水辅助自组装制备漆酚基聚合物多孔膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用水辅助自组装制备了漆酚甲醛缩聚物(PUF)、漆酚缩醛胺聚合物(PUFD)、漆酚钛螯合高聚物(PUT)和漆酚钛螯合高聚物/羟基化多壁碳纳米管复合材料(PUT/CNT)等四种不同极性的漆酚基聚合物的多孔薄膜。
     首先,从具有漆酚分子结构特征和生漆膜优良理化特性的PUF的蜂窝状多孔聚合物薄膜入手,研究聚合物在高湿度条件下的成膜特性。实验结果表明:用水辅助自组装,可以制备出蜂窝状结构的PUF多孔膜。在多孔膜形成过程,有更多极性基团-OH朝向模板水滴,从而导致孔周围的含氧量升高。当环境湿度、潮湿气体流速和聚合物溶液量增大时,所形成的蜂窝状孔的规则性提高且孔径变大;38.1~88.9mg/mL浓度的PUF二硫化碳溶液都可用于水辅助自组装制备蜂窝状多孔膜;该PUF多孔膜对水的接触角在96~119°,为疏水性膜;经10%盐酸和10%NaOH浸泡3h后仍保留原来多孔膜的形貌。
     其次,以仍保持着漆酚的基本骨架,但部分漆酚酚羟基被封闭的漆酚钛螯合高聚物(PUT)和漆酚钛螯合高聚物/羟基化多壁碳纳米管复合材料(PUT/CNT)为成膜材料,用水辅助自组装制备多孔膜,并用反相气相色谱测试PUT和PUT/CNT的表面自由能,研究聚合物表面自由能对膜形貌的影响。实验结果表明:(1)以PUT为成膜物质,可以制得PUT多孔膜,但没有得到规则的蜂窝状结构。(2)用水辅助自组装可成功制备规则的蜂窝状PUT/CNT多孔膜,孔周围的极性基团-OH数比孔壁上的高。多孔膜的孔径随着聚合物溶液浓度的提高,环境湿度的下降呈减小趋势;溶液量较小时(5.0μL)得到二维单层的多孔膜,而溶液量较大(10.0和20.0μL)时,得到三维多层的多孔膜。(3)PUT和PUT/CNT均为弱的Lewis碱,PUT的Lewis酸常数K_a为0.1853,碱常数K_b为0.9662。PUT/CNT的Lewis酸常数K_a为0.2062,碱常数K_b为0.6250。与PUT相比,PUT/CNT的色散自由能和由酸碱作用引起的吸附自由能都比PUT大,有利于蜂窝状多孔膜的形成。(4)PUT/CNT多孔膜对水的接触角在110~119°,为疏水性膜,并具有优良的耐强酸、碱性和耐热性。
     最后,不在聚合物溶液表面吹潮湿气体的静态高湿环境下,以具有漆酚羟基又具有氨基或亚氨基的漆酚缩醛胺聚合物(PUFD)为成膜材料,用水辅助自组装制备多孔膜。实验结果表明:静态高湿环境下,用水辅助自组装制备PUFD多孔膜时,数均分子量要大于4.8×10~3才能得到蜂窝结构多孔膜。水面展开法更有利于形成单层的多孔膜,而固体基板展开法得到的是多层的多孔膜。当PUFD聚合物浓度为6.0mg/mL,环境相对湿度为90%时,用水面展开法制得的单层多孔膜的孔径分布较均匀。
In this paper, the microporous films of four urushiol-based polymers differing in polarity have been successfully fabricated by water-assisted self-assembly in the moisture atmosphere. Furthermore, several influencing factors on the formation of urushiol-based polymers microporous films and the different morphologies, such as the polymer surface free energy, the concentration of the polymer solution, the moist airflow speed, the relative humidity in the atmosphere, and the substrates, etc, were investigated.
     Firstly, urushiol-formaldehyde polymer (PUF) honeycomb structured films have been successfully fabricated by water-assisted self-assembly. The films were characterized by Scanning Electronic Microscopy (SEM), Atomic Force Microscope(AFM) and Energy Dispersive Spectrometer(EDS), etc. The experimental results showed that the polarity group (-OH) quantity of the surrounding pore was higher than the pore wall. With the increase of the humidity of the atmosphere, the speed of the moisture airflow, and the volume of the solution, the pore size of PUF increased. Different from other literatures which could obtain regular pores only in low concentrations, the regular pores of PUF films were formed when the concentrations ranged from 38.1 to 88.9 mg/mL. Furthermore, PUF microporous films were hydrophobic, and the PUF films retained the original morphology after being immerged in 10% hydrochloric acid or 10% NaOH for 3h.
     Secondly, urushiol-titanium chelate polymer (PUT) and urushiol titanium chelate polymer/multi-walled carbon nanotube composite material (PUT/CNT) microporous films have been fabricated by water-assisted self-assembly. The films were characterized by SEM, AFM, EDS and the Laser Scanning Confocal Microscope(LSCM), etc. Inverse gas chromatography (IGC) was used to test the surface properties of PUT and PUT/CNT. The experimental results indicated that the regular honeycomb PUT/CNT microporous films could be successfully prepared by water-assisted self-assembly method, but PUT could (?)ot. Meanwhile, decreased humidity and increased solution concentration leaded to reducing pore size. Moreover, PUT/CNT's surface free energy of the dispersive component and Lewis acid-base interactions were larger than that of PUT's. The Lewis acidic number K_a of PUT and PUT/CNT was 0.1853 and 0.2062, while the basic number K_b of PUT and PUT/CNT was 0.9662 and 0.6250, respectively. The PUT/CNT porous films retained the original morphology after being immerged in 10% hydrochloric acid or 10% NaOH, xylene for 24h. The PUT/CNT porous films exhibited good thermal resistance.
     Lastly, in the static moisture atmosphere, urushiol-formaldehyde diethylenetriamine polymer (PUFD) microporous films have been successfully fabricated by water-assisted self-assembly. The comparison of the two methods indicated PUFD microporous films with monolayer could be fabricated by spreading on water but with multilayer by spreading on solid. Furthermore, several influencing factors on the formation of the PUFD microporous films and the different morphologies, such as the molecular weight, the concentration of the polymer solution, the relative humidity in the atmosphere and the substrates, were investigated. The results showed that the water surface, as a spreading substrate, was suitable to form orderly porous films for such a polymer. To get regular structure PUFD porous film, the number average molecular weight of PUFD should exceed 4.8×10~3. The monolayer film with a relative uniform pore size distribution could be formed from the polymer with concentration of 6.0 mg/mL at the relative humidity of 90% and room temperature by using a water surface.
引文
[1]Shimomura M.Preparation of ultrathin polymer films based on two-dimensional molecular ordering[J].Prog Polym Sci,1993,18:295-339.
    [2]Nishikawa T,Nishida J,Ookura R,et al.Hoenycomb patterned thin films of amphiphilic polymers as cell culture substrates[J].Materials Science and Engineering C,1999,8-9:495-500
    [3]Nishikawa T.,Arai K,Hayashi J,et al.Honeycomb films of biodegradable polymers for tissue engineering[J].Mat Res Soc Syrup Proe,2002,72(e):229-234.
    [4]Yabu H.,Shimomura M..Simple Fabrication of Micro Lens Arrays[J].Langmuir,2005,21:1709-1711.
    [5]Tanaka M.,Nishikawa K.,Okubo H.,Kamachi H.,Kawai T.,Matsushita M.,et al.Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film[J].Colloids and Surf A,2006,284-285:464-469.
    [6]Ostuni E.,Chen C.S.,Ingber D.E.,Whitesides G.M..Selective deposition of proteins and cells in arrays of microwells[J].Langmuir,2001,17:2828-2834.
    [7]Bates A.K.,Rothschild M.,Bloomstein T.M.,Fedynyshyn T.H.,Kunz R.R.,Liberman V.,Switkes M..Review of technology for 157nm lithography[J].IBM J.Res.Dev.,2001,45:605-614
    [8]Whitesides G.M.,Xia Y..Soft photolithography(o|¨)[J].Angew.Chem.Int.Ed.,1998,37:550-575
    [9]Ruiz S.A.,Chen C.S..Microcontact printing:A tool to pattern[J].Soft Matter,2007,3:168-177
    [10]李伟.应用图案化表面去润湿现象构筑微观有序结构.吉林大学博士学位论文,2007
    [11]Kumar A.,Whitesides G.M..Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching[J].Appl.Phys.Lett.,1993,63:2002-2004.
    [12]Xia Y.N.,Kim E.,Zhao X.M.,Rogers J.A.,Prentiss M.,Whitesides G.M..Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters[J].Science,1996,273:347-349.
    [13]Zhao X.M.,Xia Y.N.,Whitesides G.M..Fabrication of three-dimensional micro-structures:microtransfer molding[J].Adv.Mater.,1996,8:837-840.
    [14]Kim E.,Xia Y.N.,Whitesides G.M..Polymer microstructures formed by moulding in capillaries[J].Nature,1995,376:581-584.
    [15]Kim E.,Xia Y.N.,Zhao X.M.,Whitesides G.M..Solvent-assisted microcontact molding:A convenient method for fabricating three-dimensional structures on surfaces of polymers[J].Adv.Mater.,1997,9:651-654.
    [16]Aizenberg,J.,Black,A.J.,Whitesides,G.M..Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver[J].J.Am.Chem.Soc.,1999,121:4500-4509.
    [17]Kane R.S.,Takayama S.,Ostuni E.,Ingber D.E.,Whitesides G.M..Patterning proteins and cells using soft lithography[J].Biomaterials,1999,20:2363-2376.
    [18]于春玲.水辅助自组装制备功能性聚合物蜂窝状多孔结构薄膜及其性质。吉林大学博士学位论文,2004
    [19]Feng C.L.,Vancso G.J.,Sch(o|¨)nherr H..Fabrication of Robust Biomolecular Patterns by Reactive Microcontact Printing on N-Hydroxysuccinimide Ester-Containing Polymer Films[J].Adv.Funct.Mater.,2006,16:1306-1312
    [20]Velev O.D.,Jede D.A.,Lobo R.F.,et al.Porous silica via colloidal crystallization[J].Nature,1997,389:447-448.
    [21]Gates B.,Yin Y.D.,Xia Y.N..Fabrication and characterization of porous membranes with highly ordered three-di-mensional periodic structure[J].Chem Mater,1999,11:2827-2836.
    [22]Park S.H.,Xia Y.N..Macroporous membranes with highly ordered and three-dimension-ally interconnected spherical pores[J].Adv Mater,1998,10:1045-1048.
    [23]Templin M.,Franck A.,Chesne D.U.,et al..Prganically modified aluminosilicate mesostructures from block copolymer phases[J].Science,1997,278:1795-1798.
    [24]Zhao D.,Feng G.,Huo Q.,et al..Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998,279:548-552.
    [25]Zhang B.J.,Davis S.A.,Mendelson N.H.,Mann S..Bacterial templating of zeolite fibres with hierarchical structure[J].Chem Commun,2000,9:781-782.
    [26]Davis S.A.,Burkett S.L.,Mendelson N.H.,Mann S..Bacterial templating of ordered maerostructures in silica and silica-surfactant mesophases[J].Nature,1997,385:420-423.
    [27]Manoharan V.N.,Imhof A.,Thorne J.D.,Pine D.J..Photonic crystals from emulsion templates [J].Adv Mater,2001,13(6):447-450.
    [28]Arnout I.,David J.P..Uniform macroporous ceramics and plastics by emulsion templating[J].Adv Mater,1998,10(9):697-700.
    [29]Yi G.R.,Yang S.M..Microstructures of porous silica prepared in aqueous and nonaqueous emulsion templates[J].Chem Mater,1999,11(9):2322-2325.
    [30]Butler R.,Davies C.M.,Cooper A.I..Emulsion templating using high internal phase supercritical fluid emulsions[J].Adv Mater,2001,13(19):1459-1463.
    [31]Widawski G.,Rawiso B.,Francois B..Self-organized honeycomb morphology of star-polymer polystyrene films[J].Nature,1994,369:387-389.
    [32]Stenzel,M.H.,Davis,T.P.,Fane,A.G.Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process[J].J Mater Chem,2003,13:2090.
    [33]Stenzel-Rosenbaum M.H.,Davies T.P.,Fane A.G.,Chen V..Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques[J].Angew.Chem.Int.Ed.,2001,40:3428-3432.
    [34]Stenzel M.H.,Davis T.P..Biomimetic Honeycomb-Structured Surfaces Formed from Block Copolymers Incorporating Acryloyl Phosphorylcholine[J].Aust.J.Chem.,2003,56:1035-1038.
    [35]Lord H.T.,Quinn J.F.,Angus S.D.,Whittaker M.R.,Stenzel M.H.,Davis T.P..Microgel stars via Reversible Addition Fragmentation Chain Transfer(RAFT) polymerization-a facile route to macroporous membranes,honeycomb patterned thin films and inverse opal substrates[J].J.Mater.Chem.,2003,13:2819-2824.
    [36]Barner-Kowollik C.,Dalton H.,Davis T.P.,Stenzel M.H..Nano-and Micro-Engineering of Ordered Porous Blue-Light-Emitting Films by Templating Well-Defined Organic Polymers Around Condensing Water Droplets[J].Angew.Chem.Int.Ed.,2003,42:3664-3668.
    [37]Connal L.A.,Qiao G G.Preparation of Porous Poly(dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates[J].Adv.Mater.2006,18:3024-3028
    [38]Connal L.A.,Vestberg R.,Gurr P.A.,Hawker C.J.,Qiao G G.Patterning on Nonplanar Substrates:Flexible Honeycomb Films from a Range of Self-assembling Star Copolymers[J].Langmuir 2008,24:556-562
    [39]Yabu H.,Takebayashi M.,Tanaka M.,Shimomura M..Superhydrophobic and Lipophobic Properties of Self-Organized Honeycomb and Pincushion Structures[J].Langmuir 2005,21:3235-3237
    [40]Nishikawa T.,Ookura R.,Nishida J.,Arai K.,Hayashi J.,Kurono N.,Sawadaishi T.,Hara M.,Shimomura M..Fabrication of Honeycomb Film of an Amphiphilic Copolymer at the Air-Water Interface[J].Langmuir,2002,18(15):5734-5740.
    [41]Ishizu K..Architecture of superstructure on binary blends of core-shell polymer microsphere/diblock copolymers[J].Polymer,1997,38:2813-2817.
    [42]Wang S.X.,Wang M.T.,Lei Y.,Zhang L.D..Mesoscopic self-assembling morphology of polymer based on emulsification[J].Mater.Res.Bull.,2000,35:1625-1630.
    [43]Karthaus O.,Maruyama N.,Cieren X.,Shimomura M.,Hasegawa H.,Hashimoto T..Water-Assisted Formation of Micrometer-Size Honeycomb Patterns of Polymers[J].Langmuir,2000,16(15):6071-6075.
    [44]Francois B.,Pitois O.,Francois J..Polymer films with a self-organized honeycomb morphology[J].Adv.Mater.1995,7(12):1041-1044.
    [45]Wang Y.,Liu Z.M.,Han B.X.,Gao H.X.,Zhang J.L.,Kuang X..A simple route to micropatterned polymer surfaces[J].Chem.Commun.2004:800-801.
    [46]Hayakawa T..Fabrication of Self-Organized Chemically and Topologically Heterogeneous Patterns on the Surface of Polystyrene-b-Oligothiophene Block Copolymer Films[J].Langmuir 2005,21:10288-10291
    [47]Kim S.H.,Misner M.J.,Xu T.,Kimura M.,Russell T.P..Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation[J].Adv.Mater.,2004,16:226-231.
    [48]Kim S.H.,Misner M.J.,Xu T.,Kimura M.,Russell T.P..Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures[J].Adv.Mater.,2004,16:2119-2123.
    [49]Wong K.H.,Davis T.P.,Barner-Kowollik C.,Stenzel M.H..Honeycomb structured porous films from amphiphilic block copolymers prepared via RAFT polymerization[J].Polymer,2007,48:4950-4965
    [50]Kabuto T.,Hashimoto Y.,Karthaus O..Thermally Stable and Solvent Resistant Mesoporous Honeycomb Films from a Crosslinkable Polymer[J].Adv.Funct.Mater.2007,17:3569-3573
    [51]Wang C.Y.,Mao Y.D.,Wang D.Y.,Qu Q.S.,Yang G.J.,Hu X.Y..Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties[J].J.Mater.Chem.,2008,18:683-690
    [52]Zander N.E.,Orlicki J.A.,Karikari A.S.,Long T.E.,Rawlett A.M..Super-Hydrophobic Surfaces via Micrometer-Scale Templated Pillars[J].Chem.Mater.,2007,19:6145-6149
    [53]Cheng C.X.,Tang R.P.,Zhao Y.L.,Xi F..Synthesis of dendronized poly(methacrylates) and their diblock copolymers by atom transfer radical polymerization[J].J.Appl.Polym.Sci.,2004,91(4):2733-2737
    [54]Cheng C.X.,Tang R.P.,Xi F..Multiple morphologies from a novel diblock copolymer containing dendronized polymethacrylate and linear poly(ethylene oxide)[J].J.Polym.Sci.,Part A:Polym.Chem.,2005,43(11):2291-2297
    [55]Cheng C.X.,Tian Y.,Shi Y.Q.,Tang R.P.,Xi F..Porous Polymer Films and honeycomb Structures Based on Amphiphilic Dendronized Block Copolymers[J].Langmuir,2005,21:6576-6581
    [56]Liu C.H.,Gao C.,Yan D.Y..Synergistic Supramolecular Encapsulation of Amphiphilic Hyperbranched Polymer to Dyes[J].Macromolecules,2006,39:8102-8111
    [57]Liu C.H.,Gao C.,Yan D.Y..Honeycomb-Patterned Photoluminescent Films Fabricated by Self-Assembly of Hyperbranehed Polymers[J].Angew.Chem.Int.Ed.,2007,46:4128-4131
    [58]Dong W.Y.,Zhou Y.F.,Yan D.Y.,Mai Y.Y.,He L.,Jin C.Y..Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method[J].Langmuir,2009,25(1):173-178
    [59]Ejima H.,Iwata T.,Yoshie N..Morphology-Retaining Carbonization of Honeycomb-Patterned Hyperbranched Poly(phenylene vinylene) Film[J].Macromolecules,2008,41:9846-9848
    [60]孙巍,唐越超,计剑。以Pluronics为第二组分制备聚乳酸蜂窝状规整多孔薄膜[J].高等学校化学学报,2007,28(7):1388-1392
    [61]Tian Y.,Liu S.,Ding H.Y.,Wang L.H.,Liu B.Q.,Shi Y.Q..Formation of Honeycomb-Patterned Polyetherketone Cardo(PEK-C) Films in a Highly Humid Atmosphere[J].Macromol.Chem.(?).,2006,207:1998-2005
    [62]赵晓勇,蔡晴,石桂欣,施艳荞,陈观文.水蒸气辅助法制备LA-GA共聚物蜂窝状多孔膜[J].膜科学与技术,2004,24(2):1-6
    [63]田野,施艳荞,丁怀宇,曾一鸣,矫庆泽,王晓琳.水蒸汽辅助法制备PLLGA蜂窝状多孔 膜[J].功能高分子学报,2005,18(3):414-419
    [64]Han X.T.,Tian Y.,Wang L.L.,Xia C.F..Formation of Honeycomb Films Based on a Soluble Polyimide Synthesized from 2,2'-Bis[4-(3,4-dicarboxyphenoxy) phenyl]hexafluoropropane Dianhydride and 3,3'-Dimethyl-4,4'-Diaminodiphenyl-methane[J].Journal of Applied Polymer Science,2008,107:618-623
    [65]Yabu H.,Tanaka M.,Ijiro K.,Shimomur M..Preparation of Honeycomb-Patterned Polyimide Films by Self-Organization[J].Langmuir,2003,19:6297-6300
    [66]Zhao B.H.,Zhang J.,Wu H.Y.,Wang X.D.,Li C.X..Fabrication of honeycomb ordered polycarbonate films using water droplets as template[J].Thin Solid Films,2007,15:3629-3634
    [67]Yu C.L.,Zhai J.,Gao X.F.,Wan M.X.,Jiang L.,Li T.J.,Li Z.S..Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film[J].J.Phys.Chem.B,2004,108:4586-4589
    [68]于春玲,翟锦,高雪峰,万梅香,江雷,李泽生,李铁津.掺杂态聚苯胺蜂窝状有序多孔薄膜的制备及形成机制的探讨[J].高等学校化学学报,2004,25(7):1322-1324
    [69]Yu C.L.,Zhai J.,Li Z.,Wan M.X.,Gao M.Y.,Jiang L..Water-assisted self-assembly of polyaniline/Fe_3O_4 composite honeycomb structures film[J].Thin Solid Films,2008,516:5107-5110
    [70]Erdogan B.,Song L.,Wilson J.N.,Park J.O.,Srinivasarao M.,Bunz U.H.F..Permanent Bubble Arrays from a Cross-Linked Poly(para-phenyleneethynylene):Picoliter Holes without Microfabrication[J].J.AM.CHEM.SOC.,2004,126:3678-3679
    [71]Maruyama,N.,Koito,T.,Nishida,J.,Sawadaishi,T.,Cieren,X.,Ijiro,K.,Karthaus,O.,Shimomura,M.Mesoscopic patterns of molecular aggregates on solid substrates[J].Thin Solid Films,1998,327-329:854-856.
    [72]Nishikawa T.,Nonomura N.,Arai K.,Hayashi J.,Sawadaishi T.,Nishiura Y.,Hara M.,Shimomura M..Micropatterns Based on Deformation of a Viscoelastic Honeycomb Mesh[J].Langmuir,2003,19:6193-6201.
    [73]Karthaus O.,Cieren X.,Maruyama N.,Shimomura M..Mesoscopic 2-D ordering of inorganic/organic hybrid materials[J].Mater Sci Eng C Biomim Supramol Syst 1999;10(1-2):103.
    [74]Li J.,Peng J.,Huang W.H.,Wu Y.,Fu J.,Cong Y.,et al.Ordered honeycomb structured gold nanoparticle films with changeable pore morphology:from circle to ellipse[J].Langmuir,2005,21(5):2017-2021.
    [75]Bunz U.H.F..Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials[J].Adv.Mater.2006,18:973-989
    [76]Pitois O.,Francois B.Formation of ordered micro-porous membranes.Eur.Phys.J.B[J],1999,8:225-231
    [77]Francois B.,Pitois O.Crystallization of condensation droplets on a liquid surface[J].Colloid Polym.Sci.,1999,277:574-578
    [78]Stenzel M.H.,Barner-kowollik C.,Davis T.P..Formation of Honeycomb-Structured,Porous Films via Breath Figures with Different Polymer Architectures[J].Journal of Polymer Science:Part A: Polymer Chemistry,2006,44:2363-2375
    [79]Mourran A.,Sheiko S.S.,M(o|¨)ller M..Vitrified condensation pattern in thin polymer films:New approach for micropatterning[J].PMSE Proceedings of the Am.Chem.Soc.,1999,81:426-427.
    [80]Stenzel M.H..Formation of regular honeycomb-patterned porous film by selforganization[J].Aust.J.Chem.,2002,55:239-243.
    [81]Srinivasarao M.,Collings D.,Philips A.,Patel S..Three-dimensionally ordered array of air bubbles in a polymer film.[J].Science,2001,292:79-83.
    [82]Lu M.H.,Zhang Y..Microbead Patterning on Porous Films with Ordered Arrays of Pores[J].Adv.Mater.,2006,18:3094-3098
    [83]De Boer,B.,Stalmach,U.,Nijland,H.,Hadziioannou G..Microporous Honeycomb-Structured Films of Semiconducting Block Copolymers and Their Use as Patterned Templates[J].Adv Mater,2000,12:1581-1583.
    [84]Kim J.,Serpe M.J.,Andrew Lyon L..Photoswitchable Microlens Arrays[J].Angew.Chem.Int.Ed.,2005,44:1333-1336
    [85]Jones C.D.,Serpe M.J.,Schroeder L.,L.Lyon A..Microlens Formation in Microgel/Gold Colloid Composite Materials via Photothermal Patterning[J].J.AM.CHEM.SOC.,2003,125:5292-5293
    [86]Beattie D.,Wong K.H.,Williams C.,Poole-Warren L.A.,Davis T.P.,Barner-Kowollik C.,Stenzel M.H..Honeycomb-Structured Porous Films from Polypyrrole-Containing Block Copolymers Prepared via RAFT Polymerization as a Scaffold for Cell Growth[J].Biomacromoleeules,2006,7:1072-1082
    [87]Peng J.,Han Y.C.,Yang Y.M.,Li B.Y..The influencing factors on the macroporous formation in polymer films by water droplet templating[J].Polymer,2004,45(2):447-452.
    [88]Greiser C.,Ebert S.,Goedel W.A..Using Breath Figure Patterns on Structured Substrates for the Preparation of Hierarchically Structured Microsieves[J].Langmuir,2008,24,617-620
    [89]甘景镐.生漆的化学[M].北京:科学出版社,1984:1-2.
    [90]蔡奋.生漆化学[M].贵阳:贵州人民出版社,1986:1-2.
    [91]张飞龙,李钢.生漆的组成结构与其性能的关系研究[J].中国生漆,2000,19(3):35.
    [92]龚厚杰.生漆工艺[M].北京:中国林业出版社,1984:36.
    [93]钱保功,甘景镐等.高分子科学技术发展简史[M].北京:科学出版社,1994:359.
    [94]Kumanotani J..Enzyme catalyzed durable and authentic oriental lacquer:a natural microgelprintable coating by polysaccharide-glycoprotein-phenolic lipid complexes[J].Progress in organic coatings,1998,34:135-146.
    [95]Lugaro G.,Carrea G.,Cremonesi P.,Casellato M.M.,Antonini E..The oxidation of steroid hormones by fungal lacease in emulsion of water and organic solvents[J].Archives of Biochemistry and Biophysics,1973,159(1):1-6.
    [96]Oshima R.,Kumanotani J..Structural studies of plant gum from sap of the lac tree,Rhus vernicifera[J].Carbohydrate Research,1984,127(1):43-57.
    [97]国家自然科学基金委员会.国家自然科学基金资助项目优秀成果选编(三)[M].上海:上海科学技术出版社.2001:96.
    [98]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社.2001.
    [99]Symes W.F.,Dawson C.R..Poison Ivy "Urushiol"[J].J.Am.Chem.Soc.,1954,76(11):2959-2963.
    [100]章文贡,甘景镐.中国生漆成分研究-Ⅰ,生漆漆酚提纯的新方法[J].中国生漆成分研究-Ⅱ.生漆漆酚的全分离与其部分组分的结构[J].福建师范大学学报(自然科学版),1978,(1):4-15.
    [101]吴采樱等.用毛细管柱分离鉴定中国生漆中漆酚的组成结构[J].中国生漆,1992,11(4):3-5.
    [102]Du Y.M.,Oshima R.,Iwatsuki H.,Kumanotani J..High-resolution gas-liquid chromatographic analysis of urushiol of the lac tree,rhus vernicifera,without derivatization[J].Journal of Chromatography A,1984,295:179-186.
    [103]龚厚杰.生漆工艺[M],中国林业出版社,1984:17-19.
    [104]Nakamura T..Purification and physico-chemical properties of laccase[J].Biochimica et Biophysica Acta,1958,30(1):44-52.
    [105]Kumanotani J.,Kato T.,Hikosaka A..Studies on Japanese lacquer:Film formation via o-quinone and enzymic oxidation of urushiol homologues catalyzed by laccase[J].Journal of Polymer Science Part C:Polymer Symposia,1968,23(2):519-531.
    [106]Tyman J.H.P.,Mathews A.J..Long-chain phenols:ⅩⅩⅡ.Compositional studies on Japanese lac(rhus vernicifera) by chromatography and mass spectrometry[J].Journal of Chromatography A,1982,235(1):149-164.
    [107]甘景镐.生漆的化学[M].北京:科学出版社,1984:51-52.
    [108]Yamauchi Y.,Oshima R.,Kumanotani J..Configuration of the olefinic bonds in the heteroolefinic side-chains of japanese lacquer urushiol:separation and identification of components of dimethylurushiol by means of reductive ozonolysis and high-performance liquid chromatography[J].Journal of Chromatography A,1982,243(1):71-84.
    [109]黄照庚,邱峰,游江,钱保功,李丽云,裘鉴卿,袁汉珍,沈联芳.2D-NMR研究中国生漆漆酚结构[J].高等学校化学学报,1987,8(2):187-199.
    [110]Du Y.M.,Oshima R.,Kumanotani J..Reversed-phase liquid chromatographic separation and identification of constituents of uroshiol in the sap of the lac tree,Rhus vernicifera[J].Journal of Chromatography A,1984,284:463-473.
    [111]Hu B.H.,Chen W.D.,Lin J.H..The synthesis of urushiol titanium chelate polymers and their structutal characteristics[J].Chinese Journal of Polymer Science,1993,11(3):198-203.
    [112]Hu B.H.,Chen W.D.,Lin J.H..Summary of pilot reseach on type anticorrosive coating of urushiol-titanium chelate polymer[J].Science Foundation in China,1995,13(2);78-79.
    [113]Hu B.H.,Chen W.D.,Lin J.H.,Zhao F.,Gan J.H..The use of urushiol-titanium chelate polymer as anticorrosive coating for marine application[J].Acta Oceanologica Sinica,1990,9(1):97-107.
    [114]胡炳环,林金火,董智成,陈文定.漆酚铜螯合高聚物的合成及其特性[J].中国生漆,1995,14:5-11.
    [115]胡炳环,林金火.漆酚铝螯合聚合物的合成研究[J].高分子学报,1991,(3):32-38.
    [116]雷福厚,史伯安,谭志斗,田世英.漆酚铁铝高分子催化剂的合成及应用[J].广西民族学院学报(自然科学版),1998,4(3):27-29.
    [117]林金火,胡炳环,陈文定,甘景镐.漆酚铁螯合高聚物的合成及其特性研究[J].高分子材料科学与工程,1991,(5):34-37.
    [118]林金火.漆酚醌铁(Ⅱ)螯合物形成机理的研究[J].福建师范大学学报(自然科学版),1991,7(1):58-62.
    [119]陈巧平.漆酚铁螯合高聚物热分解反应动力学[J].漳州师范学院学报(自然科学版),1995,(2):54-56.
    [120]林金火,胡炳环.漆酚缩醛铁黑推光漆形成机理的研究[J].高分子材料科学与工程,1998,14(5):115-117.
    [121]史伯安,杨春海,瞿万云.漆酚铁锡聚合物催化剂的合成及应用[J].中国生漆,2002,(2):10-14.
    [122]许淼清,李国清,林金火.漆酚与硫酸亚铁的配合反应[J].中国生漆,2003,22(1):10-14.
    [123]刘灿培,高佳辉,林金火,胡炳环.漆酚-铁化合物对有机硅聚合物性能的影响[J].中国生漆,2004,23(2):9-14.
    [124]刘建桂,林金火,陈钦慧,徐艳莲,肖鹏.漆酚铁聚合物-醇酸树脂互穿聚合物网络涂料的研究[J].林产化学与工业,2005,25(2):94-97.
    [125]胡炳环.新型漆酚-钛螯合高聚物的合成及应用已取得成功[J].中国生漆,1987,(4):45.
    [126]黄祖斌.新型防腐蚀涂料(UTJ-1、UTJ-2)研制成功[J].福建师范大学学报(自然科学版),1987,(1):99.
    [127]胡炳环,陈文定,林金火,甘景镐.新型漆酚-钛螯合高聚物的研究Ⅰ-漆酚-钛螯合高聚物的合成[J].福建师范大学学报(自然科学版),1987,3(增刊):1-12.
    [128]胡炳环,陈文定,林金火,赵芳,甘景镐.新型漆酚-钛螯合高聚物的研究Ⅱ-漆酚-钛螯合高聚物防腐涂料的研究[J].福建师范大学学报(自然科学版),1987,3(增刊):13-45.
    [129]胡炳环,陈文定,林金火,赵芳,甘景镐.漆酚-钛螯合高聚物作为海洋设施防腐蚀涂料的研究[J].海洋学报(中文版),1989,11(1):49-58.
    [130]胡炳环,陈文定,林金火.新型漆酚钛螯合高聚物防腐蚀涂料中试研究概况[J].中国科学基金,1995,(3):51-53.
    [131]胡炳环,林金火,陈文定,李春荣,陈汉林.新型漆酚钛螯合高聚物防腐蚀涂料应用效果[J].中国生漆,1996,15:22-29.
    [132]胡炳环,林金火.漆酚钛螯合高聚物防腐蚀涂料的耐热性能研究[J].中国生漆,1997,16:23-29.
    [133]胡炳环,陈文定,林金火.新型漆酚钛螯合高聚物防腐蚀涂料中试研究[J].林产化学与工业,1998,18(1):17-22.
    [134]胡炳环,陈文定.漆酚钕高聚物的合成[J].高分子学报,1996(3):278-283
    [135]陈开平.漆酚锡螯合高聚物的合成及其特性的研究.福建师范大学硕士学位论文,1988.
    [136]胡炳环,林金火,徐艳莲.漆酚硅锡聚合物的研究[J].林产化学与工业,2002,22(1):9-13.
    [137]胡炳环,林金火.漆酚钴螯合聚合物的合成中国生漆[J].中国生漆,1996,15:1-7.
    [138]陈日耀,胡炳环,林金火.漆酚镍螯合高聚物热分解反应动力学研究[J].中国生漆,1997,16:16-19.
    [139]林金火,王家芳,胡炳环.漆酚镍聚合物的合成、表征与特性[J].中国生漆,1998,17:26-29.
    [140]陈日耀.热重法研究漆酚镍螯合高聚物热分解动力学[J].福建分析测试,1999,8(1):3-6.
    [141]胡炳环,林金火,王家芳.漆酚锰聚合物的合成与表征[J].中国生漆,1998,17:20-25.
    [142]徐艳莲,胡炳环,林金火.漆酚钼高聚物的研究Ⅱ·漆酚钼螯合物分子中Mo的作用[J].中国生漆,1999,18:24-29.
    [143]徐艳莲,胡炳环,林金火.漆酚钼螯合高聚物的合成及表征[J].高分子学报,2000,(3):1-5.
    [144]徐艳莲,林金火,胡炳环.漆酚缩甲醛钼高聚物的合成与表征[J].福建师范大学学报(自然科学版),2001,17(4):65-69.
    [145]徐艳莲,林金火,陈钦慧.漆酚钼螯合高聚物催化合成醋酸丁酯的研究[J].中国钼业,2003,27(5):30-32.
    [146]唐洁渊,章文贡,高锋.电化学聚合漆酚镨配合物的合成及其表征[J].中国稀土学报,2000,18(3):198-202.
    [147]唐洁渊,高锋,章文贡,王文.电化学聚合漆酚-铕配合物的合成及性质[J].应用化学,2000,17(3):325-327.
    [148]唐洁渊,章文贡.电化学聚合漆酚钐配合物的研究[J].高分子学报,2001,(6):740-745.
    [149]唐洁渊,章文贡,邓友娥.电化学聚合漆酚及其钬配合物研究[J].分子科学学报,2002,18(2):90-97.
    [150]肖荔人,高锋,唐洁渊,章文贡.电聚合漆酚镝配位聚合物研究[J].化学学报,2003,61(8):1338-1342.
    [151]Xia J.R.,Xu Y.L.,Lin J.H.,Hu B.H..UV-induced polymerization of urushiol without photoinitiator[J].Progress in Organic Coatings,2008,61(1):7-10
    [152]夏建荣.紫外光引发漆酚合反应及其复合材料的研究.福建师范大学硕士学位论文,2008.
    [153]Xu Y.L.,Xia J.R.,Hu B.H..Controlled growth of CdS nanoparticles in polyurushiol matrices[J].Progress in Organic Coatings,2009,65:25-29
    [154]夏建荣,徐艳莲,林金火,胡炳环.漆酚基环氧丙烯酸酯的合成[J].合成化学,2007,15(6):685-688
    [155]徐艳莲,夏建荣,胡炳环,游晨莹.紫外光固化漆酚镧聚合物(PULa)的性能与表征[J].中国生漆,2007,26:1-5.
    [156]黄道战,蓝虹云,邓加彦,农升辉,陆启敏.Cu(Ⅱ)-胺配合物催化漆酚氧化聚合成膜性能研究[J].化学与生物工程,2005(2):18-20.
    [157]黄婷,郭明高,余件元.模拟漆酶Ⅰ.铜和弱碱性苯乙烯系阴离子交换树脂的复合物Cu-D370模拟漆酶催化漆酚氧化聚合成膜的红外光谱分析[J].林产化学与工业,1989,9(4):31-39.
    [158]黄婷,郭明高,余件元.模拟漆酶Ⅱ.铜和弱碱性苯乙烯系阴离子交换树脂的复合物Cu-D370催化漆酚氧化聚台成膜的研究[J].林产化学与工业,1990,10(1):21-27.
    [159]叶立新,郭明高,郭庆宇.铜与聚4-乙烯基吡啶的络合物催化漆酚氧化聚合[J].中国生漆,1991,(2):1-5.
    [160]叶立新,郭明高,郭庆宇.铜与吡啶的络合物催化漆酚氧化聚合及其产物成膜性能的研究[J].中国生漆,1991,(1):8-14.
    [161]叶立新,郭明高,郭庆宇.铜-吡啶类络合物模拟漆酶催化漆酚氧化聚合成膜的红外光谱分析[J].林产化学与工业,1994,14(2):51-56.
    [162]叶立新,郭明高,郭庆宇.铜与氯化苄部分季铵盐化的聚4-乙烯吡啶的络合物催化漆酚氧化聚合Ⅰ.催化作用与漆膜性能[J].中国生漆,1995,14:13-20.
    [163]郭庆宇.铜类催化漆酚氧化聚合成膜的红外研究[J].中南民族大学学报(自然科学版),2003,22(增刊):103-105.
    [164]郭庆宇.铜与聚2-乙烯吡啶模拟漆酶催化漆酚氧化成膜红外分析[J].西北民族大学学报(自然科学版),2004,25(4):13-17.
    [165]卓东贤,李雪芳,吴秀玲,林金火.质子酸催化漆酚聚合的反应历程初探[J].中国生漆,2007,26(2):6-9
    [166]卓东贤.漆酚的酸催化聚合及其复合涂料的研究.福建师范大学硕士学位论文,2008.
    [167]甘景镐,甘纯玑,胡炳环.天然高分子化学[M].北京:高等教育出版社,1993:138-142
    [168]李艳菊,王性炎.中国生漆漆液研究[J].林产化学与工业,1997,17(2):41-46
    [169]郑燕玉,胡炳环,林金火.漆酚基乳化剂对水包油型生漆乳液流变行为的影响[J].高分子学报.2008,9:920-924
    [170]郑燕玉,胡炳环,林金火.用混合乳化剂UE20/PVA制备的水包油型生漆乳液的性能[J].高等学校化学学报,2008,29(7):1466-1472
    [171]郑燕玉,胡炳环,林金火.用UE10/PVA混合体系制备的O/W型生漆乳液的流变性[J].厦门大学学报,2008,47(3):374-378
    [172]郑燕玉,胡炳环,林金火.水基化生漆的膜性能研究[J].泉州师范学院学报,2008,26(2):58-62
    [173]郑燕玉,胡炳环,林金火.漆酚基乳化剂(UE8)的制备及性能研究[J].林产化学与工业,2007,27(3):81-84
    [174]郑燕玉.天然生漆的水基化及其复合体系的研究.福建师范大学博士学位论文,2008.
    [175]虞兆年.涂料工艺(第一分册)[M].北京:化学工业出版社,2000
    [176]张俐娜.天然高分子科学与材料[M].北京:科学出版社,2007
    [177]Nagase K.,Lu R.,Miyakoshi T..Studies on the Fast Drying Hybrid Urushi in Low Humidity Environment[J].Chem.Lett.,2004,33:90.
    [178]Ishimura T.,Lu R.,Miyakoshi T..Studies on the reaction mechanism between urushiol and organic silane[J].Progress in Organic Coatings,2006,55:66-69
    [179]雷福厚,史佰安,谭志斗.漆酚树脂固载化三氯化铁催化剂在醋酸正丁酯生产中的应用研究[J].中国生漆,1998,17(11):32-37
    [180]雷福厚,史佰安,米远祝.漆酚树脂和金属离子催化H_2O_2分解反应的动力学研究[J].中国生漆,1997,16:12-15
    [181]雷福厚,史佰安,郭明高等.漆酚树脂负载Cu~(2+)催化性能研究[J].中国生漆,1996,15:12-15
    [182]林金火,胡炳环.漆酚金属聚合物催化酯化的性能[J].中国生漆,1997,16(1):10-11
    [183]Tian Y.,Jiao Q.Z.,Ding H.Y.,Shi Y.Q.,Liu B.Q..The formation of honeycomb structure in polyphenylene oxide films[J].Polymer,2006,47:3866-3873
    [184]Tian Y.,Liu S.,Ding H.Y.,Wang L.H.,Liu B.Q.,Shi Y.Q..Formation of deformed honeycomb-patterned films from fluorinated polyimide[J].Polymer,2007,48:2338-2344
    [185]Wong E.W.,Sheehan P.E.,Lieber C.M..Nanobeam mechanics:Elasticity,strength and toughness of nanorods and nanotubes[J].Science,1997,277:1971-1975.
    [186]Treacy M.M.J.,Ebbesen W.,Gibson J.M..Exceptionally high Young's modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680.
    [187]Wei B.Q.,Vajtai R.,Jayan P.M.A.Reliability and current carrying capacity of carbon nanotubes[J].Appl Phys Lett,2001,79(8):1172-1174.
    [188]Avas B.,Kyun K.Y.,David T..Unusually high thermal conductivity of carbon nanotubes[J].Phys Rev Lett,2000,84(20):4613-4616.
    [189]Zhao B.H.,Li C.X.,Lu Y.,Wang X.D.,Liu Z.L.,Zhang J..Formation of ordered macroporous membranes from random copolymers by the breath figure method[J].Polymer,2005,46:9508-9513.
    [190]何曼君,张中权.反相色谱法研究聚合物[J].高分子通讯,1980,(1):55-64
    [191]Santos J.M.R.C.A,Juthrie J.T..Analysis of interactions in multicomponent polymeric systems:The key-role of inverse gas chromatography[J].Materi Sci & Eng R,2005,50:79-107
    [192]Sun C.H.,Berg J.C..A review of the different techniques for solid surface acid-base characterization[J].Adv Colloid and Interface Sci,2003,105:151-175
    [193]刘旸,张倩茹,张洪锋,吴庸烈,史宝利.反相气相色谱表征可溶性聚酰亚胺的表面性质[J].高分子学报,2007,(6):509-513
    [194]Santos J.M.R.C.A.,Fagelman K.,Guthrie J.T..Characterisation of the surface Lewis acid-base properties of poly(butylene terephthalate) by inverse gas chromatography[J].J.Chromatogr.A,2002,969:111-118
    [195]Fowkes F.M.,Mostafa M.A..Acid-Base Interactions in Polymer Adsorption[J].Ind.Eng.Chem.Prod.Res.Dev.,1978,17(1):3-7
    [196]Santos J.M.R.C.A.,Fagelman K.,Guthrie J.T..Characterisation of the surface Lewis acid-base properties of the components of pigmented,impact-modified,bisphenol A polycarbonate-poly (butylene terephthalate) blends by inverse gas chromatography-phase separation and phase preferences[J].J.Chromatogr.A,2002,969:119-132
    [197]Panzer U.,Schreiber H.P..On the evaluation of surface interactions by inverse gas chromato -graphy[J].Macromolecules,1992,25:3633-3637
    [198]田野,施艳荞,曾一鸣,矫庆泽,王晓琳.高湿度条件下蜂窝孔结构的形成与控制[J].膜科学与技术,2005,25(5):78-84
    [199]杨珠,邓丰,林金火.漆酚缩醛胺/环氧树脂水性涂料的涂膜性能研究[J].中国生漆,2006,25(2):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700