析.河南地质,1996,14(3):160~167
    [8]陈建文.尾矿综合利用—银山铅锌矿从尾矿中回收绢云母.环境与开发,1997,12(4):8~9
    [9]李艳兵,苏昭冰,刘媛媛.鄂北地区绢云母的矿物学特征研究.建材地质,1997,5:30~34
    [10]张敬阳,杨少明,肖美添.福建硬质绢云母在釉面砖中的应用.陶瓷工程,1998,32(3):27~28
    [11]袁德丰.浙江省瑞安市曹建绢云母矿床地质特征、成因机理探析及找矿方向.浙江地质,2001,17(2):33~39
    [12]倪振平,易辉,苏迎春.沂水县汞丹山绢云母石英片岩矿床地质特征及综合利用前景.中国非金属矿工业导刊,2003,1:50~52
    [13]陈忠辉,杨凯乔.台湾产绢云母取代传统材料对彩色喷墨用纸印刷适性的研究.武汉大学学报·信息科学版,2006,31(9):809~813
    [14]丁浩,邹蔚蔚.中国绢云母资源综合利用的现状与前景.中国矿业,1996,5(4):14~18
    [15]丁浩,邓雁希,阎伟.绢云母质功能材料的研究现状与发展趋势[J].中国非金属矿工业导刊,2006,(增刊):17~21
    [16]孙丰强,张洪飞,宁维坤.绢云母的特性及其应用.世界地质,2000,19(2):192~198
    [17]沈发奎.橡塑用填料绢英粉的开发应用.特种橡胶制品,1996,17(3):10~17
    [18]卢宇峰,缪桂韶.绢英粉对橡胶硫化参数与力学性能的效应.特种橡胶制品,1998,19(4):14~17
    [19]周菁,晏大雄,朱永筠.超细绢云母粉在环氧防腐蚀涂料中的应用[J],涂料工业,2004,34(6):52~53
    [20]陈运熙,吴文彪,王民,等.MCA系列绢云母粉在橡胶中的应用研究.橡胶工业,1998,45(5):285~288
    [21]谭建农,张术根,彭志勤,等.我国绢云母的应用研究现状及发展问题探讨.中国非金属矿工业导刊,2003,(3):6~10
    [22] Genji JimBo. The international symposium on powder technology. Kyoto, Japan, 1981: 465~472
    [23] Luofei Zhao, Jin Huang, Bin Sun, et al. Study of the mechanical properties of mica-filled polypropylene-based GMT composite [J]. Journal of Applied Polymer science, 2001, 82(11): 2719~2728
    [24]吴六汀,夏安宁,周越刚,等.浙东地区硬质伊利石绢云母矿的主要物化性质及其工业应用[J].非金属矿,1991,83(5):2~6
    [25]张敬阳,吴季怀,赵煌,等.绢云母表面改性的实验研究.矿物学报,2004,24(4):351~354
    [26]张军,王庭慰,李立洪.绢云母表面改性及其在天然橡胶中应用研究.非金属矿,2003,26(2):22~24
    [27]冉松林,沈上越,宋旭波.绢云母的超细粉碎与表面改性及其应用研究[J].化工矿物与加工,2003,32(9):14~16
    [28]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能.硅酸盐学报,2007,35(3):373~376
    [29]林松柏,林建明,吴季怀,等.聚丙烯酸/绢云母超吸水性复合材料的合成与性能研究.矿物学报,2003,23(1):1~6
    [30]张玉龙,高树理.纳米改性剂[M].北京:国防工业出版社,2003:1~50
    [31]丁浩,邓雁希,王福利,等.绢云母选矿研究的现状与发展趋势.中国非金属矿工业导刊,2006,(6):33~36
    [32]高惠民,袁继祖,谭超兵,等.安徽庐江绢云母选矿试验研究.非金属矿,2003,26(3):27~28
    [33]龚先政,祖占良,郑水林.云母加工利用技术现状与发展动向.中国非金属矿工业导刊,2000,(5):18~21
    [34] Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater, 1996, 8: 29~35
    [35] Gorrasi G, Tortora M, Vittoria V, et al. Transport and mechanical properties of blends of poly(caprolactone) and a modified montmorillonite/poly(caprolactone) nanocomposites [J]. Polym Sci Polym Phys, 2002, 40: 1118~1124
    [36] Fischer H. Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C, 2003, 23: 763~772
    [37] Sinha Ray S, Okamoto K, Okamoto M. Structure–property relationship in biodegradable poly (butylene succinate)/layered silicate nanocomposites. Macromolecules, 2003, 36: 2355~2367
    [38] Kathleen A. Carrado, Langqiu Xu. In Situ Synthesis of Polymer-Clay Nanocomposites from Silicate Gels. Chem. Mater., 1998, 10 (5): 1440~1445
    [39] Beyer G. Nanocomposites: a new class of flame retardants for polymers. Plast Addit Compound, 2002, 4(10): 22~27
    [40] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R, 2000, 28: 1~63
    [41] Solomon MJ, Almusallam AS, Seefeldt KF, et al. Rheology of polypropylene/clay hybrid materials. Macromolecules, 2001, 34: 1864~1872
    [42] Cho JW, Paul DR. Nylon 6 nanocomposites by melt-compounding. Polymer, 2001, 42: 1083~1094
    [43] Okada A, Kawasumi M, Kurauchi T, et al. Synthesis and characterization of a nylon 6-clay hybrid [J]. Polym Prepr, 1987, 28: 447
    [44] Mehrotra V, Giannelis EP. Conducting molecular multilayers: intercalation of conjugated polymers in layered media. Mater Res Soc Symp Proc, 1990, 171: 39~44
    [45] Vaia RA, Ishii H, Giannelis EP. Synthesis and properties of two dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater, 1993, 5: 1694~1696
    [46] Suprakas Sinha Ray, Masami Okamoto. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539~1641
    [47] VanderHart DL, Asano A, Gilman JW. NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules, 2001, 34: 3819~3822
    [48] Porter D, Metcalfe E, Thomas MJK. Nanocomposite fire retardants-a review. Fire Mater 2000, 24: 45~52
    [49] Krishnamoorti, Vaia RA, Giannelis EP. Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater, 1996, 8: 1728~1734
    [50]王月欣,李英,张留成.聚合物/层状硅酸盐纳米复合材料的研究进展——层状硅酸盐粘土的有机改性.化学世界,2005,(9):562~565
    [51]张径,杨玉昆.插层法悬浮聚合制备PMMA/蒙脱土纳米复合材料[J].高分子学报,2001(1):79~82
    [52]张楠,徐日炜,余鼎声.离子偶极法提纯改性蒙脱土[J].石油化工,2002,31(10):807~809
    [53]王柯,朱湛,郭炳南.有机蒙脱土的制备及其结构表征[J].北京理工大学学报,2002,22(2):240~243
    [54]吴平霄.有机插层蛭石功能材料的制备与表征研究.功能材料,2006,6(34):728 ~ 731
    [55]韩炜,张尧,刘炜.不同插层方法对蛭石层间有机离子排布及层间距的影响.岩石矿物学杂志,2005,24(6):612~616
    [56]王寻,周平,李博文,等.聚苯乙烯/高岭石纳米复合材料的制备与表征.硅酸盐学报,2003,31(10):958~964
    [57]袁金凤,张留成.PMMA/黑云母纳米复合材料的制备及表征.高分子学报,2005,(1):24~28
    [58] F. del Rey-Perez-Caballero, G. Poncelet. Preparation and characterization of microporous 18? Al-pillared structures from natural phlogopite micas. Microporous and Mesoporous Materials, 2000, 41: 169~181
    [59] F.J. del Rey-Perez-Caballero, G Poncelet. Microporous 18? Al-pillared vermiculites: preparation and characterization. Microporous and Mesoporous Materials, 2000, 37: 313~327
    [60]江曙.环氧树脂/金云母纳米复合材料制备及表征.[硕士学位论文].北京:中国地质大学,2006
    [61]黄振宇,廖立兵.蛭石的结构修饰及有机插层试验.矿产保护与利用,2005,4(2):17~21
    [62]张博.聚合物/高岭土插层复合材料的研究.[硕士学位论文].甘肃:兰州大学,2007
    [63]刘显勇,何慧,贾德民.聚合物/高岭土纳米复合材料的研究进展.高分子材料科学与工程,2007,23(3):25~29
    [64] Balazs AC, Singh C, Zhulina E, Lyatskaya Y. Modeling the phase behavior of polymer/clay nanocomposites. Acc Chem Res, 1999, 32: 651~657
    [65] Lincoln DM, Vaia RA, Wang Z-G, et al. Secondary structure and elevated temperature crystallite morphology of nylon 6/layered silicate nanocomposites. Polymer 2001, 42: 1621~1631
    [66] Vaia RA, Giannelis EP. Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates. Polymer, 2001, 42: 1281~1285
    [67] Gacitua WE, Ballerini AA, Zhang J. Polymer nanocomposites: synthetic and natural fillers. A review. Maderas Ciencia y tecnología, 2005, 7: 159~178
    [68]宋功保,彭同江,刘福生,等.我国主要白云母的矿物学特征研究.矿物学报,2005,25(2):123~129
    [69]中国科学院地球化学研究所.矿物X射线粉晶鉴定手册[M].北京:科学出版社,1978
    [70]建筑材料工业技术监督研究中心. JC/T 1021.2-2007.中华人民共和国建材行业标准-非金属矿物和岩石化学分析方法第二部分硅酸盐岩石、矿物及硅质原料化学分析方法.北京:中国建材工业出版社,2009
    [71]潘兆鲁,万朴.应用矿物学[M].武汉:武汉工业大学出版社,1993:200~270
    [72]孙红娟,彭同江,刘颖.含膨胀性晶层层状硅酸盐矿物的层电荷表征方法及其原理.矿物学报,2007,27(1):19~24
    [73] L.Y. Zhao, X.K. Wang, N.Z. Wu, et al. Cleaving of muscovite powder by molten lithium nitrate in Colloid. Polym Sci, 2005, 283: 699~702
    [74]陈星綵,沈绥,赵杏媛.应用29Si和27Al MAS NMR谱研究粘土结构.石油勘探与开发,1996,23(4):70~74
    [75] Jonathan F. Stebbins. Nuclear Magnetic Resonance Spectroscopy of Silicates and Oxides in Geochemistry and Geophysics. In "Handbook of Physical Constants, v. 2", T.J. Ahrens, ed., American Geophysical Union, Washington D.C., 1995: 303~332
    [76] W. P. Gates, P. Komadel, J. Madejová, et al. Electronic and structural properties of reduced-charge montmorillonites. Applied Clay Science, 2000, 16(5): 257~271
    [77]黄继泰.粘土矿物的结构特征及其应用研究.结构化学,1996,15(6):438~443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700