基于超支化聚合物构建微/纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有准球形结构的高度支化大分子,在其不规则的分子结构中含有大量内部空穴和末端官能团。由于超支化聚合物独特的结构和性能特点,目前它已成为高分子领域的研究热点。经过近20年的发展和探索,人们在超支化聚合物的合成、结构表征、功能化改性等方面已经取得了重要进展,尤其是超支化聚合物的合成方法已经趋于全面和成熟,这为超支化聚合物的应用开发奠定了坚实的基础。本文利用活性自由基聚合或者酯化反应对超支化聚合物进行修饰改性从而赋予超支化聚合物新的性质,然后将其用于微/纳米结构的构筑,研究的领域涉及超支化聚合物自组装,通过“breath figure”法制备蜂窝状多孔结构,以超支化分子为模板进行生物矿化等。具体研究内容和主要结论如下:
     1.端羧基超支化聚醚的pH响应自组装
     端羟基的超支化聚醚(HBPO-OH)本身不溶于水,当其端基通过改性变为羧基后(HBPO-COOH),其在水溶液中的性质也随之发生变化,从不溶变为可溶,且表现出pH响应自组装行为。在高pH值(pH = 12.21)条件下,由于端羧基完全电离,它以单分子胶束的状态存在于溶液中。随着pH值的降低,由于羧基质子化程度的提高,单分子胶束之间氢键作用不断加强,从而聚集形成一系列不同尺寸的多胶束聚集体。多胶束聚集体的尺寸呈现出pH依赖性,pH值越低,胶束尺寸越大。透射电镜(TEM),动态光散射(DLS),衰减全反射红外(ATR-FT-IR),核磁氢谱(1H NMR)以及原子力显微镜(AFM)的测试结果均证明了HBPO-COOH的pH响应自组装行为。
     2.基于超支化聚合物构筑具有孤立孔洞结构的蜂窝状有序多孔材料
     通过可逆加成断裂链转移自由基聚合方法,合成了一种具有超支化聚醚核(HBPO)以及一定数量聚苯乙烯臂(PS)的新型超支化多臂共聚物HBPO-star-PS。然后通过“breath figure”方法,使用HBPO-star-PS作为前驱体,在二维平面上构筑蜂窝状有序多孔膜结构。相比于传统的光刻技术,“breath figure”法的实施过程非常简单——将含有前驱体HBPO-star-PS的氯仿溶液涂于基体表面,然后令其在潮湿的空气中自然挥发,待溶剂和凝结的水滴先后挥发干后,就留下了规则的有序多孔结构。和我们先前报道的结果相比,使用HBPO-star-PS作为前驱体,所得到的蜂窝状多孔膜中六边形排列的孔洞之间没有贯穿,而是由孔壁彼此分隔开来。我们进一步通过调节溶液浇铸体积,聚合物分子量,溶液浓度等参数,可以很方便的控制蜂窝状多孔膜中孔洞的尺寸和结构。多孔膜的水滴接触角测试表明,由于多孔结构的形成,增加了膜表面的粗糙度,使膜表面的疏水性得到显著的提高,接触角从平滑表面的88°增加到孔尺寸为3.12μm时的130°。
     3.仿生合成具有类贝壳层状微结构的碳酸钙空心球
     通过将超支化聚合物与双亲水嵌段共聚物的概念结合起来,设计了一种双亲水型的端羧基超支化聚缩水甘油醚(HPG-COOH),并用其作为调控剂,来控制碳酸钙晶体的生长。研究结果表明:HPG-COOH可以有效的控制碳酸钙从无定形纳米粒子到无定形空心球,最后转变为霰石相碳酸钙空心球。通过高分辨透射电镜和选区电子衍射分析,我们发现这是一个非经典结晶过程。得到的霰石相碳酸钙空心球具有“膨胀蒲公英”状的外观形貌,即空心球的壳层是由与球表面垂直的片状霰石相介晶堆叠构成。空心球壳层的截面使我们联想到了贝壳的微结构——片状的碳酸钙晶体之间层层堆砌在一起。以上结果揭示了晶体生长调控剂的拓扑结构对生物矿化过程的影响,以及非经典结晶过程对于构筑多级微结构的重要作用。
     4.利用HPG-COOH中粘合/助溶链段摩尔比调控碳酸钙结晶
     双亲水嵌段共聚物是一种新近出现的结构简单的晶体生长调控剂。这类大分子中的一个链段与无机矿物表面发生强烈相互作用,称为粘合链段;另一部分与矿物表面作用很弱,主要起分散稳定的作用,称为助溶链段。据此,我们改变HPG端基的羟基转化率,得到了一系列具有不同粘合/助溶链段摩尔比(the mole ratio of the interacting to stabilizing portion, RI / S)的晶体生长调控剂,并研究了它们对碳酸钙结晶的影响。结果表明:随着RI / S从0.1逐渐增加到0.9,碳酸钙晶体的外貌从松塔状,变为橄榄状,最后变为高度单分散的碳酸钙微球。同时随着RI / S的增大,碳酸钙的晶型也从方解石相转化为霰石相。我们此外还研究了RI / S值分别为0.3,0.6,0.7的HPG-COOH浓度变化对碳酸钙结晶的影响。结果表明RI / S值为0.3时,随着浓度从0.5 mg/mL增大到2 mg/mL,碳酸钙晶体的形貌从花生状,橄榄状最后变为短棒状和球状的混合物,产物中霰石相的含量也随浓度升高而增大。对于RI / S值为0.6和0.7的HPG-COOH,浓度升高导致霰石相单分散微球的尺寸略减小。
Hyperbranched polymers are a novel kind of three dimensional torispherical irregular macromolecules possessing highly branched architectures, many inner cavities and a large amount of terminal functional groups. Due to their unique molecular structures and properties, hyperbranched polymers have become the hot topics in many research fields. Up to now, great progresses have been made in the synthesis, characterization, modification, and application of hyperbranched polymers. On the basis of the previous works, this thesis focuses on the synthesis and modification of hyperbranched polymers through the reversible addition fragmentation chain transfer polymerization or a simple esterification to endow the hyperbranched polymers with new properties. The resulting hyperbranched polymers were applied to construct micro/nano structures, including the self-assembly of hyperbranched polymers into micelles, the construction of microporous films by the breath figure method and biomineralization mediated by hyperbranched polymers. The detailed results were described as follows.
     1. pH-responsive self-assembly of carboxyl-terminated hyperbranched polymers.
     The hydroxyl terminal groups of hyperbranched polymers (HBPO-OH) were replaced by carboxyl groups by a simple esterification and the obtained carboxyl-terminated hyperbranched polymers (HBPO-COOH) displayed a pH-responsive self-assembly behavior in solution. HBPO-COOH existed as unimolecular micelles at high pH (pH=12.21) due to the ionization of carboxyl groups, while the polymers aggregated into multimolecular micelles from 10 to 500 nm with the decrease of pH as a result of the partial protonation of the carboxyl groups. The size of the obtained micelles depended strongly on the solution pH, the lower the pH, the bigger the micelles. TEM, DLS, ATR-FT-IR, 1H NMR and AFM measurements substantiated that the multimolecular micelles were formed by the secondary aggregation of unimolecular micelles driven by the hydrogen bonding interaction depending on the solution pH.
     2. Honeycomb-structured microporous films made from hyperbranched polymers by the breath figure method.
     Honeycomb-structured microporous films were self-assembled from a new type of multiarm copolymer, hyperbranched poly(3-ethyl-3-oxetanemethanol)-star-polystyrene (HBPO-star-PS). The precursor consisting of an HBPO core and a number of PS arms was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The microporous film was prepared by the evaporation of a chloroform solution of the precursor in a humid atmosphere (the so-called breath figure method). Compared to our former work, the hexagonally packed pores in the film were not interpenetrated and isolated from one another by the walls. The size of the pores could be controlled easily by changing the casting volume of the solution, the molecular weight and the concentration of the polymer, and so forth. The water contact angle on the film surface indicated that the hydrophobicity of the film surface was significantly enhanced as a result of the formation of the porous structure.
     3. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure.
     We combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO3 from amorphous nanoparticles, amorphous hollow spheres to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.
     4. Control the CaCO3 crystallization in vitro through the molar ratio of the interacting/stabilizing portion (RI / S) in a hyperbranched polymer.
     Double hydrophilic block copolymers (DHBCs) often consists of one hydrophilic block designed to interact strongly with the appropriate inorganic minerals and surfaces, and another hydrophilic block that does not interact (or only weakly interacts), and mainly promotes solubilization in water. An effective DHBC should be an optimized molecular design combining the advantages of electrostatic particle stabilization with those of steric particle stabilization, so we changed the functionalization efficiency for the carboxyl groups coupled on the surface of HPG and synthesized a series of HPG-COOH with different ratios of the interacting to stabilizing portion (RI/S). We investigated the influence of the RI/S value on the morphology and crystal habit of the obtained CaCO3 by the one-pot precipitation and found that as the RI/S value increased from 0.1 to 0.9, the morphology of CaCO3 changed from pinecone-like, olive-like to highly monodisperse spheres and the phase transition occurred from pure calcite, a mixture of calcite and vaterite to pure vaterite. We also investigated the concentration effect of HPG-COOH with RI/S value 0.3, 0.6, 0.7 on CaCO3 crystallization. For HPG-COOH0.3, as the concentration increased from 0.5 mg/mL to 2 mg/mL, the morphology changed from peanut-like, olive-like to a mixture of sticks and spheres, the vaterite content also increased accordingly with the increasing of the concentration. For HPG-COOH0.6 and HPG-COOH0.7, the increasing of concentration resulted in the decreasing of the size of the highly monodisperse vaterite spheres.
引文
1. Kim, Y. H.; Webster, O. W. Hyperbranched polyphenylenes. Macromolecules 1992, 25, 5561-5572.
    2. Kim, Y. H.; Webster, O.W. Hyperbranched polyphenylenes. Polym. Prepr. 1988, 29, 310-311.
    3. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci., Polym. Chem. 2000, 38, 2505-2525.
    4. Fréchet, J. M. J.; Tomalia, D. A. Dendrimers and other dendritic polymers. West Sussex: Wiley 2001.
    5. Ishida, Y.; Sun, A. C. F.; Jikei, M.; Kakimoto, M. Synthesis of hyperbranched aromatic polyamides starting from dendrons as ABx monomers: Effect of monomer multiplicity on the degree of branching. Macromolecules 2000, 33, 2832-2838.
    6. Yang, G.; Jikei, M.; Kakimoto, M. Synthesis and properties of hyperbranched aromatic polyamides. Macromolecules 1999, 32, 2215-2220.
    7. Shu, C. F.; Leu, C. M. Hyperbranched poly(ether ketone) with carboxylic acid terminal groups: Synthesis, characterization, and derivatization. Macromolecules 1999, 32, 100-105.
    8. Morikawa, A. Preparation and properties of hyperbranched poly(ether ketones) with a various number of phenylene units. Macromolecules 1998, 31, 5999-6009.
    9. Yang, G.; Jikei, M.; Kakimoto, M. Successful thermal self-polycondensation of AB2 monomer to form hyperbranched aromatic polyamide. Macromolecules 1998, 31, 5964-5966.
    10. Bolton, D. H.; Wooley, K. L. Synthesis and characterization of hyperbranched polycarbonates. Macromolecules 1997, 30, 1890-1896.
    11. Malmstr?m, E.; Johansson, M.; Hult, A. Review of hyperbranched polyesters. Polym. News 1997, 22, 128-133.
    12. Hawker, C. J.; Chu, F. Hyperbranched poly(ether ketones): Manipulation of structure and physical properties. Macromolecules 1996, 29, 4370-4380.
    13. Kumar, A.; Ramakrishnan, S. Hyperbranched polyurethanes with varying spacer segments between the branching points. J. Polym. Sci., Polym. Chem. 1996, 34, 839-848.
    14. Malmstrom, E.; Johansson, M.; Hult, A. Hyperbranched aliphitic polyesters. Macromolecules 1995, 28, 1698-1703.
    15. Spindler, R.; Fréchet, J. M. J. Synthesis and characterization of hyperbranched polyurethanes prepared from blocked isocyanate monomers by step-growth polymerization. Macromolecules 1993, 26, 4809-4813.
    16. Kumar, A.; Ramakrishnan, S. A novel one-pot synthesis of hyperbrached polyurethanes. J. Chem. Soc., Chem. Commun. 1993, 1453-1454.
    17. Uhrich, K. E.; Hawker, C.; Fréchet, J. M. J.; Turner, S. R. One-pot synthesis of hyperbranched polyethers. Macromolecules 1992, 25, 4583-4587.
    18. Uhrich, K. E.; Hawker, C.; Fréchet, J. M. J.; Turner, S. R. One-pot synthesis of hyperbranched macromolecules. Polym. Mater. Sci. Eng. 1991, 64, 237-238.
    19. Kim, Y. H.; Webster, O. W. Water-soluble hyperbranched polyphenylene:“a unimolecular micelle?”J. Am. Chem. Soc. 1990, 112, 4592-4593.
    20. Kim, Y. H.; Webster, O. W. Hyperbranched polyphenylenes. Polym. Prepr. 1988, 29, 310-311.
    21. Yoon, K.; Son, D. Y. Synthesis of hyperbranched poly(carbosilarylenes). Macromolecules 1999, 32, 5210-5216.
    22. Londergan, T. M.; You, Y.; Thompson, M. E.; Weber, W. P. Ruthenium catalyzed synthesis of cross-conjugated polymers and related hyperbranched materials. Copoly(arylene/1,1-vinylene)s. Macromolecules 1998, 31, 2784-2788.
    23. Lu, P.; Paulasaari, J. K.; Weber, W. P. Hyperbranched poly(4-acetylstyrene) by ruthenium-catalyzed step-growth polymerization of 4-acetylstyrene. Macromolecules 1996, 29, 8583-8586.
    24. Muzafarov, A.; Golly, M.; M?ller, M. Degradable hyperbranched poly(bis(undecenyloxy)-methylsilane)s. Macromolecules 1995, 28, 8444-8446.
    25. Mathias, L. J.; Carothers, T. W. Hyperbranched poly(siloxysilanes). J. Am. Chem. Soc. 1991, 113, 4043-4048.
    26. Weimer, M. W.; Fréchet, J. M. J.; Gitsov, I. Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly[4-(chloromethyl)styrene] by metal-catalyzed "living" radical polymerization. J. Polym. Sci., Polym. Chem. 1998, 36, 955-970.
    27. Matyjaszewski, K.; Gaynor, S. G.; Kulfan, A.; Podwika, M. Preparation of hyperbranchedpolyacrylates by atom transfer radical polymerization .1. Acrylic AB* monomers in ''living'' radical polymerizations. Macromolecules 1997, 30, 5192-5194.
    28. Sakamoto, K.; Aimiya, T.; Kira, M. Preparation of hyperbranched polymethacrylates by self-condensing group transfer polymerization. Chem. Lett. 1997, 1245-1246.
    29. Simon, P. F. W.; Radke, W.; Müller, A. H. E. Hyperbranched methacrylates by self-condensing group transfer polymerization. Macromol. Rapid Commun. 1997, 18, 865-873.
    30. Gaynor, S. G.; Edelman, S.; Matyjaszewski, K. From hyperbranched to crosslinked polymers by atom transfer radical polymerization. Polym. Mater. Sci. Eng. 1996, 74, 236-237.
    31. Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M.; Grubbs, R. B. Self-condensing vinyl polymerization: An approach to dendritic materials. Science 1995, 269, 1080-1083.
    32. DeSimone, J. M. Branching out into new polymer markets. Science 1995, 269, 1060-1061.
    33. Hawker, C. J.; Fréchet, J. M. J.; Grubbs, R. B.; Dao, J. Preparation of hyperbranched and star polymers by a“living”, self-condensinf free radical polymerization. J. Am. Chem. Soc. 1995, 117, 10763-10764.
    34. Magnusson, H.; Malmstr?m, E.; Hult, A. Influence of reaction conditions on degree of branching in hyperbranched aliphatic polyethers from 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2001, 34, 5786-5791.
    35. Bednarek, M.; Kubisa, P.; Penczek, S. Multihydroxyl branched polyethers. 2. Mechanistic aspects of cationic polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2001, 34, 5112-5119.
    36. Sunder, A.; Hanselmann, R.; Frey, H. Hyperbranched polyether-polyols based on polyglycerol: Polarity design by block copolymerization with propylene oxide. Macromolecules 2000, 33, 309-314.
    37. Yan, D. Y.; Hou, J.; Zhu, X. Y.; Kosman, J. J.; Wu, H. S. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization. Macromol. Rapid Commun. 2000, 21, 557-561.
    38. Liu, M.; Vladimirov, N.; Fréchet, J. M. J. A new approach to hyperbranched polymers byring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-epsilon-caprolactone. Macromolecules 1999, 32, 6881-6884.
    39. Magnusson, H.; Malmstr?m, E.; Hult, A. Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commun. 1999, 20, 453-457.
    40. Bednarek, M.; Biedron, T.; Helinski, J.; Kaluzynski, K.; Kubisa, P.; Penczek, S. Branched polyether with multiple primary hydroxyl groups: Polymerization of 3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun. 1999, 20, 369-372.
    41. Gong, C. G.; Fréchet, J. M. J. Proton-transfer polymerization in the preparation of hyperbranched polyesters with epoxide chain-ends and internal hydroxyl functionalities. Macromolecules 2000, 33, 4997-4999.
    42. Chang, H. T.; Fréchet, J. M. J. Proton-transfer polymerization: a new approach to hyperbranched polymers. J. Am. Chem. Soc. 1999, 121, 2313-2314.
    43. Hao, J. J.; Jikei, M.; Kakimoto, M. Preparation of hyperbranched aromatic Polyimides via A2+B3 approach. Macromolecules, 2002, 35, 5372-5381.
    44. Emrick, T.; Chang, H. T.; Fréchet, J. M. J. An A2+B3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents. Macromolecules 1999, 32, 6380-6382.
    45. Emrick, T.; Chang, H. T.; Fréchet, J. M. J. The preparation of hyperbranehed aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from Abn and A2+B3 monomers. J. Polym. Sci., Polym. Chem. 2000, 38, 4850-4869.
    46. Yan, D. Y.; Gao, C. Hyperbranched polymers made from A2 and BB’2 type monomers. 1. Polyaddition of l-(2-aminoethyl) piperazine to divinyl sulfone. Macromolecules 2000, 33, 7693-7699.
    47. Gao, C.; Yan, D. Y. Synthesis of hyperbranched polymers from commercially available A2 and BB’2 type monomers. Chem. Commun. 2001, 107-108.
    48. Gao, C.; Yan, D. Y.; Zhu, X. Y.; Huang, W. Preparation of water-soluble hyperbranched poly (sulfone-amine)s by polyaddition of N-ethylethylenediamine to divinylsulfone. Polymer 2001, 42, 7603-7610.
    49. Gao, C.; Yan, D. Y. Polyaddition of B2 and BB’2 type monomers to A2 type monomer.1. Synthesis of highly branched copoly(sulfone-amine)s. Macromolecules, 2001, 34, 156-161.
    50. Gao, C.; Tang, W.; Yan, D. Y.; Zhu, P. F.; Tao, P. Hyperbranched polymers made from A2, B2 and BB’2 type monomers. 2. Preparation of hyperbranched copoly(sulfone-amine)s by polyaddition of N-ethylethylenediamine and Piperazine to divinylsulfone. Polymer 2001, 42, 3437-3443.
    51. Gao, C.; Tang, W.; Yan, D. Y. Synthesis and characterization of water-soluble hyperbranehed poly(ester amine)s from diacrylates and diamines. J. Polym. Sci., Polym. Chem. 2002, 40, 2340-2349.
    52. Gao, C.; Xu, Y. M.; Yan, D. Y; Chen, W. Water-soluble degradable hyperbranched polyesters: Novel candidates for drug delivery? Biomacromolecules 2003, 4, 704-712.
    53. Gao, C.; Yan, D. Y. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29, 183-275.
    54. Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453-571.
    55. Szwarc, M.; Levy, M. Milkovitch, R. Polymerization initiated by electron transfer to monorner. A new method of formation of block polymers. J. Am. Chem. Soc. 1956, 78, 2656-2657.
    56. Szwarc, M.‘Living’polymers. Nature, 1956, 178, 1168-1169.
    57. Smid, J.; Van Beylen, M.; Hogen-Esch, T. E. Perspectives on the contributions of Michael Szwarc to living polymerization. Prog. Polym. Sci. 2006, 31, 1041-1067.
    58. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26, 2987-2988.
    59. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K.; Saban, M. D. Narrow polydispersity polystyrene by a free-radical polymerization process-rate enhancement. Macromolecules, 1994, 27, 7228-7229.
    60. Saban, M. D.; Georges, M. K.; Veregin, R. P. N.; Hamer, G. K.; Kazmaier, P. M. Nitroxide-mediated free radical polymerization of styrene. Absence of the gel effect. Macromolecules, 1995, 28, 7032-7034.
    61. Veregin, R. P. N.; Odell, P. G.; Michalak, L. M.; Georges, M. K. The pivotal role of excess nitroxide radical in living free radical polymerizations with narrow polydispersity.Macromolecules, 1996, 29, 2746-2754.
    62. Georges, M. K.; Hamer, G. K.; Listigovers, N. A. Block copolymer synthesis by a nitroxide-mediated living free radical polymerization process. Macromolecules, 1998, 31, 9087-9089.
    63. Wang, J. S.; Matyjaszewski, K. Cotrolled living radical polymerization-atom transfer radical polymerization in the presence of transition-meta1 complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615.
    64. Wang, J. S.; Matyjaszewski, K. Living controlled radical polymerization-transition- metal-catalyzed atom-transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 1995, 28, 7572-7573.
    65. Percec, V.; Barboiu, B. Living radical polymerization of styrene initiated by arenesulfonyl chlorides and Cu?(bpy)nCl. Macromolecules 1995, 25, 7970-7972.
    66. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashlimura, T. Polymerization of methyl-methacrylate with the carbon-tetrachloride dichlorotris(triphenylphosphine) Ruthenium (Ⅱ) methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system- posssibility of living radical polymerization. Macromolecules 1995, 28, 1721-1723.
    67. Patten, T. E.; Matyjaszewski, K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater. 1998, 10, 901-915.
    68. Matyjaszewski, K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chem. Eur. J. 1999, 5, 3095-3102
    69. Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. More versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules, 1999, 32, 2071-2074.
    70. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living polymers by the use of trithiocarbonates as RAFT agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules, 2000, 33, 243-245.
    71. Chong, B. Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Thiocarbonylthio compounds (S=C(Ph)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R). Macromolecules, 2003, 36, 2256-2272.
    72. Georgoussis, G.; Nikonorova, N. A.; Barmatov, E. B.; Pissis, P. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49, 993-1001.
    73. Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): approaches to star polymers. Macromolecules 2003, 36, 1505-1513.
    74. Gao, Z.; Varshney, S. K.; Wong, S.; Eisenberg, A. Block copolymer "crew-cut" micelles in water. Macromolecules 1994, 27, 7923-7927.
    75. Zhang, L.; Eisenberg, A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 1999, 32, 2239-2249.
    76. Chen, D. Y.; Jiang, M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38, 494-502.
    77. Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers. Macromolecules 1998, 31, 1144-1154.
    78. Yu, Y.; Eisenberg, A. Control of morphology through polymer-solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J. Am. Chem. Soc. 1997, 119, 8383-8384.
    79. Zhang, L.; Eisenberg, A. Multiple morphologies of“crew-cut”aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995, 268, 1728-1745.
    80. Fo(r|¨)ter, S.; Zisenis, M.; Wenz, E.; Antonietti, M. Micellization of strongly segregated block copolymers. J. Chem. Phys. 1996, 104, 9956-9970.
    81. Antonietti, M.; F?rster, S. Vesicles and Liposomes: a self-assembly principle beyond lipids. Adv. Mater. 2003, 15, 1323-1333.
    82. Ishizu, K.; Uchida, S. Synthesis and microphase-separated structures of star-block copolymers. Prog. Polym, Sci. 1999, 24, 1439-1480.
    83. Tezuka, Y.; Oile, H. Topological Polymer Chemistry. Prog. Polym, Sci. 2002, 27, 1069-1122.
    84. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Pispas, S.; Avgeropoulos, A. Linear andnon-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog. Polym. Sci. 2005, 30, 725-782.
    85. Service, R. F. How far can we push chemical self-assembly? Science 2005, 309, 95.
    86. Strong, M. Protein Nanomachines. PloS Biol. 2004, 2, e73-e74.
    87. Bunz, H. U. F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006, 18, 973-989.
    88. Steyer, A.; Guenoun, P.; Beysens, D.; Knobler, C. M. Two-dimensional ordering during droplet growth on a liquid surface. Phys. Rev. B 1990, 42, 1086-1089.
    89. Steyer, A.; Guenoun, P.; Beysens, D. Hexatic and fat-fractal structures for water droplets condensing on oil. Phys. Rev. E 1993, 48, 428-431.
    90. Limaye, A. V.; Narhe, R. D.; Dhote, A. M.; Ogale, S. B. Evidence for convective effects in breath figure formation on volatile fluid surfaces. Phys. Rev. Lett. 1996, 76, 3762-3765.
    91. Maruyama, N.; Koito, T.; Nishida, J.; Sawadaishi, T.; Cieren, X.; Ijiro, K.; Karthaus, O.; Shimomura, M. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 1998, 327-329, 854-856.
    92. Widawski, G.; Rawiso, M.; Fran?ois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369, 387-389.
    93. Jenekhe, S. A.; Chen, X. L. Self-assembly of ordered microporous materials from rod-coil block copolymers Science 1999, 283, 372-375.
    94. Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film Science 2001, 292, 79-83.
    95. Ludwigs, S.; B?ker, A.; Voronov, A.; Rehse, N.; Magerle, R.; Krausch, G. Self-assembly of functional nanostructures from ABC triblock copolymers. Nat. Mater. 2003, 2, 744-747.
    96. Bu, W. F.; Li, H. L.; Sun, H.; Yin, S. Y.; Wu, L. X. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces. J. Am. Chem. Soc. 2005, 127, 8016-8017.
    97. Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angew. Chem. Int. Ed. 2001, 113, 3536-3540.
    98. Cui, L.; Han, Y. C. Honeycomb pattern formation via polystyrene/poly(2-vinylpyridine)phase separation Langmuir 2005, 21, 11085-11091.
    99. De Boer, B.; Stalmach, U.; Nijland, H.; Hadziioannou, G. Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates. Adv. Mater. 2000, 12, 1581-1583.
    100. Stenzel, M. H. Formation of regular honeycomb-patterned porous film by self-organization. Aust. J. Chem. 2002, 55, 239-243.
    101. Lowenstam, H. A.; Weiner, S. On Biomineralization; Oxford University Press: New York, 1989.
    102. Mann, S. Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: Oxford, UK, 2001.
    103. B?uerlein, E. Biomineralization; Wiley-VCH: Weinheim, Germany 2000.
    104. C?lfen, H. Bio-inspired mineralization using hydrophilic polymers. Top. Curr. Chem. 2007, 271, 1-77.
    105. Yu, S. H. Bio-inspired crystal growth by synthetic templates. Top. Curr. Chem. 2007, 271, 79-118.
    106. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551-4627.
    107. C?lfen, H. Precipitation of carbonates: recent progress in controlled production of complex shapes. Curr. Opin. Colloid Interface Sci. 2003, 8, 23-31.
    108. Han, J. T.; Xu, X.; Cho, K. Sequential formation of calcium carbonate superstructure: from solid/hollow spheres to sponge-like/solid films. J. Cryst. Growth 2007, 308, 110-116.
    109. Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996, 271, 67-69.
    110. Kato, T.; Sugawara, A.; Hosoda, N. Calcium carbonate-organic hybrid materials. Adv. Mater. 2002, 14, 869-877.
    111. Politi, Y.; Metzler, R. A.; Abrecht, M.; Gilbert, B.; Wilt, F. H.; Sagi, I.; Addadi, L.; Weiner, S.; Gilbert, P. U. P. A. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc. Natl. Acad. Sci. USA, 2008, 105, 17362-17366.
    112. Albeck, S.; Weiner, S.; Addadi, L. Polysaccharides of intracrystalline glycoproteins modulatecalcite crystal growth in vitro. Chem. Eur. J. 1996, 2, 278-284.
    113. Wulff, G. (1901) Z Krystallogr 34: 449.
    114. Zhou, L.; O’Brien, P. Mesocrystals: a new class of solid materials. Small, 2008, 4, 1566-1574.
    115. C?lfen, H.; Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 2005, 44, 5576-5591.
    116. Oaki, Y.; Kotachi, A.; Miura, T.; Imai, H. Bridged nanocrystals in biominerals and their biomimetics: classical yet modern crystal growth on the nanoscale. Adv. Funct. Mater. 2006, 16, 1633-1639.
    117. Meldrum, F. C.; Sear, R. P. Materials science: now you see them. Science, 2008, 322, 1802-1803.
    118. C(?)lfen, H.; Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 2003, 42, 2350-2365.
    119. Wang, T.; C?lfen, H.; Antonietti, M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 2005, 127, 3246-3247.
    120. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551-4627.
    121. C(?)lfen, H. Precipitation of carbonates: recent progress in controlled production of complex shapes. Curr. Opin. Colloid Interface Sci. 2003, 8, 23-31.
    122. Han, J. T.; Xu, X.; Cho, K. Sequential formation of calcium carbonate superstructure: from solid/hollow spheres to sponge-like/solid films. J. Cryst. Growth 2007, 308, 110-116.
    123. Cheng, C.; Shao, Z.; Vollrath, F. Silk fibroin-regulated crystallization of calcium carbonate. Adv. Funct. Mater. 2008, 18, 2172-2179.
    124. Xu, X.; Han, J. T.; Cho, K. Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem. Mater. 2004, 16, 1740-1746.
    125. Faatz, M.; Gr?hn, F.; Wegner, G. Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Adv. Mater. 2004, 16, 996-1000.
    126. Sedlák, M.; C?lfen, H. Synthesis of double-hydrophilic block copolymers with hydrophobic moieties for the controlled crystallization of minerals. Macromol. Chem. Phys. 2001, 202,587-597.
    127. C?lfen, H. Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 2001, 22, 219-252.
    128. C?lfen, H.; Qi, L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur. J. 2001, 7, 106-116.
    129. C?lfen, H.; Antonietti, M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir 1998, 14, 582-589.
    130. Fabry, V. J.; Seibel, B. A.; Feely, R. A.; Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 2008, 65, 414-432.
    131. Ding, X.; Xu, R.; Liu, H.; Shi, W.; Liu, S.; Li, Y. Hyperbranched polymer-assisted hydrothermal in situ synthesis of submicrometer silver tubes. Cryst. Growth Des. 2008, 8, 2982-2985.
    132. Park, H. K.; Lee, I.; Kim, K. Controlled growth of calcium carbonate by poly(ethylenimine) at the air/water interface. Chem. Commun. 2004, 10, 24-25.
    133. Balz, M.; Barriau, E.; Istratov, V.; Frey, H.; Tremel, W. Controlled crystallization of CaCO3 on hyperbranched polyglycerol adsorbed to self-assembled monolayers. Langmuir 2005, 21, 3987-3991.
    134. Zhang, Y.; Huang, W.; Zhou, Y.; Yan, D. A physical gel made from hyperbranched polymer gelator. Chem. Commun. 2007, 2587-2589.
    135. Zhang, Y.; Peng, H.; Huang, W.; Zhou, Y.; Zhang, X.; Yan, D. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J. Phys. Chem. C, 2008, 112, 2330–2336.
    136. Liu, H.; Chen, Y.; Shen, Z. Thermoresponsive hyperbranched polyethylenimines with isobutyramide functional groups. J. Polym. Sci., Polym. Chem. 2007, 45, 1177-1184.
    137. Aymonier, C.; Schlotterbeck, U.; Antonietti, L.; Zacharias, P.; Thomann, R.; Tiller, J.C.; Mecking, S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 2002, 3018-3019.
    138. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk V. V. Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am.Chem. Soc. 2004, 126, 9675-9684.
    139. Yan, D.Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65-67.
    140. Zhou, Y. F.; Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem. In. Ed. 2004, 43, 4896-4899.
    141. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y. Real-time hierarchical self-assembly of large compound vesicles from an amphiphilic hyperbranched multiarm copolymer. Small 2007, 3, 1170-1173.
    142. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38, 8679-8686.
    143. Hong, H.; Mai, Y.; Zhou, Y.; Yan, D.; Cui, J. Self-assembly of large multimolecular micelles from hyperbranched star copolymers. Macromol. Rapid Comm. 2007, 28, 591-596.
    144. Liu, C. H.; Gao, C.; Yan, D. Y. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew. Chem. In. Ed. 2007, 46, 4128-4131.
    145. Donners, J. J. J. M.; Heywood, B. R.; Meijer, E. W.; Nolte, R. J. M., Sommerdijk, N. A. J. M. Control over calcium carbonate phase formation by dendrimer/surfactant templates. Chem. Eur. J. 2002, 8, 2561-2567.
    1. Zhang, L.; Eisenberg, A. Multiple morphologies of“crew-cut”aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995, 268, 1728-1745.
    2. Zhang, L.; Yu, K.; Eisenberg, A. Ion-induced morphological changes in“crew-cut”aggregates of amphiphilic block copolymers. Science 1996, 272, 1777-1779.
    3. Discher, D. E.; Eisenberg, A. Soft surfaces: polymer vesicles. Science 2002, 297, 967-973.
    4. Schilli, C. M.; Zhang, M. F.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, G.; Müller, A. H. E. A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)- b-poly(acrylic acid). Macromolecules 2004, 37, 7861-7866.
    5. Erhardt, R.; Zhang, M. F.; Boeker, A.; Zettl, H.; Abetz, C.; Frederik, P.; Krausch, G.; Abetz, V.; Müller, A. H. E. Amphiphilic janus micelles with polystyrene and poly(methacrylic acid) hemispheres. J. Am. Chem. Soc. 2003, 12, 3260-3267.
    6. Loos, K.; Boeker, A.; Zettl, H.; Zhang, M. F.; Krausch, G.; Müller, A. H. E. Micellar aggregates of amylose-b-polystyrene rod-coil block copolymers in water and THF. Macromolecules 2005, 38, 873-879.
    7. Zhang, W. Q.; Shi, L. Q.; An, Y. L.; Gao, L. C.; Wu, K.; Ma, R. J.; He, B. L. Initial copolymer concentration influence on self-assembly of PS38-b-P(AA190-co-MA20) in water. Phys. Chem. Chem. Phys. 2004, 6, 109-115.
    8. Ma, Y. H.; Cao, T.; Webber, S. E. Polymer micelles from poly(acrylic acid)-graft-polystyrene. Macromolecules 1998, 31, 1773-1778.
    9. Khousakoun, E.; Gohy, J. F.; Jerome, R. Self-association of double-hydrophilic copolymers of acrylic acid and poly(ethylene oxide) macromonomer. Polymer 2004, 45, 8303-8310.
    10. Breitenkamp, K.; Junge, D.; Emrick, T. Hollow microcapsules for drug delivery by self-assembly and cross-linking of amphiphilic graft copolymers ACS Symp. Ser. 2006, 923, 253-267.
    11. Shibanuma, T.; Aoki, T.; Sanui, K.; Ogata, N.; Kikuchi, A.; Sakurai, Y.; Okano, T. Thermosensitive phase-separation behavior of poly(acrylic acid)-graft-poly(N,N-dimethyl acrylamide) aqueous solution. Macromolecules 2000, 33, 444-450.
    12. Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.; Yang, L.; Wei, Y. Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures. J. Am. Chem. Soc. 2004, 12, 15180-15194.
    13. Schenning, A. P. H. J.; Elissen-Roman, C.; Weener, J. W.; Baars, M. W. P. L.; Van der Gaast, S. J.; Meijer, E. W. Amphiphilic dendrimers as building blocks in supramolecular assemblies. J. Am. Chem. Soc. 1998, 120, 8199-8208.
    14. Gillies, E. R.; Jonsson, T. B.; Fréchet, J. M. J. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 2004, 126, 11936-11943.
    15. Zimmerman, S. C.; Zeng, F. W.; Reichert, D. E. C.; Kolotuchin, S. V. Self-assembling dendrimers. Science, 1996, 271, 1095-1098.
    16. van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P.; Meijer, E. W. Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science, 1995, 268, 1592-1595.
    17. Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Delivery Rev. 2001, 53, 95-108.
    18. Aulenta, F.; Hayes, W.; Rannard, S. Dendrimers: a new class of nanoscopic containers and delivery devices. Eur. Polym. J. 2003, 39, 1741-1771.
    19. Lehn, J. M. Supramolecular chemistry: concepts and perspectives, Wiley VCH, Weinheim, 1995.
    20. Lehn, J. M. Toward self-organization and complex matter. Science 2002, 295, 2400-2403.
    21. Jiang, G. H.; Wang, L.; Chen, T.; Chen, C.; Yu, H. J. Synthesis of multi-arm star polystyrene with hyperbranched polyester initiators by atom transfer radical polymerization. J. Appl. Polym. Sci. 2006, 99, 728-733.
    22. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65-67.
    23. Zhou, Y. F.; Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem., Int. Ed. 2004, 43, 4896-4899.
    24. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-Assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38, 8679-8686.
    25. Vlassopoulos, D. Colloidal star polymers: models for studying dynamically arrested states in soft matter. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 2931-2941.
    26. Vlassopoulos, D.; Fytas, G.; Pakula, T.; Roovers, J. Multiarm star polymers dynamics. J. Phys.: Condens. Matter. 2001, 13, R855-R876.
    27. Grest, G. S.; Fetters, L. J.; Huang, J. S.; Richter, D. Star polymers: experiment, theory, and simulation. Adv. Chem. Phys. 1996, 94, 67-163.
    28. Haba, Y.; Harada, A.; Takagishi, T.; Kono, K. Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. J. Am. Chem. Soc. 2004, 126, 12760-12761.
    29. Vlassopoulos, D.; Pitsikalis, M.; Hadjichristidis, N. Linear dynamics of end-functionalized polymer melts: linear chains, stars, and blends. Macromolecules 2000, 33, 9740-9746.
    30. Vlassopoulos, D.; Pakula, T.; Fytas, G.; Pitsikalis, M.; Hadjichristidis, N. Controlling the self-assembly and dynamic response of star polymers by selective telechelic functionalization. J. Chem. Phys. 1999, 111, 1760-1764.
    31. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Lu, H. W. Effect of reaction temperature on degree of branching in cationic polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2003, 36, 9667-9669.
    32. You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, P. H. Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv. Mater. 2004, 16, 1953-1957.
    33. Mikkelsen, K.; Nielsen, S. O. Acidity measurements with the glass electrode in H2O-D2O mixtures. J. Phys. Chem. 1960, 64, 632-637.
    34. Yusa, S.; Sakakibara, A.; Yamamoto, T.; Morishima, Y. Reversible pH-induced formation and disruption of unimolecular micelles of an amphiphilic polyelectrolyte. Macromolecules 2002, 35, 5243-5249.
    35. Webber, G. B.; Wanless, E. J.; Armes, S. P.; Baines, F. L.; Biggs, S. Adsorption of amphiphilic diblock copolymer micelles at the mica/solution interface. Langmuir 2001, 17, 5551-5561.
    36. Liu, S.; Armes, S. P. Polymeric surfactants for the new millennium: a pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew. Chem., Int. Ed. 2002, 41, 1413-1416.
    37. Astafieva, I.; Zhong, X. F.; Eisenberg, A. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 1993, 26, 7339-7352.
    38. Wilhelm, M.; Zhao, C. L.; Wang, Y.; Xu, R.; Winnik, M. A.; Mura, J. L.; Riess, G.; Croucher, M. D. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules, 1991, 24, 1033–1040.
    39. Szczubialka, K.; Ishikawa, K.; Morishima, Y. Micelle formation of diblock copolymers of styrene and sulfonated isoprene in aqueous solution. Langmuir 1999, 15, 454-462.
    40. Chen, G.; Guan, Z. Transition metal-catalyzed one-pot synthesis of water-soluble dendritic molecular nanocarriers. J. Am. Chem. Soc. 2004, 126, 2662-2663.
    41. Harada, T., Sato, H.; Hirashima,Y.; Igarashi, K.; Suzuki, A.; Goto, M.; Kawamura, N.; Tokita, M. Swelling behavior of poly(sodium acrylate) gels crosslinked by aluminum ions. Colloid Surf. B: Biointerfaces 2004, 38, 209-212.
    42. Anquetil, R.; Saussey, J.; Lavalley, J. C. Confinement effect on the interaction of hydroxy groups contained in the side pockets of H-mordenite with nitriles; a FT-IR study. Phys. Chem. Chem. Phys. 1999, 1, 555-560.
    43. Cleveland, C. S.; Guigley, K. S.; Painter, P. C.; Coleman, M. M. Infrared spectroscopic studies of poly(styrene-co-methacrylic acid) blends with polytetrahydrofuran. Macromolecules 2000, 33, 4278-4280.
    44. Higashi, N.; Matsumoto, T.; Niwa, M. Chain length discrimination of water-soluble polymers by a poly(methacrylic acid) or poly(oxyethylene) segment-carrying assemblies at the air-water interface. Langmuir 1994, 10, 4651-4656.
    45. Berkesi, O.; K?rtvélyesi, T.; Hetényi, C.; Németh, T.; Pálinkó, I. Hydrogen bonding interactions of benzylidene type Schiff bases studied by vibrational spectroscopic and computational methods. Phys. Chem. Chem. Phys. 2003, 5, 2009-2014.
    46. Motzer, H. R.; Painter, P. C.; Coleman, M. M. Interactions in miscible blends of poly(styrene-co-methacrylic acid) with copolymers containing vinylpyrrolidone and vinylpyridine groups. Macromolecules 2001, 34, 8390-8393.
    47. Hirashima, Y.; Sato, H.; Suzuki, A. ATR-FTIR spectroscopic study on hydrogen bonding of poly(N-isopropylacrylamide-co-sodium acrylate) gel. Macromolecules 2005, 38, 9280-9286.
    48. Sato, H.; Hirashima, Y.; Suzuki, A.; Goto, M.; Tokita, M. Effects of repeated water exchangeon the swelling behavior of poly(sodium acrylate) gels crosslinked by aluminum ions. J. Polym. Sci., Part A: Polym. Phys. 2005, 43, 753-763.
    49. Coleman, M. M.; Lee, J. Y.; Painter, P. C. Acid salts and the structure of ionomers. Macromolecules 1990, 23, 2339-2345.
    50. Vamvakaki, M.; Palioura, D.; Spyros, A.; Armes, S. P.; Anastasiadis, S. H. Dynamic light scattering vs 1H NMR investigation of pH-responsive diblock copolymers in water. Macromolecules 2006, 39, 5106-5112.
    51. Bütün, V.; Top, R. B.; Ufuklar, S. Synthesis and characterization of novel“schizophrenic”water-soluble triblock copolymers and shell cross-linked micelles. Macromolecules, 2006, 39, 1216–1225.
    52. Bütün, V.; Armes, S. P.; Billingham, N. C. Selective quaternization of 2-(dimethylamino) ethyl methacrylate residues in tertiary amine methacrylate diblock copolymers. Macromolecules 2001, 34, 1148–1159.
    53. Vamvakaki, M.; Billingham, N. C.; Armes, S. P. Synthesis of controlled structure water-soluble diblock copolymers via oxyanionic polymerization. Macromolecules 1999, 32, 2088-2090.
    54. Zhang, L.; Eisenberg, A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol. 1998, 9, 677-699.
    55. Shen, H.; Eisenberg, A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/Dioxane/H2O. J. Phys. Chem. B, 1999, 103, 9473-9487.
    1. Templin, M.; Franck, A.; Chesne, A. Du; Leist, H.; Zhang, Y.; Ulrich, R.; Sch?dler, V.; Wiesner, U. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 1997, 278, 1795-1798.
    2. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.
    3. Velev, O. D.; Jede, T. A.; Lobo, R. F.; Lenhoff, A. M. Porous silica via colloidal crystallization. Nature 1997, 389, 447-448.
    4. Holland, B. T.; Blanford, C. F.; Stein, A. Synthesis of macroporous minerals with highly ordered three-timensional arrays of spheroidal voids. Science 1998, 281, 538-540.
    5. Imhof, A.; Pine, D. J. Ordered macroporous materials by emulsion templating. Nature 1997, 389, 948-951.
    6. Wang, D. Y.; Maceira, V. S.; Liz-Marzán, L. M. L.; Caruso, F. Gold–silica inverse opals by colloidal crystal templating. Adv. Mater. 2002, 14, 908-912.
    7. Norris, D. J.; Vlasov, Y. A. Chemical approaches to three-dimensional semiconductor photonic crystals. Adv. Mater. 2001, 13, 371-376.
    8. Bolognesi, A.; Botta, C.; Yunus, S. Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films. Thin Solid Films 2005, 492, 307-312.
    9. Zhang, Y.; Wang, C. Micropatterning of proteins on 3D porous polymer film fabricated by using the breath-figure method. Adv. Mater. 2007, 19, 913-916.
    10. Widawski, G.; Rawiso, M.; Fran?ois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369, 387-389.
    11. Pitois, O.; Fran?ois, B. Crystallization of condensation droplets on a liquid surface. Colloid Polym. Sci. 1999, 277, 574-578.
    12. Jenekhe, S. A.; Chen, X. L. Self-assembly of ordered microporous materials from rod-coilblock copolymers. Science 1999, 283, 372-375.
    13. Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 2001, 292, 79-83.
    14. Erdogan, B.; Song, L. L.; Wilson, J. N.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. F. Permanent bubble arrays from a cross-linked poly(para-phenyleneethynylene): picoliter holes without microfabrication. J. Am. Chem. Soc. 2004, 126, 3678-3679.
    15. Ludwigs, S.; B?ker, A.; Voronov, A.; Rehse, N.; Magerle, R.; Krausch, G. Self-assembly of functional nanostructures from ABC triblock copolymers. Nat. Mater. 2003, 2, 744-747.
    16. Bu, W. F.; Li, H. L.; Sun, H.; Yin, S. Y.; Wu, L. X. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces. J. Am. Chem. Soc. 2005, 127, 8016-8017.
    17. Sun, H.; Li, H. L.; Bu, W. F.; Xu, M.; Wu, L. X. Self-organized microporous structures based on surfactant-encapsulated polyoxometalate complexes. J. Phys. Chem. B 2006, 110, 24847-24854.
    18. Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angew. Chem. Int. Ed. 2001, 113, 3536-3540.
    19. Hayakawa, T.; Horiuchi, S. From angstroms to micrometers: self-organized hierarchical structure within a polymer film. Angew. Chem. Int. Ed. 2003, 42, 2285-2289.
    20. Park, M. S.; Kim, J. K. Breath figure patterns prepared by spin coating in a dry environment. Langmuir 2004, 20, 5347-5352.
    21. Cui, L.; Han, Y. C. Honeycomb pattern formation via polystyrene/poly(2-vinylpyridine) phase separation. Langmuir 2005, 21, 11085-11091.
    22. De Boer, B.; Stalmach, U.; Nijland, H.; Hadziioannou, G. Microporous honeycomb- structured films of semiconducting block copolymers and their use as patterned templates. Adv. Mater. 2000, 12, 1581-1583.
    23. Govor, L. V.; Bashmakov, I. A.; Kiebooms, R.; Dyakonov, V.; Parisi, J. Self-organized networks based on conjugated polymers. Adv. Mater. 2001, 13, 588-591.
    24. Yunus, S.; Delcorte, A.; Poleunis, C.; Bertrand, P.; Bolognesi, A.; Botta, C. A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging. Adv. Funct. Mater. 2007, 17, 1079-1084.
    25. Karthaus, O.; Maruyama, N.; Cieren, X.; Shimomura, M.; Hasegawa, H. Hashimoto, T. Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 2000, 16, 6071-6076.
    26. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65-67.
    27. Zhou, Y. F.; Yan, D. Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed. 2005, 44, 3223-3226.
    28. Zhou, Y. F.; Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled size. Angew. Chem. Int. Ed. 2004, 43, 4896-4899.
    29. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V . V. Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem. Soc. 2004, 126, 9675-9684.
    30. Liu, C. H.; Gao, C.; Yan, D. Y. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew. Chem. Int. Ed. 2007, 46, 4128-4131.
    31. Lapos, J. A.; Ewing, A. G.; Injection of fluorescently labeled analytes into microfabricated chips using optically gated electrophoresis. Anal. Chem. 2000, 72, 4598-4602.
    32. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living radical polymerization with reversible addition?fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 1999, 32, 6977-6980.
    33. Stenzel-Rosenbaum, M. H.; Davis, T. P.; Chen, V.; Fane, A. G. Star-polymer synthesis viaradical reversible addition–fragmentation chain-transfer polymerization. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2777-2783.
    34. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Lu, H. W. Effect of reaction temperature on degree of branching in cationic polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromolecules 2003, 36, 9667-9669.
    35. You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, P. H. Synthesis of a dendritic core–shell nanostructure with a temperature-sensitive shell. Adv. Mater. 2004, 16, 1953-1957.
    36. Xu, J.; Luo, S. Z.; Shi, W. F.; Liu, S. Y. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006, 22, 989-997.
    37. Bunz, H. U. F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006, 18, 973-989.
    38. Stenzel, M. H. Formation of regular honeycomb-patterned porous film by self-organization. Aust. J. Chem. 2002, 55, 239-243.
    39. Maruyama, N.; Koito, T.; Nishida, J.; Sawadaishi, T.; Cieren, X.; Ijiro, K.; Karthaus, O.; Shimomura, M. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 1998, 327-329, 854-856.
    40. Barrow, M. S.; Jones, R. L.; Park, J. O.; Srinivasarao, M.; Williams, P. R.; Wright, C. J. Physical characterisation of microporous and nanoporous polymer films by atomic force microscopy, scanning electron microscopy and high speed video microphotography. Spectroscopy 2004, 18, 577-585.
    41. Zhao, G. X.; Zhu, B. Y. Principle of surfactant action. Beijing: Chinese Light Industry Press 2003.
    42. Israelachvili, J. N. Intermolecular and Surface Forces, 2nd Ed. Academic Press, London 1992.
    43. Dell’Aversana, P.; Banavar, J. R.; Koplik, J.; Suppression of coalescence by shear and temperature gradients. Phys. Fluids 1996, 8, 15-28.
    44. Saunders, A. E.; Dickson, J. L.; Shah, P. S.; Lee, M. Y.; Lim, K. T.; Johnston, K. P.; Korgel, B. A. Breath figure templated self-assembly of porous diblock copolymer films. Phys. Rev. E 2006, 73, 031608(1-6).
    45. Mitov, Z.; Kumacheva, E. Convection-induced patterns in phase-separating polymeric fluids. Phys. Rev. Lett. 1998, 81, 3427-3430.
    46. Nepomnyashchy, A. A.; Golovin, A. A.; Tikhomirova, A. E.; Volpert, V. A. Nucleation and growth of droplets at a liquid-gas interface. Phys. Rev. E 2006, 74, 021605-(1-10).
    47. Steyer, A.; Guenoun, P.; Beysens, D.; Knobler, C. M. Two-dimensional ordering during droplet growth on a liquid surface. Phys. Rev. B 1990, 42, 1086-1089.
    48. Steyer, A.; Guenoun, P.; Beysens, D. Hexatic and fat-fractal structures for water droplets condensing on oil. Phys. Rev. E 1993, 48, 428-431.
    49. Limaye, A. V.; Narhe, R. D.; Dhote, A. M.; Ogale, S. B. Evidence for convective effects in breath figure formation on volatile fluid surfaces. Phys. Rev. Lett. 1996, 76, 3762-3765.
    50. Nishikawa, T.; Ookura, R.; Nishida, J.; Arai, K.; Hayashi, J.; Kurono, N.; Sawadaishi, T.; Hara, M.; Shimomura, M. Fabrication of honeycomb film of an amphiphilic copolymer at the air?water interface. Langmuir 2002, 18, 5734-5740.
    51. Nishikawa, T.; Nonomura, M.; Arai, K.; Hayashi, J.; Sawadaishi, T.; Nishiura, Y.; Hara, M.; Shimomura, M. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir 2003, 19, 6193-6201.
    52. Fukuhira, Y.; Kitazono, E.; Hayashi, T.; Kaneko, H.; Tanaka, M.; Shimomura, M.; Sumi, Y. Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine. Biomaterials 2006, 27, 1797-1802.
    53. Karikari, A. S.; Williams, S. R.; Heisey, C. L.; Rawlett, A. M.; Long, T. E. Porous thin films based on photo-cross-linked star-shaped poly(D,L-lactide)s. Langmuir 2006, 22, 9687-9693.
    54. Zhao, B. H.; Zhang, J.; Wang, X. D.; Li, C. X. Water-assisted fabrication of honeycomb structure porous film from poly(L-lactide). J. Mater. Chem. 2006, 16, 509-513.
    55. Peng, J.; Han, Y. C.; Yang, Y. M.; Li, B. Y. The influencing factors on the macroporousformation in polymer films by water droplet templating. Polymer, 2004, 45, 447-452.
    56. Connal, L. K.; Gurr, P. A.; Qiao, G. G.; Solomon, D. H. From well defined star-microgels to highly ordered honeycomb films. J. Mater. Chem. 2005, 15, 1286-1292.
    57. Park, J. S.; Lee, S. H.; Han, T. H.; Kim, S. O. Hierarchically ordered polymer films by templated organization of aqueous droplets. Adv. Funct. Mater. 2007, 17, 2315-2320.
    58. Cui, L.; Li, B. Y.; Han, Y. C. Transformation from ordered islands to holes in phase-separating P2VP/PS blend films by adding triton X-100. Langmuir 2007, 23, 3349-3354.
    59. Tian, Y.; Jiao, Q. Z.; Ding, H. Y.; Shi, Y. Q.; Liu, B. Q. The formation of honeycomb structure in polyphenylene oxide films. Polymer 2006, 47, 3866-3873.
    60. Ball, P. Engineering Shark skin and other solutions. Nature 1999, 400, 507-509.
    61. Feng, X. J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18, 3063-3078.
    62. Vamvounis, G.; Nystr?m, D.; Antoni, P.; Lindgren, M.; Hult, A. Formation and properties of isoporous films composed of polymer semiconductors. Proceedings of SPIE-The International Society for Optical Engineering 6401, art. no. 64010A 2006.
    63. Wang, Y.; Liu, Z. M.; Han, B. X.; Sun, Z. Y.; Zhang, J. L.; Sun, D. H. Phase-separation-induced micropatterned polymer surfaces and their applications. Adv. Funct. Mater. 2005, 15, 655-663.
    64. Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 2005, 17, 5231-5234.
    65. Yabu, H.; Takebayashi, M.; Tanaka, M.; Shimomura, M. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir 2005, 21, 3235-3237.
    1. Lowenstam, H. A.; Weiner, S. On Biomineralization; Oxford University Press: New York, 1989.
    2. Mann, S. Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: Oxford, UK, 2001.
    3. B(?)uerlein, E. Biomineralization; Wiley-VCH: Weinheim, Germany 2000.
    4. C(?)lfen, H. Bio-inspired mineralization using hydrophilic polymers. Top. Curr. Chem. 2007, 271, 1-77.
    5. Yu, S. H. Bio-inspired crystal growth by synthetic templates. Top. Curr. Chem. 2007, 271, 79-118.
    6. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551-4627.
    7. C(?)lfen, H. Precipitation of carbonates: recent progress in controlled production of complex shapes. Curr. Opin. Colloid Interface Sci. 2003, 8, 23-31.
    8. Han, J. T.; Xu, X.; Cho, K. Sequential formation of calcium carbonate superstructure: from solid/hollow spheres to sponge-like/solid films. J. Cryst. Growth 2007, 308, 110-116.
    9. Donners, J. J. J. M.; Heywood, B. R.; Meijer, E. W.; Nolte, R. J. M., Sommerdijk, N. A. J. M. Control over calcium carbonate phase formation by dendrimer/surfactant templates. Chem. Eur. J. 2002, 8, 2561-2567.
    10. Xu, X.; Han, J. T.; Cho, K. Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem. Mater. 2004, 16, 1740-1746.
    11. Li, M.; Lebeau, B.; Mann, S. Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse microemulsions. Adv. Mater. 2003, 15, 2032-2035.
    12. Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996, 271, 67-69.
    13. Kato, T.; Sugawara, A.; Hosoda, N. Calcium carbonate-organic hybrid materials. Adv. Mater. 2002, 14, 869-877.
    14. Meldrum, F. C. Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 2003, 48, 187-224.
    15. Li, C.; Hong, G.; Yu, H.; Qi, L. Facile fabrication of honeycomb-patterned thin films of amorphous calcium carbonate and mosaic calcite. Chem. Mater. 2010, 22, 3206-3211.
    16. Dai, L.; Cheng, X.; Gower, L. B. Transition bars during transformation of an amorphous calcium carbonate precursor. Chem. Mater. 2008, 20, 6917-6928.
    17. Politi, Y.; Metzler, R. A.; Abrecht, M.; Gilbert, B.; Wilt, F. H.; Sagi, I.; Addadi, L.; Weiner, S.; Gilbert, P. U. P. A. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc. Natl. Acad. Sci. USA, 2008, 105, 17362-17366.
    18. Sedlák, M.; C?lfen, H. Synthesis of double-hydrophilic block copolymers with hydrophobic moieties for the controlled crystallization of minerals. Macromol. Chem. Phys. 2001, 202, 587-597.
    19. C(?)lfen, H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 2001, 22, 219-252.
    20. C(?)lfen, H.; Qi, L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur. J. 2001, 7, 106-116.
    21. C(?)lfen, H.; Antonietti, M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir 1998, 14, 582-589.
    22. Yu, S. H.; C?lfen, H.; Tauer, K.; Antonietti, M. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nat. Mater. 2005, 4, 51-55.
    23. Chen, S. F.; Zhu, J. H.; Jiang, J.; Cai, G. B.; Yu, S. H. Polymer-controlled crystallization of unique mineral superstructures. Adv. Mater. 2010, 22, 540-545.
    24. Albeck, S.; Weiner, S.; Addadi, L. Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem. Eur. J. 1996, 2, 278-284.
    25. Zhang, Z. P.; Gao, D. M.; Zhao, H.; Xie, C. G.; Guan, G. J.; Wang, D. P.; Yu, S. H. Biomimetic assembly of polypeptide-stabilized CaCO3 nanoparticles. J. Phys. Chem. B 2006, 110, 8613-8618.
    26. Euliss, L. E.; Trnka, T. M.; Deming, T. J.; Stucky, G. D. Design of a doubly-hydrophilic block copolypeptide that directs the formation of calcium carbonate microspheres. Chem. Commun. 2004, 10, 1736-1737.
    27. Naka, K.; Tanaka, Y.; Chujo, Y. Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: size control of spherical vaterite particles. Langmuir 2002, 18, 3655-3658.
    28. Guo, X. H.; Yu, S. H.; Cai, G. B. Crystallization in a mixture of solvents by using a crystal modifier: morphology control in the synthesis of highly monodisperse CaCO3 microspheres. Angew. Chem. Int. Ed. 2006, 45, 3977-3981.
    29. Cheng, C.; Shao, Z.; Vollrath, F. Silk fibroin-regulated crystallization of calcium carbonate. Adv. Funct. Mater. 2008, 18, 2172-2179.
    30. Cheng C.; Yang, Y.; Chen, X.; Shao, Z. Templating effect of silk fibers in the oriented deposition of aragonite. Chem. Commun. 2008, 5511-5513.
    31. Choi, C. S.; Kim, Y. W. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 2000, 21, 213-222.
    32. Gao, C.; Yan, D. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29, 183-275.
    33. Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 1999, 32, 4240-4246.
    34. Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A. Cationic polymerization of glycidol: coexistence of the activated monomer and active chain end mechanism. Macromolecules 1994, 27, 320-322.
    35. Liu, B.; Zeng, H. C. Mesoscale organization of CuO nanoribbons: formation of "dandelions". J. Am. Chem. Soc. 2004, 126, 8124-8125.
    36. Shen, Q.; Wei, H.; Wang, L.; Zhou, Y.; Zhao, Y.; Zhang, Z.; Wang, D.; Xu, G.; Xu, D. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate. J. Phys. Chem. B 2005, 109, 18342-18347.
    37. Song, R. Q.; C?lfen, H.; Xu, A. W.; Hartmann, J.; Antonietti, M. Polyelectrolyte-directed nanoparticle aggregation: Systematic morphogenesis of calcium carbonate by nonclassical crystallization. ACS Nano 2009, 3, 1966-1978.
    38. Xu, A. W.; Yu, Q.; Dong, W.; Antonietti, M.; C?lfen, H. Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid. Adv. Mater. 2005, 17, 2217-2221.
    39. Yu, J. G.; Guo, H. T.; Davis, S. A.; Mann, S. Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Adv. Funct. Mater. 2006, 16, 2035-2041.
    40. Wei, H.; Ma, N.; Shi, F.; Wang, Z.; Zhang, X. Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata. Chem. Mater. 2007, 19, 1974-1978.
    41. Zhu, Y.; Liu, Y.; Ruan, Q.; Zeng, Y.; Xiao, J.; Liu, Z.; Cheng, L.; Xu, F.; Zhang, L. Superstructures and mineralization of laminated vaterite mesocrystals via mesoscale transformation and self-assembly. J. Phys. Chem. C 2009, 113, 6584-6588.
    42. Xu, A. W.; Antonietti, M.; C?lfen, H.; Fang, Y. P. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv. Funct. Mater. 2006, 16, 903-908.
    43. Pokroy, B.; Demensky, V.; Zolotoyabko, E. Nacre in mollusk shells as a multi layered structure with strain gradient. Adv. Funct. Mater. 2009, 19, 1054-1059.
    44. Volkmer, D.; Harms, M.; Gower, L.; Ziegler, A. Morphosynthesis of nacre-type laminated CaCO3 thin films and coatings. Angew. Chem. Int. Ed. 2005, 44, 639-644.
    45. Dong, W. Y.; Zhou, Y. F.; Yan, D. Y.; Li, H. Q.; Liu, Y. pH-responsive self-assembly of carboxyl-terminated hyperbranched polymers. Phys. Chem. Chem. Phys. 2007, 9, 1255-1262.
    46. Xu, A. W.; Dong, W.; Antonietti, M.; C?lfen, H. Polymorph switching of calcium carbonate crystals by polymer-controlled crystallization. Adv. Funct. Mater. 2008, 18, 1307-1313.
    47. Carteret, C.; Dandeu, A.; Moussaoui, S.; Muhr, H.; Humbert, B.; Plasari, E. Polymorphism studied by lattice phonon Raman spectroscopy and statistical mixture analysis method. Application to calcium carbonate polymorphs during batch crystallization. Cryst. Growth Des. 2009, 9, 807-812.
    48. Zhou, L.; O’Brien, P. Mesocrystals: a new class of solid materials. Small, 2008, 4, 1566-1574.
    49. C(?)lfen, H.; Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 2005, 44, 5576-5591.
    50. Oaki, Y.; Kotachi, A.; Miura, T.; Imai, H. Bridged nanocrystals in biominerals and their biomimetics: classical yet modern crystal growth on the nanoscale. Adv. Funct. Mater. 2006, 16, 1633-1639.
    51. Meldrum, F. C.; Sear, R. P. Materials science: now you see them. Science, 2008, 322, 1802-1803.
    52. C(?)lfen, H.; Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 2003, 42, 2350-2365.
    53. Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; J?ger, C.; C?lfen, H. Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acda. Sci. USA 2005, 102, 12653-12655.
    54. Gago-Duport, L.; Briones, M. J. I.; Rodríguez, J. B.; Covelo, B. Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: Pathways to the formation of crystalline phases. J. Struct. Biol. 2008, 162, 422-435.
    55. Pai, R. K.; Pillai, S. Water-soluble terpolymer directs the hollow triangular cones of packed calcite needles. Cryst. Growth Des. 2007, 7, 215-217.
    56. Neira-Carrillo, A.; Acevedo, D. F.; Miras, M. C.; Barbero, C. A.; Gebauer, D.; C?lfen, H.; Arias, J. L. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization. Langmuir, 2008, 24, 12496-12507.
    57. Wang, T.; C?lfen, H.; Antonietti, M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 2005, 127, 3246-3247.
    58. Faatz, M.; Gr?hn, F.; Wegner, G. Amorphous calcium carbonate: Synthesis and potential intermediate in biomineralization. Adv. Mater. 2004, 16, 996-1000.
    59. Raz, S.; Weiner, S.; Addadi, L. Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Adv. Mater. 2000, 12, 38-42.
    60. Tlili, M. M.; Amor, M. B.; Gabrielli, C.; Joiret, S.; Maurin, G.; Rousseau, P. Characterization of CaCO3 hydrates by micro-Raman spectroscopy. J. Raman Spectrosc. 2001, 33, 10-16.
    61. Mann, S.; Heywood, B. R.; Rajam, S.; Birchall, J. D. Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 1988, 334, 692-695.
    62. Qi, L.; Li, J.; Ma, J. Biomimetic morphogenesis of calcium carbonate in mixed solutions for surfactants and double-hydrophilic block copolymers. Adv. Mater. 2002, 14, 300-303.
    63. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188-1191.
    64. Braybrook, A. L.; Heywood, B. R.; Jackson, R. A.; Pitt, K. Parallel computational and experimental studies of the morphological modification of calcium carbonate by cobalt. J. Cryst. Growth 2002, 243, 336-344.
    65. De Leeuw, N. H.; Parker, S. C. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J. Phys. Chem. B 1998, 102, 2914-2922.
    66. Gao, Y. X.; Yu, S. H.; Cong, H.; Jiang, J.; Xu, A. W.; Dong, W. F.; C?lfen, H. Block-copolymer-controlled growth of CaCO3 microrings. J. Phys. Chem. B 2006, 110, 6432-6436.
    1. Mount, A. S.; Wheeler, A. P.; Paradkar, R. P.; Snider, D. Hemocyte-Mediated Shell Mineralization in the Eastern Oyster. Science 2004, 304, 297-300.
    2. Sugawara, A.; Kato, T. Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chem. Commun. 2000, 487-488.
    3. C(?)lfen, H. Bio-inspired mineralization using hydrophilic polymers. Top. Curr. Chem. 2007, 271, 1-77.
    4. Sedlák, M.; C?lfen, H. Synthesis of double-hydrophilic block copolymers with hydrophobic moieties for the controlled crystallization of minerals. Macromol. Chem. Phys. 2001, 202, 587-597.
    5. C(?)lfen, H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 2001, 22, 219-252.
    6. Marentette, J. M.; Norwig, J.; Stoc?kelmann, E.; Meyer, W. H., Wegner, G. Crystallization of CaCO3 in the presence of PEO-block-PMAA copolymers. Adv. Mater. 1997, 9, 647-651.
    7. Kasp?arová, P.; Antonietti, M.; Col?fen, H. Double hydrophilic block copolymers with switchable secondary structure as additives for crystallization control. Colloid Surf. B: Physicochem. Eng. Asp. 2004, 250, 153-162.
    8. Guo, X. H.; Yu, S. H.; Cai, G. B. Crystallization in a mixture of solvents by using a crystal modifier: Morphology control in the synthesis of highly monodisperse CaCO3 microspheres. Angew. Chem. Int. Ed. 2006, 45, 3977-3981.
    9. Gao, C.; Yan, D. Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 2004, 29, 183-275.
    10. C(?)lfen, H.; Qi, L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur. J. 2001, 7, 106-116.
    11. Meldrum, F. C. Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 2003, 48, 187-224.
    12. Politi, Y.; Metzler, R. A.; Abrecht, M.; Gilbert, B.; Wilt, F. H.; Sagi, I.; Addadi, L.; Weiner, S.; Gilbert, P. U. P. A. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc. Natl. Acad. Sci. USA, 2008, 105, 17362-17366.
    13. Naka, K.; Tanaka, Y.; Chujo, Y. Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: Size control of spherical vaterite particles. Langmuir 2002, 18, 3655-3658.
    14. Shen, Q.; Wei, H.; Wang, L.; Zhou, Y.; Zhao, Y.; Zhang, Z.; Wang, D.; Xu, G.; Xu, D. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate. J. Phys. Chem. B 2005, 109, 18342-18347.
    15. Raz, S.; Weiner, S.; Addadi, L. Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Adv. Mater. 2000, 12, 38-42.
    16. Stah?ler, K.; Selb, J.; Candau, F. Multicompartment polymeric micelles based on hydrocarbon and fluorocarbon polymerizable surfactants. Langmuir 1999, 15, 7565-7576.
    17. Nivaggioli, T.; Alexandridis, P.; Hatton, T. A.; Yekta, A. Winnik, M.A. Fluorescence probe studies of pluronic copolymer solutions as a function of temperature. Langmuir 1995, 11, 730-737.
    18. Kim, J.-H.; Domach, M. M.; Tilton, R. D. Effect of electrolytes on the pyrene solubilization capacity of dodecyl sulfate micelles. Langmuir 2000, 16, 10037-10043.
    19. Marinov, G., Michels, B., Zana, R. Study of the state of the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) L64 in aqueous solution. Langmuir 1998,
    14, 2639-2644.
    20. Sondjaja, H. R.; Hatton, T. A.; Tam, K. C. Self-assembly of poly(ethylene oxide)-block-poly(acrylic acid) induced by CaCl2: Mechanistic study. Langmuir 2008, 24, 8501-8506.
    21. Gohy, J. -F.; Creutz, S.; Garcia, M.; Mahltig, B.; Stamm, M.; Jér?me, R. Aggregates formed by amphoteric diblock copolymers in water. Macromolecules 2000, 33, 6378-6387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700