飞机蜂窝结构动态冲击下的破坏机理及吸收能量分配机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料由于有重量轻、比强度高、比刚度大,可设计并耐腐蚀、抗疲劳的优良性能,蜂窝夹层复合材料具有明显的冲击敏感性,飞机蜂窝夹层结构缺陷与损伤直接影响飞机结构安全,其结构的冲击损伤形式是与冲击的能量水平密切相关的,冲击损伤是在持续时间短暂的强载荷作用下,夹层复合材料发生的变形和破坏,材料的损伤物理尺寸、材料的变形与其承受的应力及变形中的应变率和内能等变量之间出现复杂的关系。在冲击载荷作用下材料的存在多种动态破坏形式,冲击载荷在材料中引起的微观组织的变化有些是不可逆,对材料的力学性能有着明显的影响。
     基于均匀化理论,利用蜂窝芯材的表征单元,可以推导出蜂窝芯材的等效密度和面外等效弹性模量的表达式。蜂窝芯层压缩破坏的过程是以芯层单层斜壁的失稳开始,随着面外压缩载荷的增加,蜂窝芯层结构的破坏以双层壁达到最大承载能力失稳开始,并且按一定波长折叠,形成多层折叠结构。面外压溃实验用来研究不同材质及不同蜂窝尺寸的蜂窝芯层和蜂窝夹芯板,并对变形失效机理进行了对比。蜂窝芯层材料的压溃失效特征依赖于蜂窝基体材料特性以及蜂窝尺寸。
     蜂窝夹层梁蒙皮可以看做工字梁的翼缘,因蜂窝芯层在而内的拉伸刚度很小,结构的弯矩、弯曲正应力,面内压缩应力及扭矩主要由蒙皮材料承担,蜂窝芯层类似于工字梁的腹板,只承担剪力,对蜂窝夹层结构的蒙皮起支撑作用并使结构的弯曲刚度大幅度增加。复合材料蒙皮蜂窝夹层梁准静态三点弯曲实验,得到复合材料蜂窝夹层梁的载荷与跨中点挠度的理论关系,能够与实验结果吻合较好,并可预测出蜂窝夹层梁在三点弯曲状态下能够承受的最大的载荷。金属蒙皮蜂窝夹层梁在冲击载荷作用下的动力学特征和动态响应问题,可以通过冲击物的动力特性和蜂窝夹层梁的冲击动力特性共同描述。在弹道冲击和落锤冲击实验中,蜂窝夹层梁的厚度不同而导致冲击损伤与失效模式出现不同。通常情况下,结构承受动载荷的能力常常以结构永久变形的程度作为研究结构抗冲击性能的主要参数,但对于蜂窝夹层结构,其损伤及失效模式的复合性及复杂性,很难从外部损伤状况去了解结构强度退化的程度。蒙皮厚度不同的蜂窝夹层梁在不同冲击载荷作用下的动态响应结果可以发现,厚蒙皮蜂窝夹层梁在冲击损伤后结构完整性退化较为严重。
     复合材料蜂窝夹层结构在冲击载荷作用下的损伤模式主要包括蒙皮基体损伤、蒙皮纤维断裂、分层损伤和蜂窝芯层压溃失效损伤。准静态刻痕实验的目的是研究复合材料蒙皮蜂窝夹层结构板在压缩载荷作用下的局部刻痕失效模式,其失效模式依赖于蒙皮的厚度以及边界条件,蜂窝结构底面刚性支撑条件是影响失效破坏的主要因素。在落锤冲击载荷作用下,凹坑深度与冲击能量之间的关系,能够反映出随着冲击能量的增加损伤程度变化的对应性和规律性。对于厚蒙皮蜂窝夹层板,冲击损伤阻抗在蒙皮穿透之前较强,抗冲击性能良好,但在蒙皮断裂穿透之后抗冲击能力减弱,凹坑深度与冲击能量之间的关系可以在拟合实验数据的曲线中预测不同冲击能量载荷作用下蜂窝夹层结构的损伤凹坑深度。
     蜂窝芯材是良好的吸能材料,这与蜂窝芯材在面外压缩载荷作用下的应力应变曲线中很宽的屈服平台有关,在蜂窝芯材塑性压溃屈服变形过程中,蜂窝壁有规律地折叠褶皱变形过程中通过破坏吸收大量的压缩能。金属蒙皮蜂窝夹层梁在低速冲击载荷作用下吸收的冲击能量大部分耗散于结构材料的失效和破坏,只有很小部分耗散于结构的整体弹性变形。吸收能量分割与能量耗散方法为受冲击而发生变形和破坏的蜂窝夹层梁提供了量化的计算方法,这样的分析方法与结论对设计适当蒙皮厚度的蜂窝夹层结构起到指导作用。
For the superior mechanical properties, such as light weight, high stiffness to weight and strength to weight ratios, fatigue and corrosion resistance, better dimensional stability, during the sandwich structures service life, impact damage is the primary reason to degenerate the structure loading carring capacity, such as the bird strike, severe hail storm, dropped tools, collision with the ground equipment and etc. Defects and damages of aircraft sandwich structure directly influence the security. Impact damage mode closely relate to the impact energy, sandwich structure deformation and the material physical damage size appear complicated relationship with the stress, the strain rate and the variable of internal energy. Under impact loading, material existence a variety of dynamic failure modes and cause the micro-structure irreversible changes.
     Based the homogenization theory can deduce the equivalent density and elastic modulus by the honeycomb core representative unit cell. Under the compressive loading, the core single-layer begin to instability till the double-layer wall achieve its maximal load-carrying capability, core wall start folding with certain wavelengths from the upper side to the lower side. The purpose of quasi-static out-of-plane compressive test is to studying the honeycomb core failure mechanism with different materials and different cellular size, results show honeycomb core failure feature depends on cellular matrix material properties and cellular size.
     Honeycomb sandwich beam skins can be regarded as I-beam flange cause honeycomb core in-plane tensile stiffness is very small, all the bending moment, bending normal stress, in-plane compression stress and torque moment carried by the skins of sandwich beam. Honeycomb core between the skins is similar to the I-beam web carrying only shear stress but increasing the structure bend stiffness substantially. Three-point bending experiment obtains the sandwich beam relationship between the load and the deflection of the beam mid-point, the theory results can fit the experiment results well. Projectile impact and drop impact test show the sandwich beam with aluminium skins dynamic response and the capacity of absorbed kinetic energy. Honeycomb sandwich beam with different thickness skins can cause different failure mode, for the complexity failure mechanism, it is difficult to understand the structural strength degradation form the external damage. The dynamic response and failure comparison analysis results show the sandwich beam with thicker skins in the test the structural integrity degenerate seriously.
     The failure modes of sandwich structure with composite skins mainly include matrix cracking, fiber breakage, delamination and honeycomb core crushing damage. Quasi-static indentation experiment is designed to study composite sandwich panel failure mechanism and find its failure modes dependent on skins thickness and boundary conditions, the bottom rigid support condition is the main factors affect the failure. In the drop impact experiment, impact dent depth variable can reflect the increasing of impact energy, the curve fitting the experiment results can predict the impact dent depth by the impact energy.
     Honeycomb core material is well energy absorption material. Under the out-of-plane compressive loading, wide yield platform in the stress-strain curve illustrate honeycomb core can absorb more energy by cellular wall regularly folding deformation during the plastic crushing yield process.
     The dynamic impact response of sandwich beam with aluminium alloy skins and Nomex honeycomb core has been studied using a aerodynamic gun projectile impact test under different velocity interval. An analytic model based on the partition energy method and experimental data is proposed to deduce the energy distribution of the the absorption energy from impact projectile initial kinetic energy Eabs via elastic bending deformation Ebend and irreversible damage consumed energy Edam. The results show that ratio Ebend/Eabsof the sandwich beam with thicker skins are lower than the beams with thinner skins. The essence of the difference is varing certain degrees undermine the structural integrity under the impact loading in the sandwich beams with different thickness skins. The similar results also present the irregular of the strain-time history curve account for the destroy of the structural integrity due to blocking the impact loading wave propagating in the structure.
引文
[1]陈绍杰,申屠年.先进复合材料的近期发展趋势[J].高科技纤维与应用,2004,29(1): 1-7.
    [2]赵稼祥.民用航空和先进复合材料[J].高科技纤维与应用,2007,32(02):6-10.
    [3]赵振业,赵英涛,何鲁林,全宏声.先进飞机结构材料的发展[J]材料工程,1995,(01):4-11.
    [4]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(01):1-12.
    [5]陈绍杰.复合材料与大型飞机[J]新材料产业,2008,(01):31-35.
    [6]钟元.一代材料,一代飞机[J].航空制造技术,2008,(01):36-39.
    [7]周履,范赋群.复合材料力学[M],北京:高等教育出版社,1991:10-13.
    [8]沃西源,涂彬,夏英伟.芳纶纤维及其复合材料性能与应用研究[J].航天返回与遥感,2005,26(2):50-55.
    [9]邱惠中,吴志红.国外航天材料新进展[J].宇航材料工艺,1997,(01):5-16.
    [10]陈绍杰.先进复合材料在飞机上的应用及发展[J].航空科学技术,1994,(04):29-31.
    [11]沈真,杨胜春.飞机结构用复合材料的力学性能要求[J].材料工程,2007增刊1:248-252.
    [12]赵稼祥.碳纤维复合材料在民用航空器上的应用[J].高科技纤维与应用,2003,28(03):1-4.
    [13]张伏,杨欣,佟金.几种纤维增强塑料复合材料的发展现状与趋势[J].华中农业大学学报,2005(10):98-102.
    [14]赵景丽.蜂窝夹层结构复合材料的性能研究[D].西安:西北工业大学,2002.
    [15]孙晓波.复合材料蜂窝夹芯结构脱胶修补研究与软件开发[D].西安:西北工业大学,2003.
    [16]张文峰.纸基复合蜂窝板力学性能研究[D].淮南:安徽理工大学,2006.
    [17]赵金森.铝蜂窝夹层板的力学性能等效模型研究[D].南京:南京航空航天大学,2006.
    [18]唐义号.飞机典型复合材料结构损伤力学性能研究[D].哈尔滨:哈尔滨工程大学, 2005.
    [19]李向华.复合材料结构较高速冲击的力学分析[D].南京:南京航空航天大学,2001.
    [20]Brenda L. Buitrago, Carlos Santiuste, Sonia Sanchez-Saez, Enrique Barbero, Carlos Navarro, Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J],Composite Structures 92 (2010) 2090-2096.
    [21]G. Reyes Villanueva, W.J. Cantwell. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science and Technology 64 (2004)35-54.
    [22]杨乃宾,梁伟.大飞机复合材料结构设计导论[M].北京:航空工业出版社,2009.108-122.
    [23]FAA AC 20-107B, COMPOSITE AIRCRAFT STRUCTURE,2009,8,9, Federal Aviation Administration
    [24]B. Castanie, J.-J. Barrau, J.-P. Jaouen, Theoretical and experimental analysis of symmetric sandwich structures [J], Composite Structures 55 (2002) 295-306.
    [25]Michelle S. Hoo Fatt, Kyong S. Park, Dynamic models for low-velocity impact damage of composite sandwich panels-Part B:Dmage initiation[J], Composite Structures 52(2001):353-364.
    [26]Xie Zonghong, Anthony J. Vizzini, Tang Qingru, ON RESIDUAL COMPRESSIVE STRENGTH PREDICTION OF COMPOSITE SANDWICH PANELS AFTER LOW-VELOCITY IMPACT DAMAGE, Acta Mechanica Solida Sinica, Vol.19, No. 1, March,2006,9-17.
    [27]Michelle S. Hoo Fatt, Kyong S. Park, Dynamic models for low-velocity impact damage of composite sandwich panels-Part A:Deformation, Composite Structures 52 (2001) 335-351
    [28]A.R. Othman, D.C. Barton, Failure initiation and propagation characteristics of honeycomb sandwich composites[J], Composite Structures 85 (2008) 126-138
    [29]E.E. Gdoutos, I.M. Daniel, K.-A. Wang, Compression facing wrinkling of composite sandwich structures[J], Mechanics of Materials 35 (2003) 511-522
    [30]Benson, A.S., Mayers, J.,1967. General instability and face wrinkling of sandwich Plates-unified theory and applications[J]. AIAA J.5,729-739
    [31]Niu, K., Talreja, R.,1999. Modeling of wrinkling in sandwich panels under compression. J. Eng. Mech.125,875-883.
    [32]A. Petras, M.P.F. Sutcliffe, Failure mode maps for honeycomb sandwich panels[J], Composite Structures 44 (1999):237-252.
    [33]H. Razi, B. Sergeev, S. Shkarayev, E. Madenci, Analysis of sandwich panels with multiple-site damage[J], Engineering Fracture Mechanics 64 (1999) 255-268.
    [34]Manabendra Das, Erkan Oterkus, Erdogan Madenci, Hamid Razi, Residual strength of sandwich panels with hail damage[J], Composite Structures 88 (2009) 403-412.
    [35]G.A.O. Davies, D. Hitchings, T. Besant, A. Clarke, C. Morgan, Compression after impact strength of composite sandwich panels[J], Composite Structures 63 (2004) 1-9.
    [36]Patrick M. Schubel, Jyi-Jiin Luo, Isaac M. Daniel, Impact and post impact behavior of composite sandwich panels[J], Composites:Part A 38 (2007) 1051-1057.
    [37]Hawyes VJ, Curtis PT, Soutis C. Effect of impact damage on the compressive response of composite laminates[J]. Compos Pt A 2001; 32(9):1263-1270.
    [38]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩[J].北京航空航天大学学报,1998,24(05):551-554.
    [39]寇长河,程小全,郦正能.低速冲击后复合材料蜂窝夹芯板的拉伸特性[J].复合材料学报,1998,15(04):69-73.
    [40]寇长河,程小全,郦正能.复合材料蜂窝夹芯板低速冲击后压缩强度估算[J].北京航空航天大学学报,1998,24(05):555-558.
    [41]程小全,寇长河,郦正能.低速冲击后复合材料蜂窝夹芯板的疲劳特性[J].航空学报,1998,19(06):740-743.
    [42]张子龙,程小全,益小苏.复合材料冲击损伤及冲击后压缩强度的等效实验方法[J].实验力学,2001,16(3):313-319.
    [43]B. Castanie, C. Bouvet, Y. Aminanda, J.-J. Barrau, P. Thevenet,Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins[J], International Journal of Impact Engineering 35 (2008) 620-634.
    [44]Bruno Castanie, Yulfian Aminanda, Christophe Bouvet, Jean-Jacques Barrau, Core crush criterion to determine the strength of sandwich composite structures subjected to compression after impact[J], Composite Structures 86 (2008) 243-250.
    [45]Y. Aminanda, B. Castanie, J.-J. Barrau, P. Thevenet, Experimental and numerical study of compression after impact of sandwich structures with metallic skins[J], Composites Science and Technology 69 (2009) 50-59.
    [46]Ki-Weon Kang, Heung Seob Kim. Man Sig Kim. Jung-Kyu Kim. Strength reduction behavior of honeycomb sandwich structure subjected to low-velocity impact[J], Materials Science and Engineering A 483-484 (2008) 333-339.
    [47]J.H. Park, S.K. Ha, K.W. Kang, C.W. Kim, H.S. Kim.Impact damage resistance of sandwich structure subjected to low velocity impact, materials processing Technology[J],201(2008) 425-430.
    [48]Peter H. Bulla, Fredrik Edgren, Compressive strength after impact of CFRP-foam core sandwich panels in marine applications, Composites:Part B 35 (2004) 535-541.
    [49]Levent Aktay, Alastair F. Johnson, Martin Holzapfel, Prediction of impact damage on sandwich composite panels, Computational Materials Science 32 (2005) 252-260.
    [50]HAN ZHAO, GE RARD GARY, CRUSHING BEHAVIOUR OF ALUMINIUM HONEYCOMBS UNDER IMPACT LOADING[J], Int. J. Impact Engng Vol.21, No.10(1998):827-836.
    [51]L. Torre, J.M. Kenny, Impact testing and simulation of composite sandwich structures for civil transportation[J], Composite Structures 50 (2000) 257-267
    [52]C C Foo, G B Chai, and L K Seah, Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels. IMechE 2006, Proc. IMechE Vol.220 Part L:J. Materials:Design and Applications,53-66.
    [53]C.C. Foo, L.K. Seah, G.B. Chai, Low-velocity impact failure of aluminium honeycomb sandwich panels, Composite Structures 85 (2008) 20-28.
    [54]M.Q. Nguyen, S.S. Jacombs, R.S. Thomson, D. Hachenberg, M.L. Scott, Simulation of impact on sandwich structures, Composite Structures 67 (2005) 217-227
    [55]C. L. Wu, C. T. Sun, Low velocity impact damage in composite sandwich beams, Composite Structures 34 (1996) 21-27
    [56]A. Petras, M.P.F. Sutcli.e, Indentation failure analysis of sandwich beams, Composite Structures 50 (2000) 311-318.
    [57]Pizhong Qiao, Mijia Yang, Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams[J], Composites:Part B 38 (2007) 739-750.
    [58]F. M. Shuaeib,P.D. Soden, INDENTATION FAILURE OF COMPOSITE SANDWICH BEAMS, Composites Science and Technology 57 (1997) 1249-1259.
    [59]Jeom Kee Paik, Anil K. Thayamballi, Gyu Sung Kim, The strength characteristics of aluminum honeycomb sandwich panels, Thin-Walled Structures 35 (1999) 205-231
    [60]V.L. Tagarielli, N.A. Fleck, V.S. Deshpande, Collapse of clamped and simply supported composite sandwich beams in three-point bending, Composites:Part B 35 (2004) 523-534.
    [61]王志华,朱峰,赵隆茂.多孔金属火芯结构动力学行为及其应用[M].北京:兵器工业出版社,28-37.
    [62]X. Frank Xu, Pizhong Qiao, Homogenized elastic properties of honeycomb sandwich with skin effect, International Journal of Solids and Structures 39 (2002) 2153-2188.
    [63]Shi-Dong Pan, Lin-Zhi Wu, Yu-Guo Sun, Transverse shear modulus and strength of honeycomb cores, Composite Structures 84 (2008) 369-374.
    [64]D.W. Zhou, W.J. Stronge, Low velocity impact denting of HSSA lightweight sandwich panel, International Journal of Mechanical Sciences 48 (2006) 1031-1045
    [65]Frostig Y, Baruch M. Localized load e.ects in high-order bending of sandwich panels with fexible core. J Eng Mech 1996; 122(11):1069-76.
    [66]Reddy JN. A simple higher-order theory for laminated composite plates. J Appl Mech 1984;51(4):745-752
    [67]Vitaly Koissin, Andrey Shipsha, Victor Rizov, The inelastic quasi-static response of sandwich structures to local loading, Composite Structures 64 (2004) 129-138
    [68]Shaw M. Lee, Thomas K. Tsotsis,Indentation failure behavior of honeycomb sandwich panels, Composites Science and Technology 60 (2000) 1147-1159.
    [69]Reddy TY, Wen HM, Reid SR, Soden PD. Penetration and perforation of composite sandwich panels by hemispherical andconical projectiles. J Pressure Vessel Technol 1998;120:186-94
    [70]V. Skvortsov, J. Kepler, E. Bozhevolnaya, Energy partition for ballistic penetration of sandwich panels, International Journal of Impact Engineering 28 (2003) 697-716.
    [71]M. Meo, A.J. Morris:Numerical simulations of low-velocity impact on an aircraft sandwich panel[J], Composite Structure(2003) p.353-360.
    [72]C.C. Foo, G.B. Chai, L.K. Seah, A model to predict low-velocity impact response and damage in sandwich composites[J], Composites Science and Technology 68(2008) 1348-1356.
    [73]Hashin Z. Failure criteria for unidirectional fibre composites. J Appl Mech1980.47 329-334.
    [74]Chang F-K, Chang K-Y. A progressive damage model for laminated composites containing stress concentrations[J]. Compos Mater1987;21:834-55.
    [75]Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Compos Sci Technol 1998;58:1045-1067.
    [76]Hou JP, Petrinic N, Ruiz C, Hallett SR. Prediction of impact damage in composite plates[J]. Compos Sci Technol 2000;60:273-81.
    [77]Davila CG, Camanho PP. Failure criteria for FRP laminates in plane stress. NASA/RM-2003-212663; 2003.
    [78]Dirk Mohr, Mulalo Doyoyo. Large plastic deformation of metallic honeycomb orthotropic rate-independent constitutive model [J], International Journal of Solids and Structures 41 (2004)4435-4456.
    [79]井玉安,韩静涛,果世驹,宋波.普碳钢蜂窝夹芯板的面外压缩性能[J].北京科技大学学报,2007,29(12):1234-1240.
    [80]赵剑,谢宗蕻,安学,张明,刘刚,马宏毅.蜂窝芯体材料面外等效弹性模量预测与分析[J].航空材料学报,2008(28):94 100.
    [81]富明慧,尹久仁.蜂窝芯层的等效弹性参数[J].力学学报,1999,(01):113-118.
    [82]工飞,庄守兵,虞吉林.用均匀化理论分析蜂窝结构的等效弹性参数[J].力学学报,2002,(06):914-922.
    [83]程军,曾伟明,方如华,张林春.金属蜂窝夹芯板等效弹性模量的实验测试[J].实验力学,2003,(01).
    [84]梁森,陈花玲,陈天宁,梁天锡.蜂窝夹芯结构面内等效弹性参数的分析研究[J].航空材料学报,2004,(03).
    [85]Grenested JL. Effective elastic behavior of some models for perfect cellular solids. Int J Solids Structures,1999,36:1471-1501.
    [86]Chen JY, Huang Y. Fracture analysis of cellular materials, J Mech Phys Solids,1998, 46:789-828.
    [88]Gibson, L.J., Ashby, M.F.,1997. Cellular Solids:Structure and Properties, second ed. Cambridge University Press
    [89]Warren WE, Kraynik AM. Foam mechanics:the linear elastic response of two-dimensional spatially perisdic cellular materials. Mechanics of Materials,1987,6 :27-37.
    [90]Kelsey, S., Gellatly, R.A., Clark, B.W.,1958. The shear modulus of foil honeycomb cores. Aircraft Engineering 30.294-302.
    [91]Dirk Mohr, Mulalo Doyoyo,Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb[J],International Journal of Solids and Structures 41 (2004) 3353-3377.
    [92]范秋习.蜂窝夹层复合材料[J].北京轻工业学院学报,1998,16(2):77-81.
    [93]张媛,郑百哲,李妮.蜂窝火芯板的理论研究[J].北京工商大学学报(自然科学版)2001,(04).
    [94]X. Frank Xu, Pizhong Qiao, Homogenized elastic properties of honeycomb sandwich with skin effect, International Journal of Solids and Structures 39 (2002) 2153-2188.
    [95]Jeom Kee Paik, Anil K. Thayamballi, Gyu Sung Kim. The strength characteristics of aluminium honeycomb sandwich panels, Thin-Walled Structures 35 (1999) 205-231.
    [96]周加喜,邓子辰.夹层梁低速冲击下的接触定律与结构响应[J].力学学报,2009,41 (01): 113-121.
    [97]I. Smojver, D. Ivancevic, Numerical simulation of bird strike damage prediction in airplane flap structure, Composite Structures 92 (2010), p.2016-2026.
    [98]任浩雷.含低速冲击损伤复合材料层合板在压缩载荷下破坏过程和剩余强度模拟[D].西安:西北工业大学,2001.
    [99]徐朝阳.木质复合蜂窝夹芯材料性能的研究[D].南京:南京林业大学,2007.
    [100]Besant T, Davies GAO, Hitchings D. Finite element modelling of low velocity impact of composite sandwich panels. Compos Part A 2001;32:1189-96.
    [101]沈真,叶林,王进等.复合材料损伤阻抗和损伤容限的性能表征[J].复合材料学报,2004,21(5):140-145.
    [102]沈真,柴亚南,杨胜春等.复合材料飞机结构强度新规范要点评述[J].航空学报,2006,27(5):784-788.
    [103]沈真,杨胜春,陈普会.复合材料抗冲击性能和结构压缩设计许用值[J].航空学报,2007,28(3):561-566.
    [104]郑晓霞,郑锡涛,沈真,杨胜春.低速冲击与准静态压痕力下复合材料层合板的损伤等效性[J].航空学报,2010,31(05):928-933.
    [105]L. Torre, J.M. Kenny, Impact testing and simulation of composite sandwich structures for civil transportation, Composite Structures 50 (2000) 257-267.
    [106]王新筑,吴林志,王世勋.闭空铝泡沫在静压痕下的力学响应[J].复合材料学报,2010,27(04): 77-83.
    [107]U. Polimeno, M. Meo, Detecting barely visible impact damage detection on aircraft composites structures, Composite Structures 91 (2009) 398-402
    [108]Allen HG. Analysis and design of structural sandwich panels. Pergamon Press; 1969
    [109]Liqing Meng, Yan Wu, Shizhe Chen, Xuefeng Shu. Quasi-static failure analysis of honeycomb sandwich beam with composite facesheet, Advanced Materials Research, Vols.160-162(2011), P 855-859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700