金龟子绿僵菌遗传转化体系的建立及转化子特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金龟子绿僵菌(Metarhizium anisopliae Sorokin)在农林害虫生物防治中应用广泛,也是目前微生物农药的研究热点之一。与传统的化学农药相比,绿僵菌寄主范围广,致病力强,具有对人、畜、农作物无毒,无残留、菌剂易生产,持效期长,害虫不产生抗药性等优点,具有广阔的应用前景。但作为一种昆虫病原真菌,绿僵菌同时也存在着杀虫速度慢、效率低、防治效果不稳定等缺点,大大影响了其杀虫效果。另外由于自然分离到的菌株往往毒力不强或对环境的适应力较弱,需改良后才能应用于生物防治,国外对其遗传转化方面已有大量研究,然而国内在这方面尚未进行深入研究从而制约了绿僵菌优良菌株的开发与利用。
     本研究以金龟子绿僵菌IMI330189为目标菌株,研究其原生质体制备、转化体系的建立并对稳定转化子的生物学特性进行了研究,为我国绿僵菌遗传转化的研究提供参考。主要研究结果如下:
     采用二级培养法收集菌丝体在采用0.7mol/L的NaCl溶液作为渗透压稳定剂,20ml原生质体Buffer,30℃下处理5h的酶解条件下可形成5~6×10~7~10~8个/g湿菌丝原生质体,再生率为15%。
     用CaCl_2-PEG介导法对绿僵菌原生质体进行了遗传转化,用G418作为筛选标记,构建了绿僵菌的遗传转化体系。通过敏感性试验得出G418的使用浓度为300μg/mL,转化频率达到15~23个/μg质粒,转化子能够稳定遗传。CaCl_2-PEG介导的绿僵菌遗传转化体系的建立,为从基因水平利用分子生物学手段对绿僵菌进行改造,得到稳定高效的杀毒工程菌株奠定了基础。
     对得到的稳定的转化子进行了培养基筛选、生长速度、产孢量、致病性等方面进行了研究。通过对转化子生长的培养基进行筛选,筛选出PDAY为转化子生长的最适培养基。对生长速度进行测定结果表明,对照菌株的平均日增长量为3.85mm,转化子的日增长量为3.30~3.79mm之间,生长速度均比对照慢;在转化子中TM1与TM3菌株生长速度最快,分别为:3.78±0.02mm,3.81±0.07mm;TM6菌落生长速度最慢,日增长量为3.85±0.13mm。转化子的产孢量介于0.68~1.72×10~8sp/ml之间,与对照1.58×10~8sp/ml相比,TM2菌株的产孢量为1.72×10~8sp/ml,高于对照但不存在显著性差异。对转化子进行毒力测定发现:TM19和TM20两株转化子的LT_(50)值与其它几株转化子之间均存在显著性差异,LT_(50)值分别为8.4340 d和8.3067 d,致死中时长于其它菌株,说明这两株菌株对尔亚飞蝗的致病力比其它菌株减弱。
     本研究建立的PEG转化体系,并对得到的转化子的生物学特性进行了测定,为进一步深入研究绿僵菌的遗传转化、工程菌的构建、以及产孢量和致病性等相关基因的克隆鉴定奠定了基础。
Metarhizium anisopliae Sorokin has been widely applied in biological control of the agricultural and forestry pests, which is also the main focus of the microbial pesticide at present. M. anisopliae has a lot of advantages over the conventional chemical pesticides: broad host range, high pathogenicity, and no toxicity to human being, livestock, and crops. So it can be used widely for killing the pest in future. But the natural isolate has low virulence or adapt the environment poorly, so it can only be used for biological control after improvement.
     The present study investigated the protoplast preparation and the establishment of transformation system of M. anisopliae IMI330189. The biological characteristics of stable transformants were also investigated. The present study provided some references for the research of genetic transformation of M. anisopliae. The main results of present study are as follows:
     Mycelium was collected by two-steps cultures, and then it was processed for 5h with protoplast buffer at 30℃, 0.7 mol/L NaCl solution was used as osmosis stabilizer, 5~6×10~7~10~8sp protoplast/g wet mycelium was formed and regeneration rate was 15%.
     The genetic transformation system of M. anisopliae was constructed by PEG-mediated protoplast and G418 was used as selection marker. M. anisopliae growth was inhibited completely when the medium contained 300μg/ml G418.The results of sensitivity examinations showed that the efficiency of transformation was 15~23 transformants/μg vector DNA when the concentration of G418 was 300 g/mL, and transformants existed stably. The construction of M. anisopliae transformation system of PEG-mediated laid a good foundation for researching the M. anisopliae from the molecular level and gaining stable, and effective re, combinant strain.
     This research mainly focus on the optimal medium, growth speed, spore production, and pathogenecity of stable transformants. The result manifested as follows: 1. PDAY was the best medium for the optimal medium after selection research. 2. The daily rate of growth of transformants which were lower than CK, varied from 3.30 to 3.79mm, compared to CK (3.85mm). Faster growth presented in transformants TM1 and TM3 in contrast to TM6 of 3.85±0.13mm, the number was 3.78±0.02mm and 3.81±0.07mm respectively. 3. As for the spore production, the transformants produced 0.68~1.72×10~8sp/ml. Compared to the control, the production of TM2 was higher than the control, but did not show the remarkable difference. 4. The result on virulence of transformants manifested that TM19 and TM20 showed remarkable difference in LT_(50) being of 8.4340d and 8.3067d respectively, compared to other transformantants. The Lethal center showed longer than other strain. Therefore, the pathogenic efficacity of two strains is weaker to L. migratoria.
     PEG-mediated transformation system constructed in the present study would be helpful for the study of genetic transformation and the clone of pathogenic genes of M. anisopliae.
引文
1.安学芳,朱幼玲.东亚飞蝗室内饲养繁育技术的建立及其相关研究.上海实验动物科学,2003,23(3):171-174
    2.柴容明.生物技术在未来农业中的角色.世界农业,2000,4:29-30
    3.陈波.两种微型绿藻营养生理及原生质体于杂交育种的研究:[广州暨南大学硕士学何论文].广州:广州暨南大学,2000
    4.陈丽梅,潘俊松,何欢乐,蔡润.农杆菌介导的基因转化研究进展.甘肃科学学报.2005,17(2):61-63
    5.陈三凤,刘德虎.现代微生物遗传学.北京:化学工业出版社,2003:196-206.
    6.陈晓琳.两种虫草无性型原生质体融合及蜂头虫草发酵条件的研究:[安徽农业大学硕士学位论文].安徽:安徽农业大学,2001
    7.陈贻云,尤其儆.东亚飞蝗的生物学特性.广西植保,1993(3):4-6
    8.陈振明,郭泽建,林福呈,李德葆.以潮霉素抗性为选择标记的毛壳霉原生质体转化.浙江大学学报(农业与生命科学版),2001,27(1):19-22
    9.陈振明,王政逸,郭泽建,林福呈,李德葆.绿色木霉内切儿丁质酶基因的克隆及其毛壳菌转化.菌物系统.2002,21(3):375-382
    10.迟玉杰,杨谦,宋颖琦.对哈茨木霉转化子菌体形态观察及抗药性测定.哈尔滨工业大学学报.2002,34(6):784-788
    11.迟玉杰,杨谦.毛壳菌对植物病害的生物防治及存在的问题.农业系统科学与综合研究.2002,18(3):215-218
    12.迟玉杰,杨谦.植物病原菌对杀菌剂产生抗性的机制与抗性的利用.农业系统科学与综合研究.2001,17(4):313-316
    13.迟玉杰,杨谦,杜金哲.TUB2基因鉴定及其在毛壳菌中的转化.北京林业大学学报.2003,25(4):30-34
    14.杜红英.关于原生质和原生质体的定义.荆门职业技术学院学报.2004,18(3):70-71
    15.方志刚,张立钦,刘军.主要虫生真菌的分子生物学研究进展.南京林业大学学报.2001,25(2):63-67
    16.冯明光.生物杀虫剂与新的农业科技革命.植物保护21世纪展望暨第三次全国青年植物保护科技工作者学术研讨会,北京:中国科学技术出版社,1998
    17.高松.绿僵菌研究新进展.中国生物防治,1996,12(4):182-187
    18.高兴喜,杨谦,宋金柱,郭兆奎.根癌农杆菌介导的木霉菌遗传转化方法.高技术通讯.2004,15:32-35
    19.高兴喜,杨谦.根癌农杆菌介导的CryIA(b)基因在毛壳菌中的转化.农业环境科学学报.2005.24(1):22-25
    20.高兴喜,杨谦.根癌农杆菌介导的球毛壳菌遗传转化及T-DNA插入突变体的获得.微生物学报.2005,45(1):129-131
    21.高兴喜,杨谦等.T-DNA在丝状真菌中的插入突变及其应用前景.哈尔滨工业大学学报,2005,9:1177-1179
    22.郭郛,陈永林,卢宝廉.中国飞蝗生物学.山东科学技术出版社,1989
    23.郭丽琼,陈守才,林俊芳.食用菌遗传转化研究进展.食用菌学报,2001,8(4):47-53
    24.贺筱蓉,黄小倩.链霉菌原生质体的制备.生物学通报.1998,33(1):40-41
    25.洪华珠,杨红.杀虫微生物学纲要.武汉:华中师范大学出版社,1997,1-7
    26.黄勃,樊美珍,李增智.绿僵菌属系统分类的研究进展.安徽农业大学学报,2002,29(2):169-172
    27.黄卫,汪天虹,吴志红,吴静,李滢冰.丝状真菌遗传转化系统研究进展.微生物学杂志,2000,20(3):40-44
    28.贾建航,李莉云,刘国振.担子菌遗传转化研究进展.食用菌学报.1997,4(3):59-64
    29.李宝玉,张礼生,农向群,高松,张泽华.金龟子绿僵菌孢子低温休眠与复苏.中国生物防治,2005,21(3):198-200
    30.李宝玉,张泽华,高松等.虫生真菌的研究与应用.中国生物防治,2004,20(增刊):26-31
    31.李宝玉.金龟子绿僵菌孢子制备贮存及检测标准化研究:[中国农业科学院研究生院硕士学位论文].北京:中国农业科学院研究生院,2005
    32.李杰,刘颖,黄洁虹等.G418和氯霉素作为转基因盐藻的抗生素筛选标记.生物技术,2003,13(2):22-23
    33.李梅,辛平,杨谦.球毛壳菌原生质体形成与再生研究.哈尔滨工业大学学报.2002,34(5):595-598
    34.李梅,杨谦,李常银.多菌灵抗性基因转化哈茨木霉的研究.农业环境科学学报.2003.22(4):493-495
    35.李梅,杨谦,李常银.影响球毛壳菌原生质体转化的因素.哈尔滨工业大学学报,2003,35(2):787-789
    36.李维,张义正.以潮霉素B磷酸转移酶基因为遗传标记的启动子探针型载体的构建.四川大学学报(自然科学版).1998,36(4):736-740
    37.李文华,张永军,于中康.虫生真菌穿透昆虫表皮相关理化因子的研究:昆虫与环境-中国昆虫学,2001年学术年会论文集.北京:科学技术出版社,2001,473-479
    38.李增智.中国虫生真菌研究与应用.昆虫真菌学的发展,中国农业科技出版,1997
    39.梁平彦.丝状真菌的质粒、原生质体转化和外源基因表达.生物工程进展.1992.12(1):21-28
    40.林华峰.虫生真菌研究进展.安徽农业大学学报,1998,25(3):251-254
    41.林良斌,刘彦中,杨志新.植物基因工程在应用中存在的问题及对策.云南农业大学学报,2001,16(2):144-148
    42.刘谨,王汊忠.丝状真菌外源基因表达系统研究的现状及展望.微生物学通报.2000,27(6):453-457
    43.刘杏忠.昆虫病原真菌研究现状、问题及展望.中国虫生真菌研究与应用,2003:1-8
    44.马德良.球孢白僵菌原生质体遗传转化研究及其杀虫相关基因的分离:[吉林农业大学硕士学位论文].吉林:吉林农业大学,2006
    45.牛艳芳.蒙古口蘑与双抱蘑菇原生质体融合育种研究:[内蒙古农业大学硕士学位论文].内蒙古农业大学,2004
    46.农向群,吴正凯,包建中.金龟子绿僵菌原生质体形成和再生的研究.微生物学通报,1990,2:76-80
    47.裴炎,方卫国,张永军.昆虫病原真菌致病寄主的机制和基因工程改良.农业生物技术学报,2003,11(3):221-216
    48.邱君志,伍赠玲,黄忠鹏等.虫生真菌的遗传改良.武夷科学,2003,19(12):246-249
    49.裘辉,吴振强,梁世中.金龟子绿僵菌及其杀虫机理.农药,2004,43(8):342-345
    50.闰培生,罗信昌,周启.丝状真菌基因工程研究进展.生物工程进展,1999,19(1):31-41
    51.沈坤发,茅绍雄,林光明等.主要虫生真菌的分子生物学研究概述.江西农业大学学报,2001,23(5):140-144
    52.宋漳.化学杀虫剂对绿僵菌的影响及菌药混用研究.福建林学院学报,2001,21(4):308-311
    53.唐国敏,杨开宁.丝状真菌分子遗传学研究进展.生物工程进展,1991,11(3):43-51
    54.唐国敏.丝状真菌基因表达系统研究进展.真菌学报,1992,11(2):81-88
    55.汪天虹,吴静,邹玉霞.丝状真菌瑞士木霉分子生物学研究进展.菌物系统,2000,19(1):147-152
    56.王滨,李增智,樊美珍,黄勃.昆虫病原真菌基因研究进展.菌物系统,2001,20(3):430-434
    57.王成树,李增智.虫生真菌分子生物学研究进展.微生物学通报,2001,28(3):88-92
    58.王海川,尤名生.绿僵菌对昆虫的入侵机理.微生物学通报,1999,26(1):71-73
    59.王洪洲,郑幼霞.庆丰链霉菌原生质体的形成、再生及融合重组的研究.遗传学报,1982,9(3):172-179
    60.王政逸,王秋华,李德葆.根癌土壤杆菌介导的丝状真菌转化.菌物系统,2003,22(2):339-344
    61.徐庆毅.我国生物技术发展的回顾与展望.生物工程进展,1995,15(1):3-7
    62.徐伟松,等.昆虫病原真菌在害虫防治上的应用.广西农业科学,2003(6):51-52
    63.杨谦,T.R.V.Fox.核盘菌对多菌灵抗约性及其发展.东北林业大学学报.1995,23(5):9-13
    64.杨谦,赵小岩.多菌灵抗性基因在木霉菌中的转化方法.科学通报,1998,43(22):2423-2426
    65.应月青.绿僵菌固体培养基的微波灭菌研究:[中国农业科学院研究生院硕士学位论文].北京:中国农业科学院研究生院,2006
    66.张超,王玉霞.微生物农药在病虫害防治中的应用及发展前景.西南园艺,2003(4):58-59
    67.张岱,蔡良婉,李进.G418抗性标记在酵母体系中的应用.生物化学杂志,1989,5(6):563-564
    68.张惠展.基因工程概论.华东理工大学出版社,2000:131-133
    69.张克勤,高松,刘杏忠.我国杀虫真菌的研究现状与展望.植物保护,1996(1):43-46
    70.峥嵘,张功.绿色木霉原生质体的制备与再生研究.内蒙古师范大学学报自然科学(汉文)版.2002,31(2):145-149
    71.郑荣,朱春定,朱宝泉.酵母和丝状真菌转化方法的探讨.国外医药抗生素分册.1997,18(1):11-20
    72.朱衡,瞿峰,朱立煌.利用氯化苄提取适于分子生物学分析的真菌DNA.真菌学报.1994, 13(1):34-40
    73. Ana Paula G F, Itabajara da S V J, Aoi M, et al. In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick, Boophilus microplus. Veterinary Parasitology, 2000, 94: 117-125
    74. Austin B, Hall R M, Optimized vectors and selection for transformation of Neurospora crassa and Aspergillus nidulans to bleomycin and phleomycin resistance. Gene, 1990, 93: 157-162
    75. Balance. D. J., Buxton. F.P., Transformation of Aspergillus nidulans by the orotidine-5-(p) decarboxylase gne of N.crassa. Biochem. Biophys. Res.Commun., 1983, 112: 284-289
    76. Bartlett M. C., Jaronski S. T.. Mass production of entomogenous fungi for biological control of insects. In: Burge, M. N.(ed) Fungi in biological control systems. Manchester, UK, Manchester University Press, 1988, 61-85
    77. Bernier. L., Cooper. R. M., Charnley. A. K., Clarkson. J. M. Transformation of the entomopathogenic fungus Metarhizium anisopliae to benomyl resistance. FEMS Microbiology Letters, 1989,60:261-266
    78. Bidochka M J. Monitoring the fate of biocontrol fungi.In: Fubgil as biocontrol agents, Butt T M, Jackson.C, Magan. N(eds), New York: CABI international, 2001, 193-218
    79. Bundock P, van Attikum H, den Dulk-Ras A, Hooykaas PJ,. Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefacients. Yeast, 2002, 19(6): 529-536
    80. Case, M.E., Schweizer, M., Efficient Transformation of Neurospora crassa by Utilizing Hybrid Plasmid DNA. Proc. Nati. Acad. USA, 1979, 76: 5259-5263
    81. Chamley A K, Entomopathogenic fungi and their role in pest control. The Mycota Ⅳ Environmental and Microbial Relationships, Wicklow/Soderstrom. 1997. 185-201
    82. Charley C S, Marcia S N S, P M, et al. The Metarhizium anisopliae trp1 Gene: Cloning and Regulatory Analysis. Curr. Microbiology, 2004, 49: 66-70
    83. Churchill, A.C.L., Ciuffetti, L.M., Hansen, D.R., Van Etten, H.D. and Van Alfen, N.K. Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous
    84. Cullen D, Leong S A, Wilson L J et al. Transformation of Aspergillus nidulans with the hygromycin-resistance gene hph. Gene, 1987, 57: 21-26
    85. de Groot M J, Bundock P, Hooykaas PJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol, 1998, 16(9): 839-842
    86. Femandez-Larrea, J. and Stahl, U. Transformation of Podospora anserina with a dominant resistance gene. Curr. Genet. 1989, 16: 57-60
    87. Francisco Fierro, Federico Laich et al. High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. International Journal of Food Microbiology, 2004, 90: 237-248
    88. Fungaro, M.H., Rech, E., Muhlen, G.S., Vainstein, M.H., Pascon, R.C., de Queiroz, M.V., Pizzirani-Kleiner, A.A. and de Azevedo, J.L.Transformation of Aspergillus nidulans by microprojectile bombardment on intact conidia. FEMS Microbial. Lett. 1995, 125: 293-298
    89. Goettel M.S.,Leger R.J.S.,Bhairi S.,Jung M.K.,Oakley B.R.,Roberts D.W.and Staples R.C.Pathogenicity and growth of Metarhizium anisopliae stable transformed to benomyl resistance.Current Genetics,1990,17:129~132
    90. Goldman,G.H.,Van Montagu,M.and Herrera-Estrela,A.Transformation of Trichoderma harzianum by high voltage electric pulse.Curr.Genet.1990,17:169~174
    91. Gouka Robi,J,Gerk Casper,Hooykaas Paul,J.J.,et al.Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombition.Nature
    92. Hajek,A.E,St.Leger,R.G.Interactions between fungal pathogenesis and insect hosts.Annu Rev Entomol,1994,39:293~322
    93. Kim.S.Y.,Marzluf.G.A.,Transformation of Neurospora crassa with the trp-1 gene and the effect of the host strain upon the fate of the transforming DNA.Curr Genet,1988,13:65~70.
    94. Kolar M,Punt P J,et al.Transformation of Penicillium chrysogenum using dominant selection marker and expression of an Escherichia coli lacZ fusion gene.Gene,1988,62:127~134
    95. László Manczinger,Orbán Komonyi,Zsuzsanna Antal,Lajos Ferenczy,A method for high-frequency transformation of Trichoderma viride.Journal of Microbiological Methods,1997,29:207~210
    96. Lorito,M.,Haynes,C.K.,Di Pietro,Harman,G.E.Biolistic transformation of Trichoderma harzianum and Gliocludium virens using plasmid and genomic DNA.Curr.Genet.1993,24:349~356
    97. M.Cléria Valadares~Inglis,Peter W.Inglis,Transformation of the entomopathogenic fungus,Metarhizium flavoviride strain CG423 to benomyl resistance.FEMS Microbiology Letters,1997,155:199~202
    98. Marcia Cristina Furlaneto,Fernanda Gonzalez Paiao,Fabiana Gisele da S.Pinto et al.Transformation of the entomopathogenic fungus Metarhizium flavoviride to high resistance to benomyl.Can.J.Microbiol,1999,45:875~878
    99. Mark S.Goettel,Raymond J.St.Leger,Srirama Bhaira et al.Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomy resistance.Curr Genet,1990,17:129~132.
    100. Maurício Reis Bogo,Marilene Henning Vainstein,Francisco José Lima Arag(?)o,Elibio Rech c,Augusto Schrank,High frequency gene conversion among benomyl resistant transformants in the entomopathogenic fungus Metarhizium anisopliae.FEMS Microbiology Letters,1996,142:123~127
    101. Meyer,V.,Weddle,M.& Stahl,U.Transcriptional regulation of the antifungal protein in Aspergillus giganteus.Molec.Genet.Genomics 2002,266:747~757
    102. Orbach,M.J.,Porro,E.B.and Yanofsky,C.Cloning and characterisation of the gene for B-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker.Mol.Cell.Biol.1986,6:2452~2461
    103. Radford.A.,S.Pope,A.Sazci,et al.Liposome mediated genetic transformation of Neurospora crassa.Mol Gen Genet,1981,184:567~569
    104. Reader, U. and Broda, P. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbial. 1985, 1: 17-20
    105. Roberts D W., St. Leger R J., Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. 2004, 1-70
    106. Rosato, Y.B., Messias, CL. and Azevedo, J.L. Production of extracellular enzymes by isolates of Metarhizium anisopliae. J. Invertebr. Pathol. 1981, 38: 1-3.
    107. Ruiz-Diez, B., et al. Strategies for the transformation of filamentous fungi[J]. Journal of Applied Microbiology, 2002, 92: 189-195
    108. Sewify. G. H., Habib. S. M., Biological control of the tick fowl Argas persicargas persicus.J Pest Science, 2001,74: 121-123
    109. Silveira. W. D., Azevedo. J.L., Protoplast fusion and genetic recombination in Metarhizium anisopliae. Enzyme Microbiol.Technol. 1987,9: 149-152
    110. St. Leger R J, Durrands. P K, Cooper R M and Chamley A K. Role of extracellular chymoelase in the virulence of Metarhizium, anisopliae for Manduca sexta. Journal of Invertebrate pathology, 1988,52:285-294
    111. St. Leger R J, Roberts D W, Engineering improved mycoinsecticides. Trend in Biotechnology, 1997, 15:83-85
    112. St. Leger, R.J., Shimizu,S., Joshi, L., Bidochka, M.J. and Roberts, D.W. Co-transformation of Metarhizium anisopliae by electroporation or using the gene gun to produce stable Gtransformants. FEMS Microbial. Lett. 1995, 131: 289-294
    113. Weiguo Fang, Yan Pei, and Michael J. Bidochka Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Can. J. Microbiol. 2006, 52(7): 623-626
    114. Yelton, M. M., Hamer, J. E., and Timberlake, W. E., Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA, 1984, 81: 1470-1474

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700